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Emission budgets are defined as the cumulative amount of anthropogenic CO2 emission 

compatible with a global temperature change target. The simplicity of the concept has made it 

attractive to policy-makers, yet it relies on a linear approximation of the global carbon-climate 

system’s response to anthropogenic CO2 emissions. Here, we investigate how emission budgets 

are impacted by inclusion of CO2 and CH4 emissions caused by permafrost thaw, a non-linear 

and tipping process of the Earth system. We use the compact Earth system model OSCAR v2.2.1 

in which parameterization of permafrost thaw, soil organic matter decomposition, and CO2 and 

CH4 emission was introduced, based on four complex land surface models that specifically 

represent high-latitude processes. We find that permafrost carbon release makes emission 

budgets path-dependent (i.e. budgets also depend on the pathway followed to reach the target).

The median remaining budget for the 2°C target is reduced by 8% [1–25%] if the target is avoided 

and net negative emissions prove feasible, by 13% [2–34%] if they do not prove feasible, by 16% 

[3–44%] if the target is overshot by 0.5°C, and by 25% [5–63%] if it is by 1°C. (Uncertainties are 

the minimum-to-maximum range across permafrost models and scenarios.) For the 1.5°C target,

reductions in the median remaining budget range from ~10% to more than 100%. We conclude 

that the world is closer to exceeding the budget for the long-term target of the Paris climate 

agreement than previously thought.

Sometimes called “carbon budgets”, cumulative anthropogenic CO2 emission budgets 

compatible with a given global mean warming target have been evaluated in many ways1-10. Yet, only 

a handful of studies11-13 made (incomplete) preliminary attempts to account for permafrost thaw. 

Additional emission of CO2 and CH4 caused by this natural process triggered by warming in the high 



latitudes13,14 will indeed diminish the budget of CO2 humankind can emit while staying below a certain 

level of global warming. Permafrost carbon release is also an irreversible process over the course of a 

few centuries13,14, and may thus be considered a “tipping” element of the Earth’s carbon-climate system

centuries15, which puts the linear approximation of the emission budget framework1,4,5,16,17 to the test.

To quantify the impact of permafrost carbon release on emission budgets, we use an Earth 

system model of reduced complexity whose processes are parameterized to faithfully emulate more 

complex models. OSCAR v2.2.1 – a minor update of v2.2 (ref.18) – is run in its default configuration 

which is comparable to the median of its probabilistic setup. Therefore, all our results are for ~50% 

chance of meeting the temperature targets. OSCAR is extended here with a new permafrost carbon 

module that emulates four state-of-the-art land surface models: JSBACH (Methods), ORCHIDEE-

MICT (ref.19), and two versions of JULES (ref.20,21). These complex models have been specifically 

developed to represent high latitude processes, in particular soil thermic and biogeochemistry 

mechanisms that control carbon sequestration and emission. In this new emulator, permafrost carbon in 

two high-latitude regions is represented as an initially frozen pool that thaws as global temperature 

increases. Thawed carbon is not immediately emitted: it is split between several pools, each with its 

specific timescale of emission. We assume 2.3% of the emission occurs as methane14 (see discussion 

and Methods regarding the uncertainty of this value), and this emitted CH4 is fully coupled to the

dynamical atmospheric chemistry of OSCAR. More details on the protocol, the emulator and the models 

are provided in Methods.

We do not assume a priori that reductions in emission budgets can simply be calculated as the 

cumulative permafrost carbon release in a given scenario. Quite the opposite, we apply three specifically 

designed approaches to estimating emission budgets. The first one is the “exceedance” approach, in 

which the budget is a threshold in terms of cumulative anthropogenic CO2 emissions above which the 

temperature target is exceeded (with a given probability). The second one is the “avoidance” approach, 

in which the budget is another – typically lower – cumulative emissions threshold below which the 

target is avoided (also with a given probability). These two approaches were used in the fifth IPCC 

assessment report6,22. However, none of them considers the possibility of overshooting the target first, 

and returning below it in a second time. To investigate such a case, we adapt the approach by 

MacDougall et al.12 to create “overshoot” budgets.

Reductions in exceedance and avoidance budgets

With the exceedance approach, budgets are calculated in any given scenario as the maximum 

cumulative CO2 emissions before the point in time when global temperature reaches the target level for 

the first time. This is illustrated in Figure 1 (see also Methods and example in Supplementary Figure 

1). Here, our exceedance budgets are based upon the four extended RCP emission scenarios23 and two 

idealised scenarios (Methods and Supplementary Figure 2).



When permafrost carbon is ignored, we estimate total exceedance budgets of 2320 [2260–2450] 

Gt CO2 for the 1.5°C target and 3230 [3080–3530] Gt CO2 for 2°C, with 1870 as the preindustrial 

reference year (Supplementary Table 1; budgets for 2.5°C and 3°C also provided therein).

(Uncertainties are the minimum-to-maximum range across permafrost models and scenarios.) Our 

results are ~2% different from the IPCC estimates based on complex models6. This confirms that 

OSCAR’s default configuration gives results consistent with the Earth system models used in previous 

climate change assessments.

When permafrost carbon processes are included, exceedance budgets are reduced by 30 [10–

120] Gt CO2 for 1.5°C and 60 [10–200] Gt CO2 for 2°C (Figure 2a and Supplementary Table 1). This 

is only a few percentage points of the total budgets, but it corresponds to a more substantial reduction 

in the remaining budgets (Figure 2b). It is also smaller in magnitude than previously estimated with a 

model of intermediate complexity12, which can be explained by the over-sensitivity of the permafrost 

carbon model used in this earlier study (Table 1). An important (known) caveat of the exceedance 

approach is that it ignores the system’s dynamics after the point in time at which the temperature target 

is reached22. This is especially important for permafrost carbon, since a significant part of the thawed 

carbon keeps being emitted long after the target is first reached (Supplementary Figure 3), implying the 

temperature target will actually be surpassed if budgets are based on this approach.

With the avoidance approach, budgets are calculated using a large ensemble of peak-and-

decline emission scenarios whose values of peak temperature and maximum cumulative CO2 emissions 

are used for interpolation (Figure 1, Methods and Supplementary Figure 1). This approach accounts for 

the complete system’s dynamic by ensuring that the temperature target is never exceeded. Its drawback, 

however, is its intense computing requirement that makes it extremely costly to follow by complex 

models. Here, we create and use an ensemble of 3,120 scenarios, by combining 520 fossil-fuel CO2

emission scenarios of our own making (Supplementary Figure 4) to the land-use and non-CO2 climate 

forcers from the six scenarios previously used for exceedance budgets (Methods).

Permafrost carbon reduces avoidance budgets by 60 [10–180] Gt CO2 for 1.5°C and 100 [20–

270] Gt CO2 for 2°C (Figure 2a). This reduction in avoidance budgets is systematically larger than for 

exceedance budgets: by 20% to 140% across all the emulated permafrost carbon models (Figure 3). 

This confirms that the exceedance approach only partially captures the impact of permafrost carbon 

release on emission budgets. We conjecture that other slow and strongly non-linear processes such as 

forests dieback15,24,25 would also be incompletely accounted for with exceedance budgets. Since the 

exceedance approach was the only one used by complex models in the fifth IPCC assessment report6,22,

we conclude that future updates of emission budgets based on such models will remain biased without 

a change in experimental protocol.

Path-dependency and overshooting pathways



Our ensemble of 3,120 scenarios for avoidance budgets covers a large enough spectrum of 

possible futures that it can be split into two groups (Methods and Supplementary Figure 4). In the 

subgroup of scenarios which have no net negative emissions (noted “NetNegEm0”), the permafrost-

induced reduction in avoidance budgets is 90 [10–230] Gt CO2 for 1.5°C and 150 [30–340] for 2°C 

(Figure 2a). This is systematically more than in the subgroup of scenarios in which net negative 

emissions are extensively implemented (“NetNegEm+”) (Figure 3). The physical reason for this is that 

extensive net negative emissions artificially make temperature peak a few years after they are 

introduced, whereas when net negative emissions are not available the peak of temperature is entirely

caused only by natural processes, and permafrost carbon emissions can delay it for decades 

(Supplementary Figure 5). The fact that the effect of permafrost carbon release depends on the emission 

pathway is proof that inclusion of such a previously unaccounted for tipping process renders emission 

budgets path-dependent. In other words, the emission budget compatible with a given target depends 

on both the timing and magnitude of anthropogenic emissions, and not only on their magnitude.

To investigate further this path-dependency, we look into overshoot budgets using the same 

ensemble of scenarios as for avoidance budgets (Methods). Net overshoot budgets are calculated as the 

sum of two gross budgets: a “peak” budget that is exactly the same as an avoidance budget for a given 

peak temperature above the long-term target, and a “capture” budget that corresponds to the amount of 

net negative emission required to return below the long-term temperature target (Figure 1, Methods and 

Supplementary Figure 1). Capture budgets have a mathematical definition analogous to exceedance 

budgets, and so these budgets have the same caveat of overlooking the system’s evolution after the 

target is met. Longer-term requirements in CO2 capture to compensate for lasting permafrost

emissions26,27 are therefore ignored in our capture budgets (provided in Supplementary Table 2). Also, 

only net negative emission requirements can be estimated this way: gross negative emissions could be 

much larger if decrease in fossil-fuel consumption were not rapid enough28.

In the case of an overshoot amplitude of 0.5°C, emissions from permafrost thaw reduce net 

emission budgets by 130 [30–300] Gt CO2 for the 1.5°C long-term target (i.e. for a peak temperature 

of 2°C, a case corresponding to the Paris climate agreement), and by 190 [50–400] Gt CO2 for 2°C 

(Figure 2a). For an overshoot amplitude of 1°C, permafrost-induced reductions reach 210 [50–430] Gt 

CO2 for the 1.5°C target, and 270 [70–530] Gt CO2 for 2°C. (Budgets for other targets and other levels 

of overshoot are provided in Figure 2 and Supplementary Table 1.) The permafrost-induced reduction 

is systematically more pronounced in these cases than in non-overshooting scenarios (Figure 3) because 

of the additional capture required to counteract the extra emission from thawed permafrost that occur 

during the overshoot period. It is already known that the rest of the carbon-climate system (i.e. excluding 

permafrost) exhibits a path-dependent behaviour under overshooting scenarios29 (see also 

Supplementary Figure 6), but our results show that permafrost carbon release strongly reinforces this 

rupture of the linear approximation of the emission budget framework.



Discussion and policy implications

A permafrost-induced path-dependency of emission budgets was already implied by 

MacDougall et al.12, although their quantification of the effect was biased by the high sensitivity of their 

permafrost carbon release in response to high-latitude warming (Table 1; note that an update of their 

model showed a lower bias26). Their study also focused on exceedance budgets and a handful of 

overshooting scenarios that did not correspond to political commitments. The Paris climate agreement 

indeed aims at avoiding 2°C, which implies avoidance budgets are needed. It also recognizes an 

overshooting trajectory by setting the long-term target to 1.5°C, which means overshoot budgets are 

also needed.

A few earlier attempts at quantifying the permafrost-induced reduction in emission budgets 

were also made11,13, albeit without applying any of the budget-calculation approaches we use. They 

simply subtracted cumulative emissions caused by permafrost thaw from cumulative anthropogenic 

emissions, at an arbitrary point in time. Such an approach is not suitable for accurately estimating budget 

reductions (Supplementary Figure 7) since it overlooks the dynamical response of the coupled system. 

It was not retained in the fifth IPCC assessment report6. Additionally, these earlier studies did not find 

path-dependency, either because only one scenario was investigated11 or because path-independency 

was assumed13.

The OSCAR v2.2.1 model with its new permafrost carbon emulator estimates future carbon 

release from thawing permafrost within the range of existing studies (Table 1). A cumulative 60 [11–

144] Pg C is projected to be released by 2100 under RCP8.5, slightly lower than the 37–174 Pg C 

reviewed by Schuur et al.14, and close to the 28–113 Pg C obtained with a data-constrained model by 

Koven et al.30. Uncertainties in permafrost-related processes and their response to climate change 

remain very high, however, and there are elements that suggest our results are conservative. Deep (e.g. 

Yedoma) and seabed permafrost thaw is not modelled. Should these carbon stocks be mobilized, 

budgets would be further reduced. Changes in nitrogen cycling caused by permafrost thaw are also 

ignored. They could lead to emission of N2O (ref.31) but also changes in the ecosystems’ net carbon 

balance32.

We also assume a constant fraction of permafrost carbon is emitted as CH4, while the value and 

future evolution of this fraction are uncertain14,33,34. With this constant value, we simulate an emission 

of 3.7 [0.7–10.5] Tg CH4 per year over the 1980–2012 period, in line with a recent review35. This 

methane contributes a non-negligible fraction of the reduction in emission budgets (Figure 4). This 

contribution is also path-dependent, contrary to what was obtained in earlier studies13,33 by using a fixed 

global warming potential (GWP). It is, however, a well-known caveat of GWPs (or any other emission 

metric) that they are linear and constant while the actual Earth system behaves in a complex, dynamical 

and non-linear fashion36-39, and that they cannot be naively used in combination with emission budgets40.

Because of all these uncertainty sources, we assume that no probabilistic distribution of the 

permafrost-induced effect can yet be drawn from our results, and we provide its full range. Reducing 



this uncertainty, by fostering observation- and model-based research on permafrost and other tipping 

processes of the Earth system, is key to knowing if and when the world will enter an overshooting 

climatic regime. Meanwhile, permafrost adds to the uncertain context under which climate policy 

decisions must be taken41-43. Careful policy-making might entail taking the pessimistic end of our 

estimates.

Nevertheless, we have shown that accounting for tipping elements of the Earth system breaks 

the apparent linear behaviour of the carbon-climate system, which equates to making emission budgets 

path-dependent. This renders manipulating budgets more delicate than previously thought, as budget 

users have to make assumptions regarding the long-term target, but also the shorter-term target (e.g. 

risk of overshooting) and even the reliance on certain technologies (as we have demonstrated for net 

negative emissions).

Furthermore, we have quantified a substantial permafrost-induced reduction in remaining 

budgets for low-warming targets. It ranges from ~5% to as much as ~40% for 2°C, and from ~10% to 

more than 100% for 1.5°C, under present-day non-CO2 forcing and for ~50% chance of meeting the 

temperature targets. Whether the world has already breached the budget for 1.5°C remains elusive, 

however. It depends on many factors including the uncertainty on past anthropogenic emissions44,45, the 

amount of forcing by non-CO2 species that will be mitigated in the near future12,46,47, and a possible bias 

in the models’ simulated present-day global temperature7-10 (not accounted for in this study).

Irrespective of these uncertainties, it appears that the attainability of the Paris agreement is more 

compromised than suggested by an existing literature that largely ignores tipping or irreversible 

feedbacks of the Earth system.
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Table 1. Comparison of cumulative permafrost carbon release estimated in 2100, 2200 and 2300 

(in Pg C; 1 Pg C = Gt CO2). Uncertainties show the full range of simulations or studies, unless 

noted otherwise. A more comprehensive comparison also including ref.26,48,49 is provided in 

Supplementary Table 3.

Reference 2100 2200 2300 notes

High-emission scenarios: RCP8.5 or SRES A2

This study 59 [11–143] 150 [34–297] 212 [55–376] –

Koven et al.30 57 [28–113] – – data-constrained modeling

MacDougall et al.12 226 611 – CO2-only simulations

Schuur et al.14 37–174 – ca. 100–400 review compiling several studies

Schaefer et al.13 37–347 – – review compiling several studies

Medium-high stabilization scenarios: RCP6.0 or SRES A1B

This study 42 [8–102] 99 [23–203] 145 [39–265] –

MacDougall et al.12 166 – – CO2-only simulations

Schaefer et al.11 – 190 ± 24 – uncertainty is 1-sigma

Medium-low stabilization scenario: RCP4.5

This study 35 [7–83] 64 [16–130] 89 [26–163] –

Koven et al.30 21 [12–33] – – data-constrained modeling

MacDougall et al.12 156 – – CO2-only simulations

Schaefer et al.13 27–100 – – review compiling several studies

Low-emission scenario: RCP2.6

This study 27 [6–62] 39 [11–82] 47 [15–93] –

MacDougall et al.12 103 153 169 CO2-only simulations



Figure captions

Figure 1. Illustration of the three budget-calculation approaches used in this study. Exceedance 

budgets (red) are the amount of CO2 that can be emitted before exceeding a given temperature target. 

Avoidance budgets (blue) are the amount of CO2 that can be emitted while staying below the target. 

Capture budgets (yellow) are the amount of CO2 that need be captured when the target temperature is 

overshot by a given level. Capture budgets are combined with avoidance budgets to give net overshoot 

budgets. See Methods and Supplementary Figure 1 for technical details on how these budgets are 

calculated.

Figure 2. Change in emission budgets caused by permafrost carbon release. The temperature 

targets of 1.5°C, 2°C, 2.5°C and 3°C are shown on the x-axis. Coloured symbols are for different budget-

calculation approaches, including different levels of overshoot and the avoidance budgets based on two 

subgroups of scenarios: without net negative emissions (“NetNegEm0”) and with large amount of them 

(“NetNegEm+”). Uncertainty bars show the full range and symbols show the average, across all 

permafrost models and scenarios. (a) Absolute reductions in emission budgets. (b) Relative reductions 

in remaining budgets, calculated by assuming 2240 Gt CO2 (ref.44) has been emitted between 1870 (the 

preindustrial reference year) and 2017 (see Methods). To better isolate the effect of permafrost carbon 

in (b), we present values under a constant present-day non-CO2 radiative forcing (other non-CO2

backgrounds are available in Supplementary Table 1).

Figure 3. Path-dependency of the permafrost-induced budget reductions. Reductions in avoidance 

and overshoot budgets (on the x-axis) are compared to reductions in exceedance budgets (reference case 

of 100%). Each type of budget represents a different archetype of pathway, and they are roughly sorted 

by increasing intensity of the permafrost effect. Coloured symbols are for the four temperature targets,

and uncertainty bars show the full range of our results. Values >100% mean that emission budgets are 

more largely reduced than in the exceedance case. If the permafrost effect were path-independent, all 

points would be close to 100%.

Figure 4. Contribution of CH4 released by permafrost thaw to the budget reductions. It is 

expressed in (a) absolute and (b) relative terms with regard to the values shown in Figure 2a.

Uncertainty bars show the full range and symbols show the average, across all permafrost models and 

scenarios.



Methods

OSCAR v2.2.1

OSCAR is a compact Earth system model whose modules are calibrated to emulate the 

behaviour of more complex models18. Of particular interest to this study, OSCAR features a module for 

the terrestrial carbon-cycle calibrated on TRENDY and CMIP5 data50,51, a module for the oceanic 

carbon-cycle adapted from ref.52 to embed CMIP5 data51, a climate response module calibrated on 

CMIP5 models53, and an atmospheric chemistry module for the CH4 tropospheric lifetime taken from 

ref.54.

We use OSCAR v2.2.1 that is a minor update of v2.2. The only change between the two 

versions that affects this study is a minor correction of the carbonate chemistry in the surface ocean. 

This correction implies a better behaviour of the model for high-warming scenarios. All equations 

remain the same as in the description paper18.

We use the global RCP data23 to drive the model over the data set’s historical period (1765–

2005) and following the four extended RCP scenarios (2006–2500). Concentrations of all greenhouse 

gases but CO2 and CH4 are prescribed to the model. Radiative forcings (RFs) of all near-term climate 

forcers (ozone and aerosols) and albedo effects (black carbon on snow and land-cover change) are also 

prescribed. Therefore, the model is run in an emission-driven fashion only for fossil CO2 and CH4

emissions. However, to ensure that we obtain the same atmospheric concentrations of CO2 and CH4 as

those of the RCPs when permafrost thaw is turned off, we first run a concentration-driven simulation 

which we use to back-calculate the anthropogenic emissions of CO2 and CH4 that are compatible with 

these atmospheric concentrations28,55. These compatible anthropogenic emissions are then used to drive 

the model, instead of the original RCP emissions. Land-use and land-cover change data comes from the 

LUH1.1 data set56 until 2100. After that year, land-cover change is assumed to be zero, and land-uses 

(wood harvest and shifting cultivation) are assumed to be constant.

We also introduce the CST and STOP scenarios. In CST, concentrations of all greenhouse gases 

but CO2, radiative forcings of all near-term climate forcers and albedo effects, and fossil CO2 emissions 

are kept constant after 2005. In STOP, all these values are set to their preindustrial value after 2005. In 

both CST and STOP, land-cover change is assumed to be zero after 2005. Land-uses are assumed to be 

constant after 2005 in CST, and to be zero in STOP.

The above protocol is further adjusted so that, when atmospheric CH4 concentration deviates 

from that of the original RCP because of CH4 emission from permafrost thaw, OSCAR also calculates 

the associated change in radiative forcing from stratospheric H2O and tropospheric O3 (ref.18,36).

In this study, OSCAR is not run in a probabilistic fashion: we use the default configuration of 

the model to save computing time. This implies that the full uncertainty of the Earth system is not 

sampled in this study, and only that of the permafrost system is, under a close-to-median configuration 



of the rest of the model. The default configuration has an equilibrium climate sensitivity for CO2

doubling of ~3.2°C. A comparison of the default and median results for key variables of the model is 

provided in Supplementary Figure 8, for our six scenarios and in the case without permafrost thaw. The 

median results are obtained by running an unconstrained Monte Carlo ensemble of 2,000 elements, as 

in ref.18. Supplementary Figure 8 shows that the default and median atmospheric CO2 and global 

temperature simulated variables remain close, with a normalised root-mean square error (nRMSE) <5%. 

Two noticeable biases are identified, however. First, the default configuration gives a lower atmospheric 

CH4 than the median, which suggests that our results underestimate the additional effect of CH4

emission caused by permafrost thaw. Second, for RCP2.6 (a peak-and-decline scenario) and to a lesser 

extent for RCP4.5 (a stabilizing scenario), the default configuration warms more than the median, 

indicating that our capture budgets are likely overestimated (which may partly compensate for the 

protocol-induced underestimate described in main text).

Permafrost carbon emulator

We couple a permafrost emulator to OSCAR v2.2.1, calibrated on four land surface models: 

JSBACH (see dedicated section), ORCHIDEE-MICT (ref.19), and JULES (ref.20) following the two 

different versions “DeepResp” and “SuppressResp” (ref.21). The calibration of the parameters defined 

hereafter is done using outputs of the complex models for integrations over 1850–2300 of the RCPs 

8.5, 4.5 and 2.6. In this emulator, we calibrate and separately run the permafrost system of two 

aggregated regions of the globe: North America and Eurasia. In these models, we call “permafrost 

carbon” the carbon that was frozen (and therefore inactive) during preindustrial times. All parameter 

values are given in Supplementary Table 4.

First, we model the regional air surface temperature change (Ti) in each region i with a linear 

dependency on global temperature change (T):

= (1)

The parameters i are calibrated with a linear fit between Ti and T (Supplementary Figures 9 and 10; 

first row). Note that this parameter represents a feature of the climate system. It does not actually come 

from the emulated land surface model, but rather from the climate model it uses as input. In the case of 

JSBACH, it is the MPI-ESM-LR model’s results for CMIP5 (ref.57). In the case of ORCHIDEE and 

JULES, the detailed protocol of the simulations used is provided by ref.21. For JULES, we take the 

average of all realizations made with IMOGEN, and for ORCHIDEE we take only one realization made 

with IMOGEN emulating HadCM3.

Second, we calibrate the temperature-dependency of the heterotrophic respiration rate of non-

permafrost carbon (r) following a Gaussian law58:

= exp (2)



1 and 2 are the sensitivity parameters calibrated with forced positive values (Supplementary Figures 

9 and 10; second row), and r0 is the preindustrial heterotrophic respiration rate taken as the average 

over 1850–1859 in the case of JSBACH, and 1850 in the case of ORCHIDEE and JULES (since 

IMOGEN features no inter-annual variability).

Third, we introduce the “theoretical thawed fraction” ( ) that can take values from -pmin to 1, 

with a preindustrial value of 0. It corresponds to the fraction of thawed permafrost carbon for a given 

regional temperature change, but neglecting dynamic considerations. It is fitted by an S-shaped 

function:

= + (3)

pmin represents a hypothetical (i.e. never reached) case of fully frozen soils, p is a shape parameter, and 

p is the sensitivity parameter. The three parameters are calibrated with the same fit (Supplementary 

Figures 9 and 10; third row), with the additional constraint that pmin cannot be greater than the ratio of 

the model’s non-frozen soil carbon over frozen soil carbon in preindustrial times. In the case of 

JSBACH, because there is no re-freezing in the model, we calibrate this relationship on the scenario 

with the fastest warming only (i.e. RCP8.5). For ORCHIDEE and JULES, the calibration is made with 

all scenarios. Therefore, the exact physical meaning of depends on the emulated model.

Fourth, we introduce an asymmetric dynamic behaviour in the thawing/freezing process by 

defining the “actual thawed fraction” (p) which is lagging behind the theoretical thawed fraction :

= (4)

with:

=
, if 

, if <
(5)

thaw and froz are the speeds of thawing and freezing, respectively. They are calibrated simultaneously 

with transient simulations (Supplementary Figures 9 and 10; fourth row), using equations (3), (4) and 

(5) driven only by the regional temperature change taken from the emulated model, i.e. not using 

equation (1).

Fifth, a frozen carbon pool (Cfroz) changes with time following the thawing carbon flux (Fthaw)

calculated as the product of the frozen pool size during preindustrial times (Cfroz,0) by the speed of 

change in (i.e. time-derivative of) the actual thawed fraction:

= = , (6)

Inspired by Koven et al.30, the thawing flux is then split between three thawed carbon pools (CtN)

following partitioning coefficients ( tN). Note, however, that for some models we reduced the number 

of thawed carbon pools to avoid over-fitting (see Supplementary Table 4). Each thawed carbon pool is 



then subjected to heterotrophic respiration with its own turnover time ( tN). The respiration rate is 

affected by regional temperature change following the same law as in equation (2), except that the 

sensitivities are modified by a factor t. This gives:

 =

 =

 =

(7)

To ensure mass balance, we must have: t3 = 1 – t1 – t2. The other six parameters are calibrated 

simultaneously with transient simulations by fitting the respiration flux simulated by our emulator to 

the actual complex model’s flux (Supplementary Figures 9 and 10; fifth row). To do so, we use only 

equation (7), driven by the complex model’s thawing carbon fluxes and heterotrophic respiration rates.

Finally, the permafrost carbon emissions (Epf) are deduced as:

= (8)

The overall performance of the emulator is shown in Supplementary Figures 9 and 10 (sixth row), where

the emulator is driven only by the emulated model’s global temperature change (the only driver of our 

permafrost module). Overall, the performance of the emulator is very satisfying, with a normalized root-

mean square error (nRMSE) for global cumulative permafrost carbon emissions of 2.8%, 5.3%, 5.7% 

and 7.1%, for JULES-DeepResp, JULES-SuppressResp, JSBACH and ORCHIDEE-MICT, 

respectively.

Effect of methane emissions

A fraction of 2.3% (ref.14) of permafrost carbon emission is assumed to be CH4. This value is 

assumed to remain constant throughout the simulations, since the future response of this fraction to 

environmental changes (e.g. climate or CO2) is unclear33. In OSCAR, the atmospheric evolution of 

these CH4 molecules is tracked in a separate manner, so that, when the permafrost-induced CH4 is 

oxidized in the atmosphere, we add the newly formed CO2 to the atmospheric CO2 pool. Therefore, the 

long-term addition of CO2 to the atmosphere caused directly by permafrost thaw does not depend on 

the CH4 fraction. The transient warming and ensuing feedbacks in the system, however, are a function 

of this fraction.

To investigate this effect, two additional series of simulations are performed: one without and 

one with doubled methane emission (i.e. fractions of 0% and 4.6%, respectively). The methane effect 

shown in Figure 4 is equal to the difference between the budgets obtained in the main simulations with 

2.3% of methane and those obtained in the simulations with 0%. We also find that the difference 

between the 4.6% and 2.3% simulations is approximately the same as that between 2.3% and 0% (not 

shown), which suggests the absolute contribution of methane is roughly linear in this domain.



Exceedance budgets protocol

To obtain the exceedance budgets, we run our six scenarios with the permafrost module turned 

off and with its four alternative configurations. This is a total of 6 × 5 = 30 simulations. By definition, 

for each of these simulations, the exceedance budget is the maximum cumulative amount of 

anthropogenic CO2 that is emitted up to the time when the given temperature target is exceeded 22. So 

the exceedance budgets are calculated as:

= max ( ) + ( ) (9)

for ( ) and where Bexc is the exceedance budget, EFF is the yearly fossil-fuel CO2 emission, 

ELUC is the yearly CO2 emission from land use change, t0 the year the simulation starts, T the simulated 

temperature change, and T target the target temperature change.

Fossil-fuel CO2 emission pathways

For the avoidance budgets, we require a set of varied CO2 emission pathways that cover a wide 

range of possible futures. We create these emission pathways as the sum of one positive emission 

pathway and one negative: = + .

The pathway of positive emission is defined using a parameterized analytical formula of the 

peak-and-decline form on a semi-infinite interval59:

=  

( ), if  

( ) exp ( ) , if <

1 + ( + )( ) exp ( ) , if >

(10)

where = ( ) exp( ( )). We also define the total cumulative positive emission (Q+) of 

this pathway:

= ( ) = + ( ) (11)

Here, t0 is the starting year of the simulation, t1 the last year of the historical data, tm the time at which 

mitigation begins, r the historical growth rate of fossil CO2 emissions, and m the mitigation rate. The 

value of r is taken as the mean of the growth rate over the last ten years of the historical period (r =

0.022623 yr-1). The mitigation rate m is deduced from the other parameters:

=  1 + 1 + (12)

with = (1 exp( ( )). Each positive emission pathway is uniquely defined 

by the tuple (t1, tm, Q+).

In a similar manner, the negative emission pathways are defined following a logit-normal law 

on a finite interval:

=  
( )

exp (13)



with:

=  
( )

 ( )
(14)

where t f is the last year of the simulation, and two shape parameters, t lag the time between mitigation 

of positive emission starts and negative emissions start, and Q– the cumulative amount of negative 

emissions. Each negative emission pathway is uniquely defined by the tuple (t lag, , , Q–).

Using the above equations, we create 520 fossil-fuel CO2 emission pathways by combining 

different values for the positive emission tuple (t1, tm, Q+) and the negative emission one (t lag, , , Q–

). A full list of these 520 combinations of parameters is provided in Supplementary Table 5. The 

obtained emission pathways are also represented in Supplementary Figure 4.

Avoidance budgets protocol

To calculate the avoidance budgets, we run simulations with the 520 fossil-fuel CO2 emission 

pathways combined with the six scenarios we already have for all other drivers of the model (i.e. non-

CO2 forcings and land-use drivers), with the permafrost module turned off and with its four alternative 

configurations. This leads to a total of 520 × 6 × 5 = 15,600 simulations. We note that our approach of 

combining two independent sets of scenarios likely lead to an overestimation of the scenario-related 

uncertainty, since we implicitly combine inconsistent sources of CO2 and non-CO2 emissions 46. It 

allows, however, for a systematic analysis of the effect of non-CO2 forcing (using e.g. Supplementary 

Table 1).

Then, for each of these simulations (superscript i), we calculate the maximum temperature of 

the simulation:

= max ( ) (15)

and its maximum cumulative CO2 emissions:

= max ( ) + ( ) (16)

If any of these two maxima occurs at the last time step of the simulation (t f), the simulation is discarded. 

With this approach, we are certain that an emission budget of Bmax ensures that global temperature do 

not go above Tmax, given the non-CO2 and land-use forcings of the ith scenario.

However, we have no control over the individual values of Tmax. Therefore, to deduce the 

avoidance budgets (Bavo) for an exact temperature target, we interpolate linearly in the ( , )

phase space, within the Tmax value interval of ±0.2°C around T target. We acknowledge this is not exactly 

the approach followed by ref46. However, our approach does respect the philosophy of the “avoidance” 

budget in ensuring that the temperature target is indeed avoided. Obviously, for a given non-CO2 and 

land-use scenario, any budget lower than the deduced Bavo also implies avoiding the temperature target.

Net overshoot budgets protocol



Net overshoot budgets (Bnet) are the combination of two budgets: an emission budget to reach 

peak temperature (Bpeak) and a capture budget consisting of the cumulative amount of negative emission 

required to go back to the targeted temperature (Bcap < 0): = + . Therefore, net 

overshoot budgets are defined for a given temperature target and a given level of overshoot (Tover), with 

peak temperature then being given by: = + .

To calculate Bpeak and Bcap, we use the same ensemble of scenarios as for the avoidance budgets. 

In each case, we take only the subset of scenarios whose maximum temperature is ± 0.2°C of the chosen 

Tpeak and then declines by at least Tover. For each of these scenarios (superscript j), we calculate 

and exactly as we do for the avoidance budgets in equations (15) and (16). We also calculate 

:

= min ( ) + ( ) ( ) + ( ) 0  (17)

for ( ) and using Iverson brackets in the notation. (They take a value of 1 iff the 

logical test in the brackets is true, and 0 otherwise.)

Then, just as with the avoidance budgets, we linearly interpolate Bpeak and Bcap in the 

( , ) and ( , ) phase spaces, respectively. The net overshoot budget Bnet is 

deduced by summation of Bpeak and Bcap. We note again that this protocol, being somewhat similar to 

the exceedance protocol in its formulation, ignores everything that may occur after the temperature goes 

back below the targeted value. It therefore provides a lower-bound estimate of future capture 

requirements.

Extra data processing

To be consistent with IPCC (ref.6), we adjust our budgets for a preindustrial year of 1870. To 

do so, before actually calculating any budget, global temperatures (T) are offset by a value equal to the 

average over 1861–1880, and cumulative CO2 emissions (B) are reduced by the cumulative amount of 

CO2 emitted over 1765–1870. Budgets are rounded to the nearest 10 Gt CO2 in the tables and main 

text. We also discard estimates of Bavo and Bpeak for which the coefficient of determination (R2) of the 

linear fit is less than 0.50.

Remaining budgets calculation

B) are calculated as = , where B can be Bexc, Bavo or Bnet.,

and Bhist is the historical cumulative CO2 emission from anthropogenic activities (fossil-fuel burning, 

industry- and land-related). We take Bhist = 2240 Gt CO2 (ref.44). In Figure 2b, we show the relative 

reduction in remaining budgets caused by permafrost carbon release, that is: 1, where the 

subscript “1” is for a case with permafrost carbon processes, and “0” one without. In Figure 3, we show 

reductions in budgets relative to those in the exceedance case: .



Permafrost in JSBACH

The earlier CMIP5 version of the Max Planck Institute Earth System Model land surface 

scheme JSBACH (ref.60,61) is extended with a multilayer hydrology scheme62, a representation of 

permafrost physical processes63, as well as the improved soil carbon model YASSO (ref.64). For 

permafrost carbon stocks, we represent carbon cycling in the active layer by the YASSO model, while 

we prescribe frozen carbon stocks below the active layer from the Northern Circumpolar Soil Carbon 

Database (NCSCD) version 2 (ref.65). When the active layer thickness changes, we transfer carbon from 

the prescribed frozen carbon stocks into the active YASSO carbon pools.

Data availability

RCP scenarios are available at: http://www.pik-potsdam.de/~mmalte/rcps/. The data that 

support the findings of this study are available from the corresponding author upon request.

Code availability

The source code of OSCAR is available at: https://github.com/tgasser/OSCAR. The code used 

to generate all the results of this study is available from the corresponding author upon request.
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