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1 Introduction

There are many dimensions of poverty, one of them related to the availability and accessibility

of different fuel options for cooking. Approximately forty percent of the world’s population

uses solid fuels for cooking, such as firewood and charcoal (International Energy Agency (IEA)

and the World Bank, 2017). These fuels, along with the use of rudimentary stoves, creates

a series of problems because of poor fuel quality and incomplete combustion. In particular,

an estimated 2.6 million people worldwide die prematurely (Health Effects Institute, 2018)

because of air pollution caused mainly by the use of poor quality fuels in rudimentary stoves

within household premises. Several efforts to improve the adoption of modern cooking fuels

and stoves have been implemented, especially in developing regions, to reduce the risks asso-

ciated with the use of low quality fuels and stoves. In order to analyze the potential impact

of such policies ex ante, and project possible future scenarios of clean fuel adoption, several

models of household cooking fuel choices have been developed in the past decades. However,

most existing models are based either on the assumption that there is an “energy ladder”

and households ascend this ladder i.e. move to using cleaner, more expensive fuels, as their

income rises, (e.g. OTA 1992; Hosier and Dowd 1987; Kowsari and Zerriffi 2011; van der

Kroon et al. 2013), or that the adoption of cleaner fuels is gradual as income increases, and
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households “stack” their fuel options (e.g. Masera et al. 2000; Cheng and Urpelainen 2014;

Smith and Sagar 2014).

Here, following on Ekholm et al. (2010) and Cameron et al. (2016), we present the latest

version of the MESSAGE-Access model, a behavioral choice model to estimate the demand

and choices for household cooking fuels. Unlike other models in the literature, we make no

explicit a priori assumptions about preferences between fuels, that is, we do not assume either

an “energy ladder” or a “stacking” theory for the transition. We estimate our model using

the Method of Simulated Moments (McFadden, 1989) on data for Ghana, Guatemala, India,

Nigeria and Uganda 1. We find that our model estimates of the pattern of fuel adoption by

income are a close match to the empirical data derived from the surveys in all the selected

countries. We also undertake ex post simulations using the estimated parameters of the model

to test the responsiveness of demand to variations in the price of fuels and the level of per

capita income.

The rest of the paper is organized as follows. In Section 2, we review literature on mod-

els of household fuel choices that have been applied in scenario analysis. In section 3, we

present our theoretical model of household cooking fuel choices. In section 4, we discuss the

datasets used in the study and present our estimation methods and results. In section 5, we

use the model to assess the responsiveness of fuel demands to changes in prices and income.

Finally, Section 6 concludes.

2 Literature on household fuel choices

Several empirical analysis of the determinants of household energy choices in developing coun-

tries can be found in the literature (e.g. Campbell et al. 2003; Heltberg 2004, 2005; Alem et al.

2016). Many of these rely on statistical analysis using multiple linear regressions or discrete

choice models. Recent reviews of the literature point to the fact that much of the evidence

on factors influencing household choices remains largely scattered and qualitative and that

1India was selected as representative of South and South East Asia and Guatemala as representative of
Central America, whereas the remaining countries are representative of Sub-Saharan Africa. These geographic
regions represent those with the largest concentration of biomass dependent populations for cooking in the
world.
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quantitative analysis is constrained by the lack of sufficient data, especially on energy prices

and expenditures (Lewis and Pattanayak, 2012). Here we do not attempt to undertake a

comprehensive review of literature on household fuel choices, but focus specifically on studies

that have taken a forward looking perspective to analyze future scenarios of cooking fuel

transitions.

As noted in Section 1, this model is developed as the next step in the evolution of the

MESSAGE-Access framework. Ekholm et al. (2010) present the earliest version of this model.

In this early version of the model, households face a utility maximization problem that trans-

lates into an equation that represents a choice between fuel alternatives based on a trade-off

between inconvenience costs of different fuels and differences in actual costs and prices. The

main drawback of this approach is that, as a result of this being a linear choice model,

households choose only one fuel among the alternatives, something that is in contrast with

empirical evidence. To address this issue, Cameron et al. (2016) provides a second version of

the MESSAGE-Access model, where households are allowed to stack multiple fuel options.

To this end, demand curves for clean fuels are estimated for different population subgroups,

as well as their total demand for cooking fuel. Based on the estimated demand curves,

households are assumed to first choose cleaner fuel options up to the point that these are

affordable at the given prices they are available at. Afterwards, if the total household fuel

demand has not been fulfilled, the remaining is met with non-clean fuel options. Although

a significant improvement compared to the earlier model, the key problem of this method

is that the only estimated demand is for clean fuels, and therefore, there is no demand re-

sponse to changes in prices of non-clean fuels. In addition to this, and because for estimation

purposes the population is divided among subgroups, there is a weak response to changes in

income, as the model has no clear substitution effect between clean and non-clean fuel options.

We also discuss some of the alternative models that have been proposed in the literature.

In van Ruijven et al. (2011), we find the first use of the IMAGE-REMG model to estimate

household fuel choices for multiple end-uses such as cooking, lightning and heating. In par-

ticular for the cooking module, the model assumes a constant level of household cooking

energy demand and then uses a multinomial logit model to estimate preferences for different
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available fuel alternatives. In this model too, the population is separated in groups and there

is an assumption that cleaner fuels are always chosen first. Therefore, the same issues arise.

Additionally, although the use of a multinomial logit model for this purpose seems natural,

it severely limits the applicability of this model to other countries as it requires enough data

to make the estimated coefficients significant. For example, in Sub-Saharan countries where

the adoption of clean fuels is still lagging, it would be hard to correctly estimate preferences

for these fuels. Finally, with a multinomial logit model we can only obtain the probabilities

of choosing between mutually exclusive alternatives. Therefore, under such assumption, indi-

vidual households can choose only one of the possible fuel alternatives, something that is at

odds with empirical data.

A recent study of Sub-Saharan African countries that uses a multinomial model approach

is Rahut et al. (2016). To overcome the problem of data scarcity, it merges data from three

different countries in the estimation process. However, the reduced-form nature of this paper

limits its applicability for an actual modeling of household choices. For example, some of the

control variables would be hard to project for future scenarios (e.g. distance to markets).

Moreover, two critical factors are not included: fuel prices and household income. It would

be interesting to see whether an estimation including these factors would render significant

coefficients that could be used to estimate responses to them. Nevertheless, as with all athe-

oretical approaches, its appropriateness for scenario analysis will always be limited, as the

estimated parameters are only valid as statistical descriptions of the data, while the mecha-

nisms behind the choice decision remain obscure (Koopmans, 1947; Heckman, 2008; Keane,

2010).

Recently, Fuso Nerini et al. (2017) propose a new approach, which they refer to as “lev-

elized cost of cooking a meal”, that involves calculating the cost of cooking with different

fuel-technology combinations. This only allows for a comparison between the cost of cooking

using a calculated predefined level of energy using a variety of available options. Though the

method does include responses to changes in price, it does not include responses to changes

in income. Therefore, as a consequence, it possesses limited adequacy for scenario analysis.
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3 Model

We present a parsimonious model of household choice between cooking fuels and consumption

of other goods, subject to a budget constraint. Households choose cooking fuels according

to their preferences for consumption of other household goods and each of the available fuel

options. Individual households are considered to be price-takers, and therefore, prices are

assumed to be exogenous. In particular, we assume a Cobb-Douglas utility function, such

that:

max
C,F

U(C,F ) =

Cα
 Nf∑
f=1

efFf

1−αγ [χ (F1...FNf

) ]1−γ
(1)

s.t.

pcC +

Nf∑
f=1

(pfFf + Af ) = I (2)

C,Ff ≥ 0 (3)

where C is consumption of other items, Ff is cooking fuel consumption of fuel f , Af is

an annualized value of the cooking stove of fuel f and I is income (or, a better proxy,

expenditure). χ
(
F1...FNf

)
is a function that represents the household preferences for each

of the available fuel options, or, if we think in dual terms, the implicit “inconvenience cost”

of the fuels used by the household (e.g. collection costs and health costs)2. The unknown

parameters that we need to estimate are the preference for fuel consumption vs consumption

of other items α, and overall consumption vs implicit cost γ. Additionally, we have to make

assumptions about the function representing the preferences for each fuel χ. In particular,

we can assume that this function is a second degree polynomial on each of the fuels:

χ = χ0 −
Nf∑
f=1

(
δ1fFi + δ2fF

2
i

)
−K (4)

2We can think of this function as an analogue of the preference for leisure / disutility of work in a standard
labor supply model, that is, a function that represents the need to produce something in order to increase
utility (in this case, food), but it has some associated non-monetary costs depending on the particular choice
that is made.
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This may be the strongest parametric assumption in the model. However, we found empirical

support for it mainly from the fact that households, as stated in the previous sections, do

not choose a single fuel for their energy needs. Without including a non-linear implicit cost

function households would only choose one fuel among the available options. Also, as pointed

out in the solution of the model (see Appendix A), the household optimization problem will

have a unique solution if the implicit cost function is a strictly concave function of the fuel

options. Therefore, we opt to use the simplest possible strictly concave function available, i.e.,

a second degree polynomial, to avoid imposing a heavier additional structure on the model.

Finally, we also include a fixed cost K that becomes non zero only when firewood is collected

for free.

Assuming that we know the parameters, the model is solved as a constrained optimization

problem (see Appendix A). In the end, the total quantity of fuel f̃ demanded by the household

comes implicitly from:

Ff̃ =


1

2δ2f

[
γ(1−α)ef̃∑Nf
f=1 efFf

− γαpf̃

I−
∑Nf

f=1(pfFf+Af )
− (1−γ)δ1f

χ

]
if µi = 0

0 if µi > 0

(5)

where µf̃ is the Lagrange multiplier associated to the Ff̃ ≥ 0 condition.

4 Data and estimation

The basic concept underlying the structural simulated method of moments is to set up a

theoretical model to represent an economic decision and use data to find primitive param-

eters of the model that would explain real life observations. This is done by generating a

simulated dataset using the model, and then matching the moments estimated from the sim-

ulated data to the moments of the observed data. In this case, the following parameters from

the model are unknown and need to be estimated: α, γ, K and δ1f , δ2f for all the fuel options.

The model was estimated independently for 3 countries that can be used to represent Sub-

Saharan Africa, for Guatemala, representative of Central America and for India, representa-

tive of South Asia. Table 1 summarizes the data sources used for this study. All datasets
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Country Dataset Years Obs* Perc**

Ghana Ghana Living Standards Survey (GLSS) 2012-2013 7,039 49.2%
Guatemala Encuesta Nacional de Condiciones de Vida (ENCOVI) 2014 6,737 61,2%
India National Sample Survey (NSS) 2011-2012 62,201 49.8%
Nigeria General Household Survey (GHS) 2012-2013 2,104 51.7%
Uganda Uganda National Household Survey (UNHS) 2012-2013 2,472 27.0%
* Number of observations after data cleaning.

** Weighted percentage of the total sample.

Table 1: Datasets Used by Country

were subjected to the same data cleaning processes, which consisted of excluding outliers3 in

expenditure per household per capita, cooking fuel consumption and cooking fuel consump-

tion over expenditure per household per capita. Additionally, household fuel choices were

cross checked with the possession of an appropriate stove for the fuel (e.g. electricity use for

cooking with the possession of an electric stove). Finally, households where the identification

of fuel usage for cooking was unclear were also dropped. Sample weights were included and

used for the calculation of the observed moments. A summary of the data cleaning process,

as well as some descriptive statistics can be found in Table 2.

Ghana Guatemala India Nigeria Uganda

Data Cleaning
Initial Numbers of Households 16,772 11,563 101,662 4,728 6,891
Outliers in Cooking Expenditure (including missing) 7,331 7,017 82,372 2,192 2,585
Outliers in Household Expenditure 7,183 6,785 80,724 2,148 2,533
Outliers in Cooking Consumption over Expenditure 7,039 6,737 62,201 2,104 2,472

Descriptive Statistics*
Percentage Urban 69.2% 57.4% 52.6% 51.3% 50.6%
Mean Household Size 5.4 5.5 5.6 7.6 6.7
Mean Household Expenditure** 12,293.6 14,158.3 7,435.9 12,386.9 6,755.3
Mean Firewood Expenditure** 16.2 24.6 60.6 120.4 87.4
Mean Charcoal Expenditure** 150.7 0.3 6.9 12.1 175.8
Mean Kerosene Expenditure** 0.7 0.2 26.6 180.9 10.6
Mean LPG Expenditure** 36.1 18.7 145.8 17.1 4.2
Mean Electricity Expenditure** 0.2 0.7 0.8 0.2 1.5
* Additional statistics can be found in the data-related moments.

** All expenditures are in 2010 USD.

Table 2: Data Cleaning Process and Descriptive Statistics

All of these datasets present similar difficulties. First, expenditure information and informa-

tion on quantities consumed by each household were not available, except in the datasets of

3i.e. 1%-tile bottom or top observations, as well as households with no observations.
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India and Guatemala. For the remaining countries, the datasets used contained additional

market modules that contained price information for the surveyed regions, therefore, average

regional prices were used as a proxy to calculate household consumption given the expendi-

ture data available. Nevertheless, in some cases, price information was given in quantities

that are ambiguous (for example, firewood quantities were sometimes presented in quanti-

ties such as “bundles” or “bunches”). To solve this, we used a variety of external sources

to find representative units for the quantities (e.g. how many kilos is a bunch), and then,

we tested whether this unit-corrected prices would imply aggregate consumption levels that

are consistent with national energy statistics of each country. Additionally, stove prices and

efficiencies where not available, therefore, similar assumptions as in Cameron et al. (2016)

were followed. In Table 5 in the Appendix we show the stove options used in the model,

which are representative of the most used stoves for each fuel option4. Finally, since it is not

always possible to distinguish whether the fuels are used for cooking or for other purposes,

the following assumptions were made. On the one hand, if electricity was not disclosed as the

main cooking fuel source, it was not included into the cooking fuel mix of the household. On

the other hand, for households that listed electricity as the main cooking fuel, the average

consumption of electricity of households with similar expenditure levels was subtracted as a

proxy of electricity usage for other purposes.

Estimation was done using the Method of Simulated Moments. We estimate 26 moments

corresponding to mean log total fuel consumption and expenditure of other items per house-

hold per capita for the aggregate (to identify α and γ), plus mean log consumption per

household per capita per fuel, the mean percentage of each fuel in the total household fuel

consumption by rural/urban groups (to identify γ and the δs) and the percentage of firewood

that is obtained for free (to identify K). For the estimation we assume that the general

preference parameters α and γ are the same for all households, but the parameters of the in-

convenience cost function are different between rural and urban households. With this we try

to explain the heterogeneity in behavior arising from the differences in the budget constraint

of different households, without disregarding the inherent differences in the inconvenience of

obtaining or using a particular fuel between urban and rural households.

4For a detailed description of these, see the Supplementary Information of Cameron et al. 2016
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The steps of the Method of Simulated Moments are the following:

• Calculate the selected moments from the sample observations and construct a column

vector with the observed moments, Mo.

• Using an initial guess for the primitive parameters of the model that we are trying to

estimate, θ̂, create 10,000 simulated households.

• Putting together initial conditions, shocks and decision rules, get the simulated choices

of each of the 10,000 households.

• Obtain the corresponding moments from the simulated data and generate the column

vector M s(θ).

• Calculate the value of the following criterion function

G
(
θ̂
)

=
(
M s(θ̂)−Mo

)′
W−1

(
M s(θ̂)−Mo

)
where W is a diagonal matrix, where each of the elements of the diagonal represent the

inverse of the variance of the corresponding moment estimated in the data.

• Iterate on the parameters θ̂ until G
(
θ̂
)

is minimized.

Moments matched and parameter estimates for each country can be found in the Appendix.

In Figure 1 we compare the actual data to the results of the model in terms of percent-

age of each fuel in the total cooking fuel consumption of the household. In all cases, we find

that the model provides a close approximation to the observed patterns in the data. Addi-

tionally, in Figure 2 we show how the preferences for each fuel change by expenditure level,

that is, how the part of the function χ corresponding to each fuel behaves as expenditure

increases5. From both sets of figures we can see how, as expenditure increases, household

switch towards cleaner fuels. These illustrate the rate of transition to cleaner fuels with rises

in income. In Figure 2, the parameter on preferences reflects some of the non-economic factors

5Namely δ1fFi + δ2fF
2
i
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that contribute to the inertia in fuel switching, such as tastes, preferences, reliability and ease

of fuel supply. As seen from the figure, this clearly differs across nations and between urban

and rural households. In general, the level of income at which urban households switch to

cleaner fuels, like LPG, is lower than that at which rural households do so. This may reflect

the easier access to fuels and stoves in urban centers and the higher opportunity cost of labor

in towns and cities.

5 Demand responsiveness to price and income changes

In this section, we use the model to estimate responses to changes in some of the key factors

that affect household’s fuel choices. We undertake three different simulations, two to test re-

sponses to variations in price and one to test responses to changes in income. It is important

to note that, in this model framework, the elasticities are not constant, as there are various

channels of response to changes in the model parameters. For example, an increase in income

would not always increase the consumption of one of the fuels already used by a household

by a certain particular amount. It could well be that, after a certain threshold, the higher

income pushes the household to switch to a different fuel source altogether. Therefore, here

we present some scenarios to show some responses of the model to changes in some of the

relevant decision factors, with the caveat that these responses would be noticeably different

depending on the size of the changes.

In our first simulation, we increase the prices of biomass fuels (i.e. firewood and charcoal/coal)

by 20%. In our second, we reduce the price of LPG, the most used clean fuel, also by 20%.

Finally, we undertake simulations in which the average household per capita income is set

to either increase or decrease by 20%. In all simulations, everything else is held constant,

consistent with the partial-equilibrium nature of the model.

We present the results of these simulations for the overall population and for rural or ur-

ban households in Tables 3 and 4 and in Figures 3 to 7. In all cases, the responses are in

the expected direction, that is, when biomass price increases, households increase their usage

of clean fuels; when LPG price decreases, households increase their usage of this fuel. In
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addition, when income rises, households are better able to afford more clean fuels6. Also, the

response of urban households is higher than rural households for changes in biomass prices,

whereas is lower to changes in income levels, consistent with the greater availability of clean

fuel sources in urban areas.

Additionally, we find that, save in Nigeria, the factor that affects the percentage of clean

fuels used by households most significantly is income. Noticeably, the effect of a decrease in

income is higher than the effect of an increase in income. Also, not surprisingly, the effect is

much stronger in countries where clean fuel adoption is lower. Finally, biomass prices seem

to have a lower impact on demand for this fuel, as in the model, households always have the

option to gather firewood for free, if convenient. Indeed, in Table 4 we see the effects of these

simulations on the demand for freely collected biomass. As expected, an increase in biomass

prices as well as a decrease in income leads to an increase in the collection of free firewood.

On the contrary, higher income leads to a decrease in the amount of biomass collected for

free.

6 Conclusions

Earlier efforts at modeling household fuel choices in developing countries have assumed either

a fuel ladder or fuel stacking as the underlying theoretical construct for estimating parameters

such as income and price elasticities of demand. In this paper we present the latest version of

the MESSAGE-Access model. Unlike previous theoretical models, we do not impose a limit

on the amount of cooking fuel used by households nor specify a hierarchy between different

fuel options. Also, compared to reduced form discrete choice models, the structural nature of

this model makes it more appropriate for scenario analysis. Understanding how consumers

choices may change given changes in incomes and energy prices is important for both policy

makers and researchers alike. By observing consumers choices and using a structural model

form, we provide insights that go beyond what is possible using other methods. In particular,

by linking theoretical models and empirical estimation methods, structural models are well

suited for analysis of counterfactuals, as several channels of responses are modeled and jointly

6Here we only consider LPG and electricity as clean fuels.
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Baseline 20% Higher 20% Lower 20% Higher 20% Lower
Country Level∗ Biomass Prices LPG Price Income Income

Ghana 27.94 4.90 11.99 15.50 -17.97
Guatemala 47.60 7.18 7.92 12.06 -16.39
India 64.14 0.67 6.13 12.25 -16.57
Nigeria 4.04 1.49 46.29 32.92 -33.17
Uganda 1.18 34.75 24.58 38.98 -43.22

(a) Overall Population

Baseline 20% Higher 20% Lower 20% Higher 20% Lower
Country Level∗ Biomass Prices LPG Price Income Income

Ghana 14.13 4.03 14.51 34.61 -16.42
Guatemala 16.47 12.08 7.29 27.32 -25.26
India 48.52 1.92 8.86 20.71 -22.38
Nigeria 2.33 4.72 79.40 44.21 -40.77
Uganda 0.86 4.65 22.09 36.05 -50.00

(b) Rural Population

Baseline 20% Higher 20% Lower 20% Higher 20% Lower
Country Level∗ Biomass Prices LPG Price Income Income

Ghana 33.88 5.05 11.10 14.26 -18.03
Guatemala 69.40 6.38 7.56 10.01 -14.50
India 77.63 0.00 4.51 7.87 -13.24
Nigeria 5.60 0.36 33.75 29.11 -30.00
Uganda 1.46 49.32 25.34 40.41 -39.04

(c) Urban Population

Table 3: Percentage Change of the Proportion of Clean Fuel Use in Total Cooking Fuel
Consumption for Different Scenarios

(∗) Represents the Percentage Level of Clean Fuel Adoption at the Baseline Simulation

estimated to fit relevant characteristics of the data.

The results of the estimation for 5 countries presented in this study shows a close fit to

the empirical data. This allows us to undertake simulations to test demand responses to

changes in prices and income. The model simulations show results in line with expected be-

havioral responses. The strong response of demand for clean fuels, like LPG, to income that

we observe has important policy implications. It suggests that public policies that provide

targeted and social transfers should be explored in addition to traditional support via fuel

subsidies. In addition, the responsiveness of self-collected free biomass to both changes in

fuel prices and income also hints to the fact that in areas where wood is abundant and freely
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Baseline 20% Higher 20% Lower 20% Higher 20% Lower
Country Level∗ Biomass Prices LPG Price Income Income

Ghana 1.56 47.44 -3.21 -30.77 52.56
Guatemala 12.61 66.38 16.34 -32.04 62.17
India 35.07 26.15 19.93 -26.15 23.13
Nigeria 24.91 8.35 14.05 -19.75 29.51
Uganda 15.74 29.10 3.68 -22.94 37.29

(a) Overall Population

Baseline 20% Higher 20% Lower 20% Higher 20% Lower
Country Level∗ Biomass Prices LPG Price Income Income

Ghana 4.40 36.59 6.59 -28.18 42.50
Guatemala 12.82 48.44 3.67 -35.96 61.47
India 37.85 23.43 25.15 -28.08 28.96
Nigeria 29.44 8.22 16.51 -20.31 27.07
Uganda 18.46 26.76 5.63 -23.24 34.24

(b) Rural Population

Baseline 20% Higher 20% Lower 20% Higher 20% Lower
Country Level∗ Biomass Prices LPG Price Income Income

Ghana 0.34 108.82 -47.06 -50.00 100.00
Guatemala 12.21 111.88 48.73 -23.10 64.05
India 16.77 74.00 -20.04 -21.59 16.22
Nigeria 20.07 8.62 11.06 -19.88 34.03
Uganda 13.39 31.81 1.49 -22.70 40.70

(c) Urban Population

Table 4: Percentage Change of the Proportion of Free Biomass in Total Biomass Consump-
tion for Different Scenarios

(∗) Represents the Percentage of Free Biomass in Total Biomass Consumption at the Baseline Simula-
tion

available, policies that inform and educate people about the adverse impacts of cooking with

solid fuels are required.

Agreement on the United Nation’s Sustainable Development Goals (SDG) is providing greater

impetus for achieving universal access to clean cooking by 2030. This requires analysis of

household fuel choices and assessments of policy scenarios that can facilitate this. Overall,

the results of this study shows that the MESSAGE-Access model can be used as a powerful

policy tool for scenario analysis where a multiplicity of conditions change simultaneously. In

particular, the model could be used to assess the effects of alternative policy instruments for

accelerating a transition to cleaner fuels, the policy costs of such efforts, and the implications
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of such transitions for other sustainable development goals such as those pertaining to health

and the environment.

(a) Ghana: GLSS (b) Ghana: Model Simulation

(c) Guatemala: ENCOVI (d) Guatemala: Model Simulation

(e) India: NSS (f) India: Model Simulation

Figure 1: Percentage of fuel use in total fuel consumption by expenditure per capita per
household for different countries, Data vs Model Simulation.
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(g) Nigeria: GHS (h) Nigeria: Model Simulation

(i) Uganda: UNHS (j) Uganda: Model Simulation

Figure 1: Percentage of fuel use in total fuel consumption by expenditure per capita per
household for different countries, Data vs Model Simulation.
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(a) Ghana: Rural (b) Ghana: Urban

(c) Guatemala: Rural (d) Guatemala: Urban

(e) India: Rural (f) India: Urban

Figure 2: Preferences for Each Fuel by Expenditure Level.

16



(g) Nigeria: Rural (h) Nigeria: Urban

(i) Uganda: Rural (j) Uganda: Urban

Figure 2: Preferences for Each Fuel by Expenditure Level.
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(a) Baseline Simulation (b) 20% Higher Income

(c) 20% Higher Biomass Prices (d) 20% Lower LPG Prices

Figure 3: Ghana: Base Simulation and 20% Increase Scenarios
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(a) Baseline Simulation (b) 20% Higher Income

(c) 20% Higher Biomass Prices (d) 20% Lower LPG Prices

Figure 4: Guatemala: Base Simulation and 20% Increase Scenarios
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(a) Baseline Simulation (b) 20% Higher Income

(c) 20% Higher Biomass Prices (d) 20% Lower LPG Prices

Figure 5: India: Base Simulation and 20% Increase Scenarios
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(a) Baseline Simulation (b) 20% Higher Income

(c) 20% Higher Biomass Prices (d) 20% Lower LPG Prices

Figure 6: Nigeria: Base Simulation and 20% Increase Scenarios
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(a) Baseline Simulation (b) 20% Higher Income

(c) 20% Higher Biomass Prices (d) 20% Lower LPG Prices

Figure 7: Uganda: Base Simulation and 20% Increase Scenarios
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Appendices

A Model solution

To simplify the calculations, we can rewrite the utility function by taking logarithm as:

U(C,Ff ) = γ log

Cα
 Nf∑
f=1

efFf

1−α+ (1− γ) logχ

= γα logC + γ(1− α) log

 Nf∑
f=1

efFf

+ (1− γ) logχ

Then the Lagrangian and FOCs:

L : γα logC + γ(1− α) log

 Nf∑
f=1

efFf

+ (1− γ) logχ

+ λ

I − pcC − Nf∑
f=1

(pfFf + Af )

− Nf∑
f=1

µfFf

∂L
∂C

:
γα

C
− λpc = 0 (6)

∂L
∂Fi

:
γ(1− α)ei∑Nf

f=1 efFf
+

1− γ
χ
· ∂χ
∂Fi
− λpi − µi = 0 (7)

∂L
∂λ

: I − pcC −
Nf∑
f=1

(pfFf + Af ) = 0 (8)

From (1):

λ =
γα

pcC

In (2):

γ(1− α)ei∑Nf

f=1 efFf
+

1− γ
χ
· ∂χ
∂Fi

=
γα

C

pi
pc

+ µi (9)
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And from (3):

C =
1

pc

I − Nf∑
f=1

(pfFf + Af )


in (4):

γ(1− α)ei∑Nf

f=1 efFf
+

1− γ
χ
· ∂χ
∂Fi

=
γαpi

I −
∑Nf

f=1(pfFf + Af )
+ µi (10)

As long as χ is a strictly concave function of Ff , the system of equation (5)s for all fuels will

give a unique solution for all Fi. In particular, as stated in section 3 we can assume that the

function χ is a second degree polynomial on each of the fuels:

χ = χ0 −
Nf∑
f=1

(
δ1fFi + δ2fF

2
i

)
where δ1f and δ2f are constants to be estimated and χ0 is a constant, in which case, equation

(5) ends up as:

γ(1− α)ei∑Nf

f=1 efFf
+

1− γ
χ

(−δ1f − 2δ2fFi) =
γαpi

I −
∑Nf

f=1(pfFf + Af )
+ µi

1− γ
χ

(δ1f + 2δ2fFi) =
γ(1− α)ei∑Nf

f=1 efFf
− γαpi

I −
∑Nf

f=1(pfFf + Af )
+ µi

⇒ Fi =


1

2δ2f

[
γ(1−α)ei∑Nf
f=1 efFf

− γαpi

I−
∑Nf

f=1(pfFf+Af )
− (1−γ)δ1f

χ

]
if µi = 0

0 if µi > 0

(11)
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B Stove characteristics

Stove Fuel Price (2015 USD) Efficiency (%) Lifetime (yrs)

Traditional Biomass 0 15 3
Traditional Charcoal/Coal 0 20 3

Kerosene Stove Kerosene 20 45 5
Gas Stove LPG 78 60 10

Electric Induction Electricity 95 80 15

Table 5: Stove Costs and Attributes



C Moments and estimated parameters

Data Simulation

Mean log total fuel consumption per capita 0.12040 0.28410
Mean share of fuel expenditure on total expenditure 0.01943 0.00598
Log mean firewood consumption per capita - Rural -1.88547 -1.70434
Percentage of households using firewood - Rural 0.12903 0.09684
Log mean charcoal consumption per capita - Rural 0.24140 0.17288
Percentage of households using charcoal - Rural 0.76306 0.75928
Log mean kerosene consumption per capita - Rural -5.74961 -5.90846
Percentage of households using kerosene - Rural 0.00321 0.00259
Log mean lpg consumption per capita - Rural -2.27896 -2.25020
Percentage of households using lpg - Rural 0.10470 0.14129
Log mean electricity consumption per capita - Rural -1e6 -1e6
Percentage of households using electricity - Rural 0.00000 0.00000
Percentage of firewood users who do not pay for it - Rural 0.26211 0.19223
Mean log total fuel consumption per capita - Rural -0.03000 0.17978
Log mean firewood consumption per capita - Urban -2.54439 -2.49997
Percentage of households using firewood - Urban 0.06181 0.03794
Log mean charcoal consumption per capita - Urban 0.29128 0.20841
Percentage of households using charcoal - Urban 0.66648 0.61889
Log mean kerosene consumption per capita - Urban -5.50949 -5.64623
Percentage of households using kerosene - Urban 0.00363 0.00442
Log mean lpg consumption per capita - Urban -1.22928 -0.98741
Percentage of households using lpg - Urban 0.26689 0.33526
Log mean electricity consumption per capita - Urban -5.63113 -6.14242
Percentage of households using electricity - Urban 0.00119 0.00350
Percentage of firewood users who do not pay for it - Urban 0.09550 0.01929
Mean log total fuel consumption per capita - Urban 0.16806 0.32897

Table 6: Ghana: Matched Moments, Data vs Simulation
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Data Simulation

Mean log total fuel consumption per capita 0.12040 0.28410
Mean share of fuel expenditure on total expenditure 0.01943 0.00598
Log mean firewood consumption per capita - Rural -1.88547 -1.70434
Percentage of households using firewood - Rural 0.12903 0.09684
Log mean charcoal consumption per capita - Rural 0.24140 0.17288
Percentage of households using charcoal - Rural 0.76306 0.75928
Log mean kerosene consumption per capita - Rural -0.03005 0.03602
Percentage of households using kerosene - Rural 0.00382 0.00374
Log mean lpg consumption per capita - Rural 0.73653 0.25961
Percentage of households using lpg - Rural 0.78923 0.83200
Log mean electricity consumption per capita - Rural -5.20111 -5.32492
Percentage of households using electricity - Rural 0.00498 0.00303
Percentage of firewood users who do not pay for it - Rural -6.06798 -8.73238
Mean log total fuel consumption per capita - Rural 0.00176 0.00023
Log mean firewood consumption per capita - Urban -1.69364 -2.05257
Percentage of households using firewood - Urban 0.20134 0.15706
Log mean charcoal consumption per capita - Urban -5.94661 -5.51044
Percentage of households using charcoal - Urban 0.00271 0.00769
Log mean kerosene consumption per capita - Urban 0.16441 0.12819
Percentage of households using kerosene - Urban 0.46691 0.18034
Log mean lpg consumption per capita - Urban -0.25009 -0.31335
Percentage of households using lpg - Urban 0.33399 0.29163
Log mean electricity consumption per capita - Urban -3.61101 -3.70983
Percentage of households using electricity - Urban 0.02294 0.01078
Percentage of firewood users who do not pay for it - Urban -5.57049 -6.00389
Mean log total fuel consumption per capita - Urban 0.00464 0.00354

Table 7: Guatemala: Matched Moments, Data vs Simulation
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Data Simulation

Mean log total fuel consumption per capita -0.278313 -0.20175
Mean share of fuel expenditure on total expenditure 0.039202 0.008304
Log mean firewood consumption per capita - Rural -1.033894 -1.06689
Percentage of households using firewood - Rural 0.375219 0.349079
Log mean charcoal consumption per capita - Rural -3.32603 -3.390158
Percentage of households using charcoal - Rural 0.043549 0.036517
Log mean kerosene consumption per capita - Rural -2.626113 -2.528752
Percentage of households using kerosene - Rural 0.14605 0.129237
Log mean lpg consumption per capita - Rural -0.9597 -1.12946
Percentage of households using lpg - Rural 0.434521 0.484343
Log mean electricity consumption per capita - Rural -6.700294 -8.105037
Percentage of households using electricity - Rural 0.000661 0.000824
Percentage of firewood users who do not pay for it - Rural 0.425781 0.417334
Mean log total fuel consumption per capita - Rural -0.424986 -0.349781
Log mean firewood consumption per capita - Urban -2.595581 -2.544708
Percentage of households using firewood - Urban 0.088251 0.071967
Log mean charcoal consumption per capita - Urban -3.47636 -3.517885
Percentage of households using charcoal - Urban 0.02685 0.030492
Log mean kerosene consumption per capita - Urban -2.568889 -2.684091
Percentage of households using kerosene - Urban 0.103166 0.121274
Log mean lpg consumption per capita - Urban -0.225661 -0.168077
Percentage of households using lpg - Urban 0.779375 0.772567
Log mean electricity consumption per capita - Urban -5.609683 -5.899155
Percentage of households using electricity - Urban 0.002358 0.0037
Percentage of firewood users who do not pay for it - Urban 0.186116 0.183636
Mean log total fuel consumption per capita - Urban -0.12623 -0.074016

Table 8: India: Matched Moments, Data vs Simulation
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Data Simulation

Mean log total fuel consumption per capita -0.05867 -0.05179
Mean share of fuel expenditure on total expenditure 0.03186 0.01019
Log mean firewood consumption per capita - Rural -0.71815 -0.85936
Percentage of households using firewood - Rural 0.33206 0.27744
Log mean charcoal consumption per capita - Rural -2.55763 -3.67318
Percentage of households using charcoal - Rural 0.02955 0.02437
Log mean kerosene consumption per capita - Rural -0.52158 -0.47574
Percentage of households using kerosene - Rural 0.62990 0.67492
Log mean lpg consumption per capita - Rural -3.71881 -4.44532
Percentage of households using lpg - Rural 0.00797 0.02200
Log mean electricity consumption per capita - Rural -6.34521 -7.24633
Percentage of households using electricity - Rural 0.00051 0.00127
Percentage of firewood users who do not pay for it - Rural 0.17155 0.31544
Mean log total fuel consumption per capita - Rural -0.24931 -0.08619
Log mean firewood consumption per capita - Urban -1.46544 -1.88598
Percentage of households using firewood - Urban 0.15271 0.10042
Log mean charcoal consumption per capita - Urban -3.03532 -3.54353
Percentage of households using charcoal - Urban 0.02593 0.01740
Log mean kerosene consumption per capita - Urban 0.05885 -0.12293
Percentage of households using kerosene - Urban 0.79394 0.82621
Log mean lpg consumption per capita - Urban -2.35893 -3.15303
Percentage of households using lpg - Urban 0.02678 0.05485
Log mean electricity consumption per capita - Urban -6.46672 -7.27716
Percentage of households using electricity - Urban 0.00065 0.00113
Percentage of firewood users who do not pay for it - Urban 0.20985 0.22225
Mean log total fuel consumption per capita - Urban 0.05806 -0.02035

Table 9: Nigeria: Matched Moments, Data vs Simulation
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Data Simulation

Mean log total fuel consumption per capita 0.05456 0.12100
Mean share of fuel expenditure on total expenditure 0.06156 0.00873
Log mean firewood consumption per capita - Rural -0.12467 -0.15423
Percentage of households using firewood - Rural 0.70648 0.68628
Log mean charcoal consumption per capita - Rural -0.92501 -1.26057
Percentage of households using charcoal - Rural 0.25466 0.27491
Log mean kerosene consumption per capita - Rural -3.59895 -3.92478
Percentage of households using kerosene - Rural 0.03238 0.03018
Log mean lpg consumption per capita - Rural -4.48360 -5.64586
Percentage of households using lpg - Rural 0.00568 0.00853
Log mean electricity consumption per capita - Rural -6.74292 -11.00039
Percentage of households using electricity - Rural 0.00080 0.00009
Percentage of firewood users who do not pay for it - Rural 0.25465 0.18757
Mean log total fuel consumption per capita - Rural -0.00464 -0.01711
Log mean firewood consumption per capita - Urban -1.32632 -1.28024
Percentage of households using firewood - Urban 0.21118 0.17192
Log mean charcoal consumption per capita - Urban 0.09284 0.08312
Percentage of households using charcoal - Urban 0.71926 0.74338
Log mean kerosene consumption per capita - Urban -2.74405 -2.56396
Percentage of households using kerosene - Urban 0.06058 0.07014
Log mean lpg consumption per capita - Urban -5.84160 -5.93159
Percentage of households using lpg - Urban 0.00221 0.00319
Log mean electricity consumption per capita - Urban -4.58681 -4.71885
Percentage of households using electricity - Urban 0.00677 0.01137
Percentage of firewood users who do not pay for it - Urban 0.24978 0.30678
Mean log total fuel consumption per capita - Urban 0.11987 0.23999

Table 10: Uganda: Matched Moments, Data vs Simulation
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Ghana Guatemala India Nigeria Uganda

α 0.977592 0.982371 0.975803 0.971912 0.979333
γ 0.984122 0.981700 0.971282 0.988477 0.991146

δ11r 0.344353 0.274818 0.150705 0.404463 0.243272
δ21r 1.117526 0.043807 0.435913 0.221758 0.181049
δ12r 0.023655 1.054438 0.469848 0.549076 0.227166
δ22r 0.221786 1.091348 0.441419 1.167535 0.254044
δ13r 1.117898 0.694047 3.251980 0.268854 1.062099
δ23r 1.906717 0.916931 1.202909 0.152332 0.454790
δ14r 1.831923 0.282050 0.088901 0.526092 0.574437
δ24r 0.136632 0.618817 0.175565 0.477849 0.965616
δ15r 2.838725 0.452384 0.837482 1.145916 0.582249
δ25r 0.442451 1.643963 0.466482 1.853091 3.999875
Kr 0.389794 2.152453 0.717035 0.750419 3.979615

δ11u 0.490966 0.360819 0.535303 0.407159 0.331692
δ21u 0.321955 0.032231 1.481955 0.545691 0.866485
δ12u 0.357782 0.573664 1.162668 1.433420 0.230334
δ22u 0.110764 0.983048 1.073604 0.505507 0.077436
δ13u 0.265354 0.384860 0.531671 0.165049 0.073047
δ23u 1.848725 0.911925 0.150491 0.148398 0.457733
δ14u 0.031888 0.144388 0.068005 0.522367 0.369651
δ24u 0.340486 0.303863 0.268988 0.385637 0.767474
δ15u 1.138297 0.111723 0.364815 1.170401 0.421342
δ25u 1.396755 1.273751 0.487000 1.545850 0.856675
Ku 2.484320 2.494098 1.493208 0.385466 1.332864

Table 11: Estimated Parameters for Different Countries

Notes:
Fuels: 1 - Firewood, 2 - Charcoal/Coal, 3 - Kerosene, 4 - LPG, 5 - Electricity
Groups: r - Rural, u - Urban
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