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Abstract In many semiarid regions with irrigation, the depletion rate of groundwater resources has
increased substantially during the last decades. A possible reason for this is that the price that users pay
for their water does not reflect its scarcity and value. An alternative way to assess the perceived value of
water is calculating its shadow price, which is defined here as themarginal value produced, and relates to the
efficiency gain from current reallocation. Here we determine the shadow price of water used for irrigation
for the most important groundwater‐depleting countries and for four staple crops and one cash crop. To
quantify the shadow price, the relation between the output and the water input is represented using
production functions. We use globally available panel data on country‐specific crop yields and prices
together with crop‐specific water consumption, calculated with the global hydrological model
PCR‐GLOBWB, to parameterize the production function by country and crop with econometric analyses.
Our results show that the variation of shadow prices for staple crops within several countries is high,
indicating economically inefficient use of water resources, including nonrenewable groundwater. We also
analyze the effects of reallocating irrigation water between crops, showing that changes in water
allocation could lead to either an increase in the economic efficiency of water use or large reductions in
irrigation water consumption. Our study thus provides a hydroeconomic basis to stimulate sustainable use of
finite groundwater resources globally.

1. Introduction

Population growth and changing consumption patterns have greatly increased the demand for food
(Godfray et al., 2010), and this trend is expected to persist into the 21st century (Valin et al., 2014). The
demands for calories and proteins has been projected to double by 2050, resulting in extensive land use
change between 0.2 and 1 billion ha depending on technological change (Tilman et al., 2011). As land use
change is also associated with the expansion of irrigated land, surface water and groundwater use has been
rising drastically (Wada et al., 2011) and, exacerbated by climate change, will increase further in the future
(Haddeland et al., 2013; Wada et al., 2013). The expansion of irrigated agriculture into areas with limited pre-
cipitation and surface water during the growing season has increased the use of nonrenewable groundwater,
that is, groundwater withdrawn that is not expected to be recharged on human time scales (>100 years;
Gleeson et al., 2012). As a result, the depletion rate of groundwater resources has increased during the last
decades (De Graaf et al., 2017; Konikow, 2011; Richey et al., 2015; Wada et al., 2010; Wada, van Beek,
Sperna Weiland, et al., 2012) and is likely to persist in the decades to come (Wada, van Beek, & Bierkens,
2012; Wada, van Beek, Sperna Weiland, et al., 2012).

Agriculture is by far the largest user (i.e., 80%) of fresh water globally (Wada et al., 2011), but most farmers
barely pay the actual costs associated with their (ground)water use. Often, policy with respect to ground-
water use is either insufficient or lacking. In many countries, groundwater is freely available for land owners
or users who purchase a water pump installation (Famiglietti, 2014), the supply of groundwater is not mea-
sured, and farmers may not consider the needs of future generations in their production decisions.

Under a situation of water shortage, water pricing is suggested as one of the economic incentives to limit
the excessive overuse of water resources and to stimulate the application of water for higher‐value uses
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(e.g., Dinar et al., 2015; Medellín‐Azuara et al., 2012; Rinaudo et al., 2012). However, the economic scarcity
of water is rarely reflected by a functioning market with competitive water pricing due to various distur-
bances associated with insufficient property rights, externalities, governmental price control, monopoly
of water supply, and so forth (Jia et al., 2016). As a consequence, the price that users pay for their water
does not reflect its scarcity. For example, farmers in Pakistan and parts of India receive energy subsidies
that reduce the withdrawal costs of groundwater to almost negligible.

The actual price paid for groundwater usually consists of costs of groundwater extraction and transportation
only (Ziolkowska, 2015). Not included in these are the following (Rogers et al., 1998): opportunity costs
resulting from depriving other more profitable types of water use (now and in the future); environmental
externalities, such as the costs of ecosystem deterioration due to lowering groundwater tables and dimin-
ished low flows; and economic externalities, for instance, related to declining water tables or heads resulting
in stranded production wells (Perrone & Jasechko, 2017) or increased extraction costs for future users (Foster
et al., 2015).

The fact that groundwater's price does not reflect its scarcity may result in inefficient groundwater allocation
and depletion of aquifers (Organisation for Economic Cooperation and Development, 2015; Ziolkowska,
2015). The proposed underlying economic mechanism behind depletion is as follows: The farmer is assumed
to be a price taker (i.e., cannot affect prices of inputs and outputs) and a profit maximizer. Therefore, produc-
tion decisions are based onmaximizing profit; that is, the farmer will continue production until the marginal
costs are equal to the marginal revenue. Given the marginal cost of the water input, which is the price the
farmer pays for an additional unit of water, the farmer will add water until he or she reaches maximum
profit. When the price of groundwater is lower than the actual scarcity value, the farmer faces lower mar-
ginal costs and he or she will thus use more groundwater until he or she reaches maximum profit. This pro-
cess stimulates depletion.

In absence of a water market or actual water pricing, the value of water for irrigation is often determined
using a shadow price (Liu et al., 2009; Mesa‐Jurado et al., 2010; Young & Loomis, 2014; Ziolkowska,
2015). The shadow price of water has many definitions in the literature (e.g., He et al., 2007); the shadow
price can be computed either based upon the farmer's behavior or based upon the value of alternative use
(e.g., different user or different time). We will discuss four definitions: (1) First, it may be defined in the con-
text of optimizing groundwater withdrawal over time when groundwater is being depleted as a result of tem-
porarily extracting more than recharge (Burt, 1964). The goal is to find the optimal or efficient withdrawal
rate over time that maximizes the net present value of the groundwater used. It can be shown that this inter-
temporal efficiency is achieved if, at every moment in time, the net return (revenueminus costs) from amar-
ginal unit of extracted groundwater is equal to themarginal value of groundwater that remains in the ground
(Burt, 1964, 1967; Gisser & Sánchez, 1980; Negri, 1989). This marginal value is called the shadow price, and it
is generally calculated as co‐state variable when solving the intertemporal optimization problem with the
water balance of the aquifer as a constraint (Negri, 1989). (2) An even more extensive definition of shadow
price refers to the price that would need to be paid by farmers to veritably account for the actual value of
water as a scarce resource including all costs (including intertemporal efficiency, opportunity costs, and
environmental and economic externalities), which is often unknown (Elnaboulsi, 2001; Kaiser &
Roumasset, 2002; Tsur & Graham‐Tomasi, 1991; Young & Loomis, 2014). (3) Another definition follows
from residual valuation (Colby, 1989), which is based on the assumption that all inputs (excluding water)
are applied according to their (market) price. Here the shadow price of water for irrigation can be calculated
as the ratio between the net returns of crop production and the total amount of water used for irrigating
(Berbel et al., 2011; Hellegers & Davidson, 2010). (4) Finally, if farmers do not take intertemporal efficiency
into account (they ignore future groundwater use), the shadow price can also be referred to as the current
marginal value of water (He et al., 2007; Wang & Lall, 2002; Young & Loomis, 2014). This reflects the value
that water has to the farmer, that is, the maximum price the farmer is willing to pay for the last cubic meter
of irrigation water consumed. This is the definition used in this paper.

The following definition of shadow price is therefore used: The shadow price of water reflects the value of
crops that can be produced by the marginal unit water consumed, given the quantity of the other inputs
(e.g., labor and fertilizer). Applied to irrigation, this means the revenue (production times market price) pro-
duced with the last cubic‐meter water consumed. Producers will only employ an input (ceteris paribus) up to
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the point where its price is just equal to the additional value derived by employing an additional unit of input
(Williams et al., 2017). By this definition, a low shadow price entails a low revenue per cubic‐meter water
consumed and, in case of countries or regions with a considerable fraction of irrigation water coming from
nonrenewable groundwater, reveals wasteful use of a nonrenewable resource. A low shadow price thus indi-
cates that the application of nonrenewable groundwater can generate higher revenue by using it for crops
with a higher shadow price.

As follows from the short review on the various definitions of shadow price used, the definition used in this
paper does neither consider intertemporal efficiency nor include opportunity use. Thus, rather than focusing
on the more general issue of nonrenewable groundwater use now and in the future, our paper has the nar-
rower focus on the efficient allocation of irrigation water, including nonrenewable groundwater, currently
abstracted. However, this strategy is not that uncommon if many farmers are pumping water from the same
aquifer. Due to pumping externalities (Negri, 1989), the individual farmer cannot expect to have more water
in storage next year if he or she pumps less. Thus, instead of maximizing the present value across time, farm-
ers tend to maximize current net return, which is a free competition strategy that results in a shadow price as
used in this paper. Gisser and Sánchez (1980) show that in certain cases, competition results in depletion
rates and shadow prices that are similar to those obtained under optimal intertemporal control, a result that
has been found for a number subsequent studies (Koundouri, 2004). Even though this so‐called Gisser and
Sánchez effect partly motivates the approach taken in this paper, we cannot claim that the Gisser and
Sánchez effect is ubiquitous. Especially in heavily stressed aquifers, where the costs of extraction become
very high (Koundouri, 2000) or externalities are considerable (Esteban & Albiac, 2011; Foster et al., 2015),
intertemporal inefficiencies are found to be very important.

In this paper, we determine the shadow price of irrigation water (including nonrenewable groundwater) for
the most important groundwater‐depleting countries and for four staple crops (wheat, maize, rice, and
potato) and one cash crop (citrus). These staple crops represent the top four crops in terms of global produc-
tion (FAOSTAT, http://www.fao.org/faostat). To quantify the shadow price, that is, the marginal value of
water, the relation between the output and the water input is represented using production functions. We
use globally available panel data on country‐specific crop yield and prices (Food and Agriculture
Organization of the United Nations, 2016a, 2016b) together with groundwater and surface water consump-
tion from a global hydrological model (Van Beek et al., 2011; Wada et al., 2014) to parameterize the produc-
tion function by country and crop using econometric analyses. With “consumption” or “consumptive use”
we refer to the water that is evaporated (by transpiration, interception, and soil evaporation) at the field dur-
ing crop production. Preferably, we would have liked to determine the shadow price of nonrenewable
groundwater only, instead of irrigation water. However, it cannot always be assumed that nonrenewable
groundwater is the marginal water type allocated. For instance, in case surface water rights are scarce and
expensive, groundwater (even nonrenewable groundwater) would most likely be used first. Moreover, as
our study is at country scale, it is certainly possible that groundwater and surface water are used at the mar-
gin in different parts of a country. Hence, for lack of detailed information about the order of application of
surface water and (nonrenewable) groundwater, we determine the shadow price of irrigation water as a
whole. However, as we focus on the top groundwater‐depleting countries in the world, a relatively low sha-
dow price of irrigation water also indicates that nonrenewable groundwater is used inefficiently.

The comparison of shadow prices between crops within a country thus provides clues to where groundwater
overuse can be reduced with minimal loss of revenue. Conversely, if reduction of nonrenewable ground-
water consumption is not a target, a reallocation of nonrenewable groundwater can be sought that maxi-
mizes economic return, which would in turn provide funds for investments in water‐saving technology or
more efficient agriculture. Apart from optimal allocation, a shadow price would be useful information for
water pricing (Dinar et al., 2015) and as an indication of the compensation paid in paying for ecosystem ser-
vices schemes (Immerzeel et al., 2008; To et al., 2012). Finally, as it measures the efficiency of water use for
specific crops, it may be used as to compute the value of the virtual water content of crops and products using
water‐footprinting tools (Mekonnen & Hoekstra, 2011).

Obviously, this is not the first study to estimate the shadow price of water, as testified by the review presented
above. However, our study provides several advances. First, it is the first analysis of global context looking at
the countries with largest groundwater use, which allows for the comparison of the efficiency of water use
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between countries. Second, by focusing on countries with considerable groundwater depletion, it specifically
looks at nonrenewable groundwater, which is a water source that is increasingly being used globally under
limited renewable water resources. Third, unlike most studies that take reported water withdrawal data as
basis for their analysis, we assess the shadow price econometrically based on consumptive water use, that
is, the actual water used (evaporated) under crop production.

2. Data and Methods
2.1. Data

We focus on 11 countries with largest groundwater depletion globally (in terms of volume) and have ana-
lyzed five crops for each country. These countries are China, Egypt, India, Iran, Italy, Mexico, Pakistan,
South Africa, Spain, Turkey, and the United States. Even though it ranks higher in volume of ground-
water depletion than some of the other countries analyzed, Saudi Arabia is excluded, because of the small
areas of the crops considered, which caused a large unbalance in the estimation results. For each crop, we
collected information on yield, total area, and prices retrieved from the FAO database (Food and
Agriculture Organization of the United Nations, 2016a, 2016b) for the years 1971–2010 (prices are avail-
able for 1991–2010). We distinguish three sources of water: green water, blue water, and nonrenewable
groundwater (Oki & Kanae, 2006). Green water is water that is taken from the soil by the plant that ori-
ginates from rainfall. Rainfed agriculture thus relies completely on green water, although some rainfed
agriculture is irrigated during severe droughts. Blue water is the renewable water that is additionally sup-
plied by irrigation. It consists of surface water taken from a reservoir/storage, a river, or renewable
groundwater. The final source of water is nonrenewable groundwater, which is water taken out of storage
by persistent groundwater overuse that will not be recharged on the human time scale (>100 years; Wada
et al., 2010; Gleeson et al., 2016). For each water source, we calculate the water consumption, that is, the
water that is used by the cropping system through crop transpiration, interception evaporation, and
soil evaporation.

The green water, blue water, and nonrenewable groundwater together make up all water that is actually
used by irrigating crops. To calculate these quantities per crop and per country, we used the global hydrology
and water resources model PCR‐GLOBWB (Sutanudjaja et al., 2018; Van Beek et al., 2011; Wada et al., 2014).
PCR‐GLOBWB is a global hydrology and water resources model that runs at 5‐arcmin resolution
(~10 × 10 km at the equator) at a daily time step. For each grid cell and each time step, PCR‐GLOBWB cal-
culates soil moisture storage in two soil layers, as well as the water exchange between the upper soil layer
and the atmosphere and the lower soil layer and the underlying groundwater reservoir. The exchange with
the atmosphere consists of precipitation, evaporation from soils, open water, snow and soils, and plant tran-
spiration. The model also simulates snow accumulation, snowmelt, and glacier melt. Subgrid variability of
land use, soils, and topography is included. PCR‐GLOBWB also includes hydrological parameterizations
for runoff‐infiltration partitioning, interflow, groundwater recharge, and groundwater discharge. Runoff
generated by snow and glacier melt, surface runoff, interflow, and groundwater discharge is routed across
the river network to the ocean or endorheic lakes and wetlands.

PCR‐GLOBWB includes over 6,000 man‐made reservoirs (Lehner et al., 2011) that are introduced conse-
cutively in time based on their completion date. For each reservoir, a simple operation scheme is applied
based on its main purpose. Human water use is fully integrated with the hydrological model such that at
each time step, (1) the quantity of water demand is estimated for irrigation, livestock, industry, and
households; (2) these demands are used to estimate actual withdrawal from groundwater and surface
water (rivers, lakes, and reservoirs) dependent on availability of these resources and on maximum
groundwater pumping capacity in place (following International Groundwater Resources Assessment
Centre; https://www.un‐igrac.org/); and (3) as a last step, consumptive water use (water consumption)
and return flows are then calculated per sector. In PCR‐GLOBWB, green water, blue water, and nonre-
newable groundwater sources are used by crops in a sequence. First, green water is used, then blue water,
(if available or in case of reservoirs upstream), and finally, if a water shortage still exists and groundwater
is available, nonrenewable groundwater is used. We note, however, that in reality the order that these
types of water are used may be different, depending on regional physiography and institutional context.
In earlier studies, PCR‐GLOBWB has been extensively validated against observed or reported data
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including runoff and river discharge (Van Beek et al., 2011), sectoral water use and groundwater pumping
(Sutanudjaja et al., 2018; Wada et al., 2011), and total water storage (Sutanudjaja et al., 2018; Wada et al.,
2014). We refer to these studies for further details.

PCR‐GLOBWB was forced with the WFDEI (WATCH Forcing Data methodology applied to ERA‐Interim
reanalysis data) meteorological data set (Weedon et al., 2014) and run twice for the period 1991–2010. The
first run was performed without human water use, simulating rainfed agriculture only. The actual eva-
poration (evaporation plus plant transpiration) was calculated per crop and per grid cell for the irrigated
areas and summed up per crop per year for each of the 12 countries. This provided an estimate of green
water consumption. The second run, which included human water use, resulted in blue water and non-
renewable groundwater consumption per crop and per cell over the irrigated areas, which was again
summed per crop per year for the 12 countries considered. Also reported was the irrigated area of each
crop as used in PCR‐GLOBWB, which was obtained from MIRCA2000 (Portmann et al., 2010). Finally,
as a measure of the intensity of other inputs (e.g., capital and variable inputs), we also obtained energy
input per capita for each country from the World Bank data portal (https://data.worldbank.org) (see also
Table S1 (supporting information)). The resulting set of panel data (crop yield, crop area, green water,
blue water, nonrenewable groundwater, irrigation water [the sum of blue water and nonrenewable
groundwater], and energy input), per year for the period 1971–2010 for 11 countries is subsequently used
for estimating the shadow price per crop and per country. Table 1 provides the structure of the panel data.
Table S2 (supporting information) provides the summary statistics of the panel data used.

2.2. Estimating Shadow Prices

The marginal product of irrigation water is determined by estimating a production function and taking the
partial derivative with respect to irrigation water. The production function has to fulfil certain conditions
(e.g., concavity; Chambers, 1988), which will be tested for in the econometric estimation.

The production function is applied to model the production of crops based on agricultural land, marketable
inputs (e.g., seed, fertilizers, and energy), and water input (Frank, 2010):

Y ¼ f A;X ;W ; eð Þ; (1)

where
Y crop production (kg);
A agricultural land (ha);
X vector of n marketable inputs (seeds, fertilizer, energy, labor, and capital);
W vector of water inputs (green water GW and irrigation water IW (sum of blue water and nonrenewable

groundwater [m3]);
e stochastic disturbance.
We can only use these inputs for which we have quantitative (measured) information available, except water
inputs, which are simulated by the model, and therefore, we use production data at the country level from
official (FAO andWorld Bank) statistics (see section 2.1). The impact of all these variables on the yield is esti-
mated econometrically. The estimated parameters will be used to compute the value of an extra cubic meter
of available irrigation water (the shadow price). We prefer to analyze the different effects of green water (the
amount of green water applied is not influenced by the farmer) and irrigation water applied by the farmer on
the crop yield. Therefore, we include green water (GW) and irrigation water (IW) as a separate input in the
production function. We assume that the plant first uses the available green water and only irrigation water
is applied if necessary.

A specification is needed to estimate the production function. The most widely used form is the Cobb‐
Douglas production function. If we consider land, marketable inputs, and two types of water inputs
(green water and irrigation water), the Cobb‐Douglas production function is represented by the following
equation:

Y ¼ β0·A
βA·XβX ·GWβGW ·IWβIW ·e; (2)

where the model coefficients βi are estimated from
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ln Y ¼ ln β0 þ βA ln Aþ βX ln X þ βGW ln GW þ βIW ln IW þ e: (3)

The marginal product of irrigation water input is equal to the marginal product of nonrenewable ground-
water, if nonrenewable groundwater is applied at the margin.

The partial derivative of the production function with respect to a certain water source, for example, IW,
gives the marginal product of this water source:

MPIW ¼ ∂ ln Y
∂ ln IW

·
Y
IW

¼ βIW
Y
IW

: (4)

Multiplied with the output price, it gives the shadow price of the water source:

Pshadow ¼ poutput·MPIW : (5)

As can be seen, the shadow price depends on the marginal productivity of water, the average water con-
sumption per kilogram crop and the crop price (equations (4) and (5)). If farmers apply water economically,
the marginal irrigation water cost (price per unit water) equals the shadow price. In case the irrigation water
price is less than the unobserved true water price (including production costs, opportunity costs, and extern-
alities), the shadow price will be lower. Hence, in situations where farmers pay a price for irrigation water
that includes all costs, the shadow price should be higher than that in cases where farmers receive subsidized
irrigation water (either subsidized water or energy input) such as in Pakistan and India. Also, crops that
require a large water input per kilogram output are likely to have a smaller shadow price, for example, rice.

Besides the Cobb‐Douglas specification, also the quadratic and translog production function can be esti-
mated. Yaron (1967) and Kiani and Abbasi (2012) use a quadratic production function with only water
as input:

Y ¼ aβ0 þ β1W þ β2W
2: (6)

In the Cobb‐Douglas production function specification it is assumed that all inputs are substitutes and that
the elasticity of substitution between inputs is constant. Christensen et al. (1973) proposed the translog func-
tion and demonstrated that it is able to provide a wider range of substitution of transformation patterns than
those restricted by the constant elasticity of substitution, implied in the Cobb‐Douglas function. A translog
production function is represented by the following equation:

ln Y ¼ β0 þ β1 ln Aþ∑β2n ln Xn þ∑β3j lnWj þ 1
2
β4 ln Að Þ2 þ 1

2
∑β5nn ln Xnð Þ2 þ 1

2
∑β6jj lnWj

� �2
þ Σβ7n ln A lnXn þ Σβ8j ln A lnWj þ ΣΣβ9nj ln Xn lnWj þ e; (7)

whereW is the vector of jwater inputs (1 = green water GW and 2 = irrigation water IW) and X is the vector
of n marketable inputs (e.g., 1 = seeds, 2 = fertilizer, 3 = plant protection, 4 = labor, 5 = capital, and
6 = energy).

As can be seen, the Cobb‐Douglas production function is a restricted form of a translog production function
(Ku & Yoo, 2012). The marginal product of the water input per water source is equally derived by taking the
partial derivative of crop production with respect to the water input per type, j = 1 (GW) and j = 2 (IW):

MPWj ¼
∂ ln Y
∂ lnWj

·
Y
Wj

¼ β3j þ β6jj lnWj þ β8j ln Aþ β9nj ln Xn

� �
·
Y
Wj

: (8)

Upon first analysis, the correlation coefficients between the water inputs turn out to be significant, which
may lead to multicollinearity and biased estimators when the production functions are estimated. A possible
explanation for the high correlation coefficients is a common trend, due to, for example, technological
progress, in our data. Therefore, we add a time trend to our empirical model. We use an F test (Greene,
2002, p. 102) to assess which specification is more appropriate: a translog production or a Cobb‐Douglas
production function. Finally, input elasticities are calculated to see if the estimated production function
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fulfils the properties of a production function (i.e., diminishing marginal productivity; Chambers, 1988;
Boisvert, 1982).

The data used to estimate the production functions consist of a panel of 11 countries (see Table 1). Panel data
analysis allows for repeated observations over the same units during a number of periods (Verbeek, 2012),
such that both a fixed‐effects model and a random‐effects model can be estimated. Our estimates are likely
to suffer from omitted variable bias, since no data are available for the labor, capital, and variable inputs
(except energy) for the entire period. Given these properties of our data, panel data estimation is most appro-
priate for estimation of the production functions. Advantages of panel data estimation are as follows: the
possibility of modeling of time and unit‐specific effects; the smaller potential omitted variable bias; the
separation of within and between variation; the smaller effect of multicollinearity; and more efficient esti-
mates (Baltagi, 2008; Verbeek, 2012).

To further explore the effects of unobserved variable bias, we also estimated alternative models where we
removed explanatory variables and compared estimated parameters with the original model and tested for
differences in model fit. Also, we additionally tested if including a time fixed‐effect model (time step years)
would further correct for unobserved variable bias by testing its improvement over a model not including
these effects. Because multicollinearity between explanatory variables makes parameter estimates sensitive
to minor changes in specification, multicollinearity could cause deviations in the parameter estimates as a
result of omitted variables. To test whether our specification is susceptible for multicollinearity, the variance
inflation factor was computed for all crops and all independent variables (Greene, 2002, p. 57).

Usually, total production is used as a dependent variable in production functions. However, as the yield
(kg/ha) does not differ as largely between the countries as crop production, the yield is preferred as the
dependent variable, which enables comparison between countries. Using yield as a dependent variable
implies that the inputs must be transformed into per‐hectare units and that the interpretation of the para-
meters of the production function is slightly different. Adding a time trend as a dependent variable to
account for technological development influencing crop yield results in the following yield production
function (subscript i indicates country and t indicates time; for brevity, we only include one type of water
and one type of marketable input X):

ln
Yit

Ait

� �
¼ γ0 þ γ1 ln Ait þ γ3 ln

Xit

Ait

� �
þ γ4 ln

Wit

Ait

� �
þ γ4 ln2Ait þ γ5 ln

Xit

Ait

� �
ln Ait

þγ6 ln
Wit

Ait

� �
ln Ait þ γ7 ln2 Xit

Ait

� �
þ γ8 ln2 Wit

Ait

� �
þ γ9 ln

Xit

Ait

� �
ln

Wit

Ait

� �
þ γ10 ln tit þ eit:

(9)

The parameters γi can be derived from the βi of equation (7) (Veninga, 2017).

2.3. Reallocating Irrigation Water

The estimated econometric model can be used to guide reallocation of irrigation water consumption from
crops with a low shadow price to crops with a higher shadow price. Since our focus is on groundwater‐
depleting countries, this reallocation would be targeted on improving the efficiency of the use of nonrenew-
able groundwater. The principle is schematically explained in Figure 1. As an example, Figure 1a shows rev-
enue functions for two crops, which are obtained by multiplying the production functions of these crops (see
Figure 4 hereafter) with the current crop prices. In this case, the revenues for crop 2 are higher than those for
crop 1 over the entire domain, and this alsomeans that the shadow price of crop 2 is larger than that of crop 1
throughout. In terms of efficiency of resources, it is reasonable to reduce the use of irrigation water for crop 1
and allocate this to crop 2. This is shown in Figure 1a where part of the irrigation water used by crop 1 (ΔIW1)
is used for reallocation. The result is a reduction of revenue for crop 1 (R1(IW1) − R1(IW1 − ΔIW1)). In case
irrigation water largely consists of nonrenewable groundwater and it was to be reduced by a “payment for
ecosystem services scheme” (Immerzeel et al., 2008), this reduction of revenue would be the amount paid
to the farmer. Figure 1a also shows the increase in revenue in case all this reduced irrigation water for crop
1 would be consumed by crop 2, the crop with the higher shadow price. The net gain in revenue from the
reallocation would then be
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ΔR1→2 ¼ R2 IW 2 þ ΔIW1ð Þ−R2 IW 2ð Þ þ R1 IW 1−ΔIW1ð Þ−R1 IW 1ð Þ: (10)

Alternatively, the water reallocation can be aimed at reducing irrigation
water (and potentially nonrenewable groundwater) consumption while
maintaining the same level of revenue. This is shown in Figure 1b. Here
not all the reduced irrigation water consumption by crop 1 (ΔIW1) is used
for crop 2, but a smaller amount (ΔIW2 < ΔIW1) to keep the total revenue
constant. So we have the following (Figure 1b):

R2 IW 2 þ ΔIW 2ð Þ−R2 IW 2ð Þ ¼ R1 IW 1ð Þ−R1 IW 1−ΔIW1ð Þ; (11)

and the reduction of water consumption is equal to

ΔIW1→2 ¼ ΔIW1−ΔIW 2: (12)

Although it may potentially save nonrenewable groundwater, reducing
irrigation water consumption while keeping revenues constant is only
(economically) efficient if the water saved is additionally allocated to
other more profitable uses elsewhere or in the future.

To summarize the differences between Figures 1a and 1b, we have the fol-
lowing: In Figure 1a total revenue R = R1 + R2 increases and total irriga-
tion water consumption IW = IW1 + IW2 remains constant, while in
Figure 1b total revenue R = R1 + R2 remains constant and total
IW = IW1 + IW2 decreases. Note that in the case described here, we por-
tray two nonoverlapping curves, with the revenue for crop 2 larger than
that of crop 1 for all values of IW; that is, the functions do not cross.
This is the case if the elasticity related to irrigation water as input (γIW)
in the production function of crop 2 is larger than that of crop 1
(γIW2 > γIW1) and if at the same time the market price of crop 2 (p2) is lar-
ger than that of crop 1 (p2 > p1). It also follows that in this case the shadow
price of crop 2 is higher than that of crop 1 for all values of IW. This means
that we can predict from the shadow price alone if a reallocation of IW
from one crop to another will yield increased revenue or decreased water
consumption. However, if γIW2 > γIW1 and p2 < p1 (or vice versa) the
curves will cross at some point. In this case, one has to evaluate equa-
tions (10) or (11)/12 to assess whether reallocating water from one crop

to another will indeed lead to water saving or revenue increase. This shows that the shadow price is a mea-
sure of the marginal return and efficiency.

3. Results
3.1. Sources of Consumptive Water Use Per Country

Figure 2 shows the results of the simulations with PCR‐GLOBWB, showing average consumptive water use
by water type for crop production over the period 1971–2010. Countries like Iran, Saudi Arabia, and Pakistan
stand out by the large proportion of agricultural water that comes from nonrenewable groundwater. This
confirms earlier work by Wada, van Beek, and Bierkens (2012).

3.2. Estimated Parameters of the Production Function

Using panel data from 11 countries (Table 1 and supporting information Data), we estimated the parameters
of production functions per country and per crop. We compared the translog model (equation (9)) with the
Cobb‐Douglas model and, using an F test on nested models, found the translog model explains the data sig-
nificantly better than does the Cobb‐Douglas model (supporting information Table S2). However, in the
translog specification we found elasticities that are inconsistent with the production function theory
(Chambers, 1988) (supporting information Table S3); that is, they should be smaller than 1 for

Figure 1. Reallocating irrigation water (IW) consumption in order to
further efficient use or save nonrenewable groundwater (NRGW).
(a) Example of reallocating IW from a crop with low shadow price to one
with a higher shadow price in order to increase revenue. Total revenue
R = R1 + R2 increases, and total IW = IW1 + IW2 remains constant.
(b) Example of reallocating IW from a crop with low shadow price to one
with a higher shadow price in order to decrease IW (and potentially NRGW)
consumption. Total revenue R = R1 + R2 remains constant, and total
IW = IW1 + IW2 decreases. R1( ) and R2( ) are revenue functions of crops 1
and 2, respectively; IW1 and IW2 are irrigation water consumption (includ-
ing blue water and NRGW) of crops 1 and 2, respectively; and ΔIW1 is
reduction in IW consumption crop 1 and ΔIW2 is increase in IW consump-
tion crop 2.
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Figure 2. Consumptive water use for crop production by water type (green water, blue water, and nonrenewable groundwater [NRGW]; km3/year) for 12 major
groundwater‐depleting countries, averaged over 1971–2010. Note that data from Saudi Arabia were not used in further analysis due to the small area of crops in
this country.
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diminishing returns with the inputs. As a consequence, we chose to use the simpler Cobb‐Douglas function.
Note that by applying the Cobb‐Douglas function, we assume that a specific crop production function has
identical curvature in all countries. For this function, the output elasticities are identical to the parameter
estimates for all inputs, except for “Land” because a yield function is estimated. Hausman's specification
test (Greene, 2002) was used to test if the fixed‐effects model or random‐effects model is appropriate
(Verbeek, 2012). Hausman's test indicated that the fixed‐effects model was most appropriate for all crops.
The (country) fixed‐effects term can be interpreted as the yield differences between countries attributable
to factors not included in the production function.

The resulting production function has the following form:

ln
Yit

Ait

� �
¼ γ0 þ γA ln Ait þ γGW ln

GWit

Ait

� �
þ γIW ln

IWit

Ait

� �
þ γE ln

Eit

Ait

� �
þ γt ln t þ eit; (13)

where

i = 1,..,11 country index and t = 1,..,40 time index (1971–2010)

Yit total production (kg/year) given crop;
GWit green water (m3/year);
IWit irrigation water (sum of blue water and nonrenewable groundwater; m3/year);
Eit energy input (kg of oil equivalent per year) assumed the same for each crop for a given country;
eit stochastic disturbance. In the fixed effects estimation eit is estimated as ui + vit, where ui is the

country fixed effect. In the country fixed‐effects model, the ui are formally fixed—they have no
distribution.

The resulting parameter estimates are given in Table 2. The significance levels of the estimated parameters
are generally high, except for citrus, where both the output elasticities of GW and IW are subject to larger

Table 2
Parameter Estimates of the Fixed‐Effects Cobb‐Douglas Production Functions and Their Significance Levels for the Five
Crops Analyzed

Parameter Wheat Potato Maize Rice Citrus

γA −0.045 0.361*** 0.702*** 0.131** 0.270***
γGW −0.013 0.143*** 0.403*** 0.072** 0.006
γIW 0.111* 0.314*** 0.190*** 0.097* 0.110
γΕ 0.254*** 0.086** 0.136*** 0.146*** 0.364***
γt 0.136*** 0.142*** 0.224*** 0.063*** −0.098***
γ0 5.170*** 0.086 −8.324*** 3.803*** 2.568**
R2adj 0.908 0.883 0.914 0.942 0.9297
Country‐specific fixed effects
China 0.24 −1.28 −1.82 −0.21 −1.56
Egypt 0.31 0.64 2.46 0.64 −0.34
India 0.13 −0.81 −1.56 −0.81 —

Iran −0.53 −0.58 2.50 −0.19 −0.18
Italy −0.06 0.25 0.58 0.16 −0.21
Mexico 0.33 0.33 −1.94 0.07 −0.47
Pakistan 0.00 −0.62 −0.25 −0.47 0.13
South Africa −0.55 0.76 −0.98 −0.25 0.66
Spain −0.15 0.53 1.50 0.50 0.73
Turkey 0.11 0.21 0.99 0.41 1.12
United States 0.18 0.14 −1.71 0.16 0.49

Note. The subscripts A, GW, IW, E, and t refer to land, green water, irrigation water (sum of blue water and nonrenew-
able groundwater), energy input, and time trend, respectively. In the fixed‐effects estimation, eit (equation (13)) is esti-
mated as ui + vit, where ui is the country fixed effect and vit the residual. In the fixed‐effects model, ui are formally fixed
—they have no distribution.
*p < 0.05. **p < 0.01. ***p < 0.001.
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uncertainty. Therefore, we have to treat estimated shadow prices for citrus with care. As can be seen from the
R2 values in Table 2 and the scatterplots in Figure 3, the estimated production functions provide satisfactory
predictions of the yields across countries and crops. Exceptions are potatoes in Pakistan and Mexico that
show systematic deviations from the general form fitted.

Tables S4–S8 (supporting information) show the results of leaving out or adding specific variables in the
Cobb‐Douglass model (equation (13)). We also tested if including a time fixed effect would improve the
model and affect results, as well as adding gross domestic product (GDP) per capita (which may capture dif-
ferences in yield development across countries in the research period), one of the few potentially relevant
variables additionally available for all countries and every year. The F test shows that country fixed effects
improve the model. Clearly, without the country fixed‐effects term, the parameter estimates are very differ-
ent, because without it the model does not allow for country‐specific yield levels that are considerable as can
be seen from Figure 3. When the country fixed effect is eliminated, the parameter estimates of irrigation
water IW and energy use E are higher than those in the preferred model, because they take up part of the
between‐country variance. The F test reveals that E contributes significantly to the explanatory power of
the equation. The parameter estimate of IW and t are higher if energy is eliminated as IW and t take up part
of the variation of the energy variable. The same applies to the time trend t for which the F test also shows
that it improves the model. If all potential explanatory variables were included, the time trend describes the
technological development. It also takes up the variation in time of omitted variables (e.g., an increase of fer-
tilizer and pesticide use with time). If the time trend is omitted, the parameter estimates of IW and E increase
for all crops, taking up variation that would otherwise be described by t. Results also show that, except for
potato, including a time fixed‐effect term does not significantly improve the model, although it has some
effects on the estimated parameter values. Including GDP per capita hardly changes the parameter estimates
and, except for wheat, does not improve explanatory power of the model.

In order to test whether model specification equation (13) is susceptible to multicollinearity, the variance
inflation factor was computed for all crops and all independent variables (Table S9 supporting information).
Results show that for rice some concern exists with respect to multicollinearity, while it is not an issue for the
other crops.

The results of the analyses represented in Tables S4–S9 show that omitted variable bias cannot be completely
ruled out. However, if country fixed effect and time trend are included, adding additional variables such as
time fixed effect or GDP per capita do not further improve the model's ability to explain the data and have
only a limited effect on parameter estimates. Also, the variance inflation factor shows that multicollinearity
is not a big issue, and from this perspective our results are robust.

The estimated production functions relating yield to water consumption (under constant mean nominal
values of the other factors) are shown in Figure 4. Clearly, for each crop, yields are substantially different
between countries for the same amount of irrigation water, indicating large differences in water productiv-
ity. These differences can be attributed by differences in technology, climate (temperature, length of the
growing season, and green water availability), soil fertility, and irrigation efficiency.

3.3. Estimated Shadow Prices

Based on the parameter estimates, predicted yield, irrigation water consumption, and crop price, for each
year, country, and crop, the shadow price was calculated using the derivative of equations (13) and equation
(5). Crop prices were available only for the years 1991–2010 for all crops and countries (Table S1; supporting
information Data). The average shadow prices of irrigation water over the periods 2006–2010 and 1991–2010
for the five crops and 11 countries are presented in Table 3. Also shown are the standard deviations over
these periods as a measure of year‐to‐year variability. As can be seen, the shadow price for citrus is highest
among the crops considered for six out of the 11 countries, and for three countries it is maize. However, it
should be noted that the shadow price of maize in Egypt is very high, which is the result of the very limited
amount of irrigation water used for maize. Also, the results for citrus should be interpreted with care due to
the uncertainty in the estimates of the elasticity coefficient for IW. In eight out of 11 counties rice has the
smallest shadow price, while for the other three countries it is wheat. Averaged over all countries, citrus
gives the highest shadow price and rice the lowest. These results are as expected as citrus trees are an expen-
sive crop where efficient water use is the norm, while rice is a staple crop that is sold on local and regional
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Figure 3. Scatterplots of estimated (using equation (13)) and observed yields for five countries and five crops.
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Figure 4. Parameterized (fitted) production functions (equation (13) with parameters from Table 1) for five countries and five crops. We plotted these functions
only up to the maximum irrigation water use per hectare for a given crop and country.
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Table 3
Average Shadow Prices of the Five Crops in the 11 countries (in $US/m3) Over the Periods 2006–2010 and 1991–2010

Country

Wheat Potato Maize Rice Citrus

Avg Std Avg Std Avg Std Avg Std Avg Std

2006–2010
China 0.075 0.017 0.124 0.038 0.242 0.057 0.113 0.017 0.290 0.047
Egypt 0.096 0.027 0.066 0.009 0.870a 0.131a 0.061 0.061 0.155 0.053
India 0.032 0.004 0.031 0.002 0.033 0.027 0.103 0.103 —

c
—

c

Iran 0.041 0.013 0.034 0.006 0.258 0.078 0.014 0.014 0.162 0.038
Italy 0.074 0.020 0.088 0.010 0.165 0.029 0.025 0.025 0.454 0.040
Mexico 0.022 0.007 0.156 0.022 0.053 0.009 0.004 0.004 0.081 0.018
Pakistan 0.018 0.004 0.008 0.002 0.040 0.005 0.000b 0.000 0.058 0.011
South Africa 0.038 0.009 0.113 0.023 0.063 0.009 <0.001 0.000 0.306 0.067
Spain 0.057 0.020 0.091 0.022 0.199 0.035 0.010 0.010 0.384 0.083
Turkey 0.062 0.009 0.043 0.006 0.157 0.019 0.004 0.004 1.158a 0.169a

USA 0.064 0.014 0.054 0.010 0.299 0.198 0.013 0.013 0.113 0.052
Average 0.052 0.013 0.073 0.014 0.151 0.047 0.032 0.023 0.223 0.041

1991–2010
China 0.058 0.016 0.073 0.038 0.182 0.101 0.105 0.033 0.160 0.089
Egypt 0.060 0.026 0.048 0.016 0.584a 0.195 0.043 0.043 0.095 0.045
India 0.023 0.006 0.022 0.006 0.028 0.014 0.054 0.054 —

c
—

c

Iran 0.066 0.093 0.048 0.054 0.179 0.115 0.027 0.027 0.090 0.048
Italy 0.065 0.023 0.075 0.013 0.141 0.027 0.017 0.017 0.368 0.100
Mexico 0.018 0.006 0.116 0.033 0.040 0.010 0.004 0.004 0.066 0.021
Pakistan 0.013 0.004 0.006 0.002 0.023 0.011 0.003b 0.003 0.043 0.015
South Africa 0.032 0.009 0.082 0.027 0.049 0.017 <0.001 0.000 0.193 0.081
Spain 0.044 0.016 0.089 0.032 0.161 0.041 0.009 0.009 0.317 0.074
Turkey 0.049 0.013 0.039 0.008 0.091 0.042 0.002 0.002 0.732 0.290
USA 0.046 0.015 0.044 0.010 0.138 0.138 0.008 0.008 0.056 0.042
Average 0.043 0.021 0.058 0.022 0.147 0.065 0.025 0.018 0.212 0.073

aEstimates are high (not used in calculating crop average) as a result of very low irrigation water use for these crops. bEstimates based on 1991–2002 due to lack
of yield or price data in later years. cNo estimate due to lack of yield and or price data.

Table 4
Overview of Crop‐Specific Shadow Prices (in $US) Found in the Literature

Source Region Method used Type of shadow price Price ($US/m3)

Cai et al. (2003) Syr Darya River basin
in Central Asia

Integrated hydrologic‐
agronomic‐economic model

Marginal value of water Wheat–maize = 0.094

He et al. (2007) China Dynamic computable
general equilibrium

Marginal value of water Different sectors = 0.52

Hellegers and Perry (2004) Kemry (Egypt) 2001–2003 Residual method Rice = 0.06
Wheat = 0.14
Maize = 0.07

Hellegers and Perry (2004) Haryana (India) 2001–2003 Residual method Rice = 0.035
Maize = 0.095

Hellegers and
Davidson (2010)

Musi sub‐basin (India) 2001‐2002 Residual method Rice = 0.003
Maize = 0.254

Berbel et al. (2010) Guadalquivir Basin (Spain) 2005 Residual method Wheat = 0.10
Maize = 0.09
Rice = 0.05
Citrus = 0.43

Williams et al. (2017) Ogallala Aquifer
(Texas, NM, USA) 2004

Single‐cell aquifer analysis
following Gisser and
Sánchez (1980)

Marginal value of water left
in the ground (co‐state
intertemporal optimization)

Wheat = 0.10
Maize = 0.15
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Figure 5. Time series of estimated shadow prices for five countries and five crops over the period 1991–2010.
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markets at low prices and is mostly grown under paddy irrigation with large evaporation water losses (i.e.,
flood irrigation with low irrigation efficiency).

Differences between countries are also considerable. Pakistan has the lowest shadow prices for wheat,
potato, maize, and citrus and has a low price for rice, while shadow prices in India are relatively low
throughout as well. This can be explained by relatively low water productivity in these countries and rela-
tively low food prices. This result can be further explained by the fact that groundwater pumping is subsi-
dized by the government in India particularly. The different crop prices and different water use
efficiencies between countries make it difficult to make inferences about efficiency by comparing shadow
prices between countries. As prices and water use efficiencies are more alike within a country, it is safer
to assume that the dispersion of shadow prices between crops within a country is more informative. For
instance, the relatively low shadow price of rice in Pakistan compared with that of maize and wheat indi-
cates inefficient use of irrigation water, including nonrenewable groundwater. Similarly, shadow prices
reveal inefficient use of irrigation water for rice in Italy, Mexico, South Africa, Spain, Turkey, and the
United States, while in Egypt allocating water to maize may help to improve the efficiency of irrigation water
use. The inefficiencies thus identified by differences in shadow prices can be a basis for improving efficiency
by reallocating irrigation water (see section 3.4). One should, however, be careful with these comparisons
due to the heterogeneity of conditions especially within large countries. Other factors aside from water, such
as elevation, climate, and soil type, may dictate that a certain crop can only be grown in a limited part of the
country, which prohibits an increase in efficiency by changing crops. Also, certain countries have multicrop-
ping, with wheat growing in the colder and wetter season and rice in the drier season, resulting in lower sha-
dow prices for irrigation water applied to rice.

Table 4 shows shadow prices of water found in the literature. Shadow prices of water for agricultural crop
production are found roughly to be between 0.01 and 0.25 $US/m3, with most estimated prices smaller than
0.10 $US/m3. If other sectors are included in the analysis, shadow prices are found to be higher. The esti-
mated shadow prices in our analysis (Table 3) are in line with prices found in literature, except for maize
in Egypt where we find very high values compared to those in Hellegers and Perry (2004).

Figure 5 shows the time series of the estimated shadow prices for five countries and five crops over the period
1991–2010. The different absolute levels of each time series reflect the difference in average shadow prices
between countries (Table 3), while the year‐to‐year fluctuations are also considerable (see also the standard
deviations in Table 3). These fluctuations are caused by year‐to‐year variability in climate and market prices.
Also, the time series clearly show a positive trend for many of the shadow prices. The water consumption
time series do not show a clear trend, however, while the increase in yield with time is incorporated in
the model. This means that these trends are predominantly caused by increases in crop (food) prices over
the period considered. Note that the order from highest to lowest shadow prices between countries is differ-
ent from the order of production curves (Figure 4). This is the result from the difference in cropmarket prices
between countries.

Table 5
Increase in Revenue ($US·ha−1·year−1) and Reduction in Irrigation Water Consumption (m3·ha−1·year−1) when
Reallocating a Substantial Amount of Irrigation Water Consumption (Limited by Half of the Nonrenewable Groundwater
Consumption) Between Crops With the Aim of Either Maximizing Revenue or Minimizing Nonrenewable
Groundwater Consumption

Country From crop 1 To crop 2 ΔR1 → 2 ($US·ha−1·year−1) ΔIW1 → 2 (m
3·ha−1·year−1)

China Wheat Maize 114 115
Egypt Rice Maize 6.6 86
India Maize Wheat 8.8 134
Iran Wheat Potato 367 577
Italy Rice Potato 22 212
Mexico Rice Potato 327 3,895
Pakistan Rice Wheat 23 1,593
South Africa Rice Potato 35 25
Spain Rice Potato 9.1 41
Turkey Rice Potato 68 194
United States Wheat Potato 19 21
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3.4. Reallocation of Irrigation Water

Using the approach described in section 2.3, we calculated for each country the increase in revenue or the
possible reduction of nonrenewable groundwater consumption when reallocating a considerable amount
of irrigation water (IW) consumption from one staple crop to another. To prevent changes in water con-
sumption that lie far outside the observed values, wemade sure that the reallocated total volume of irrigation
water consumption per hectare does not exceed half of the nonrenewable groundwater consumption of the
giving or receiving crop. Note that this is just an arbitrary example to demonstrate the potential of realloca-
tion to increase efficiency at the same level of water consumption or the reduction of nonrenewable ground-
water consumption by increasing efficiency. Further economic optimization by equalizing shadow prices of
all crops would be a next step, which would, however, need to involve other production factors, including
land, to be really meaningful.

The change in revenue and irrigation water consumption per hectare are given in Table 5. To obtain total
volumes per country, we multiplied the revenue per hectare (year 2010) with the irrigated area of the staple
crop per country for which we reduced the irrigation water consumption. The results are shown in Table 6.
There are some countries (SouthAfrica and Italy) where the acreage of the crops irrigatedwith nonrenewable
groundwater is small, so that effects on total revenue and water consumption are limited. However, in gen-
eral, results show that given the current level of nonrenewable groundwater consumption, a considerable
increase in revenue can be achieved for a number of countries, for example, China, Iran, and the United
States, if part of the irrigation water was to be reallocated. Or alternatively, the same level of revenue could
be obtained at considerable savings of irrigation water and nonrenewable groundwater consumption. This
is particularly the case in Pakistan, Iran, and theUnited States, where this limited reallocation exercise would
save a volume of water that amounts to respectively 9%, 9%, and 6% of these countries' total nonrenewable
groundwater consumption. In particular, rice seems to be the crop for which irrigationwater is less efficiently
applied. The differences among the countries are large, depending on their irrigation water consumption.

4. Discussion and Conclusions

We estimated shadow prices for irrigation water used for five major crops in 11 countries with considerable
groundwater depletion. The shadow price as defined in our study represents the current marginal value cre-
ated with irrigation water. As a result, it is an indication for the efficient use of irrigation water, and, as we
focus on groundwater depleting countries, prudent or wasteful use of nonrenewable groundwater. Our
results reveal large differences in shadow prices for different crops within a country. This shows that there
is a great opportunity for more efficient use of irrigation water and nonrenewable groundwater within these
countries by considering a different allocation of water over crops. The economic analysis is based on con-
sidering the use of water at the margin, using the characteristics of the production function (diminishing
marginal returns on water). The shadow price itself, being a measure of marginal return, can provide an

Table 6
Increase in Revenue (M$US/year) and Reduction in Irrigation Water Consumption (MCM/year) When Reallocating a
Substantial Amount of Irrigation Water Consumption Between Crops With the Aim of Either Maximizing Revenue or
Minimizing Nonrenewable Groundwater Consumption

Country From crop 1 To crop 2 ΔR1 → 2 (M$US/year) ΔIW1 → 2 (MCM/year)

China Wheat Maize 547 551
Egypt Rice Maize 5 62
India Maize Wheat 50 761
Iran Wheat Potato 1,798 2,827
Italy Rice Potato 4 41
Mexico Rice Potato 14 167
Pakistan Rice Wheat 47 3,358
South Africa Rice Potato 3·10−2 3·10−2

Spain Rice Potato 1 3
Turkey Rice Potato 1 4
United States Wheat Potato 413 459

Note. M$US = million U.S. dollar; MCM = million cubic meter.
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indication on how changing water allocation can be profitable, but a full consideration of the revenue func-
tion (see Figure 1) is needed to estimate the effects of large water reallocations. Moreover, as water, and par-
ticularly groundwater, is mostly locally available and cannot be easily transported over large distances,
reallocation of nonrenewable groundwater between crops would inevitably lead to changing the cropping
pattern in a country. Also, large changes of production volumes of crops within a country may affect local
prices that has not been taken into account. In this sense, the results in Tables 5 and 6 are a first‐order esti-
mate of the effects of reallocating nonrenewable groundwater.

The shadow prices for a given crop differ quite a lot between countries. Although it is generally difficult to
compare between countries due to differences in crop prices and water use efficiencies, shadow prices for
countries that use large amounts of nonrenewable groundwater reflect the regionally limited value that is
given to a finite resource. A global water market does not exist, but products based upon nonrenewable
groundwater are traded globally. Providing a global overview of regional groundwater overuse and asso-
ciated economic consequences through shadow price is an important step toward better water management
strategy worldwide. Also, shadow prices could be used with water footprint tools (Mekonnen & Hoekstra,
2011) to estimate the value of virtual water used in trade and products.

Our analysis, targeting the water consumption of individual crops by water type (green water and irrigation
water), is only possible using a state‐of‐the‐art global hydrology and water resources model such as PCR‐
GLOBWB. We apply panel data at the national level based on the aforementioned water data and observed
globally available data on crop yield, production, and price, instead of studies that apply yield data based
on models.

There are obvious uncertainties in our analyses. First, as the consumptive water use estimates of green
water, blue water, and nonrenewable groundwater are obtained from simulations with a global hydrological
model, they are subject to considerable uncertainty; obviously, reported statistics on crop yield, prices, and
water withdrawal are not without error either. Although PCR‐GLOBWB can reproduce global withdrawals
(Sutanudjaja et al., 2018) and groundwater depletion (Wada, van Beek, & Bierkens, 2012; Wada, van Beek,
Sperna Weiland, et al., 2012), considerable uncertainty remains for given countries, specifically regarding
the division between groundwater and surface water withdrawal. Repeating our analysis with similar global
hydrology and water resources models such as WaterGap3 (Müller Schmied et al., 2014) and H08 (Hanasaki
et al., 2018) would shed light on this uncertainty. Also, performing the analysis on the country level, albeit
convenient as yield and price data are available at this level of aggregation, neglects large regional differ-
ences in groundwater and surface water use as well as crop mix composition. This may lead to both overes-
timation and underestimation of the shadow price for a given crop. Finally, the econometric model used has
its limitations when applied at the global level. First, we apply a concave Cobb‐Douglas production function
through all the country‐crop combinations, assuming that this functional form fits crop production in all 11
countries. Second, due to limited data availability, next to the water inputs, we are only able to include land
and energy input in the model. Although it was shown to be limited, bias in parameter estimates related to
omitted variables such as capital, labor, and fertilizer cannot be ruled out entirely.

When considering improvements and extensions of our approach, several come to mind. An obvious first
step is to repeat our analysis at the finer spatial level, for example, calculating shadow prices per crop at
the 5‐arcmin cells of our global hydrological model PCR‐GLOBWB. This would allow the explicit considera-
tion of the regional differences in water sources used as well as the associated crops grown, with better esti-
mates of shadow prices as a result. At the same time, the overuse of surface water could also be included in
the analysis (Wada & Bierkens, 2014). Of course, this extension is only possible if crop yield and input data
are available on a grid‐scale basis using a crop growth or production model (with their assumptions). A
higher‐resolution gridded approach would also help to resolve within‐country heterogeneity of other pro-
duction factors such as climate, soil fertility, and labor availability. Obviously, one still has to cope with other
unknowns such as capital and several variable inputs such as fertilizer and pesticides. A logical addition
would be the inclusion of other sectoral water requirements (domestic and industry) and calculate asso-
ciated shadow prices. This would allow the optimal allocation of scarce groundwater between sectors,
further maximizing net profit.

Given the nature of nonrenewable groundwater as a resource that is being depleted, another necessary
extension is including the temporal dimension in our definition of shadow price or economically efficient
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reallocation. When looking for efficient alternatives for groundwater use, intertemporal efficiency should be
considered (Burt, 1964; Gisser & Sánchez, 1980; Koundouri et al., 2017; Negri, 1989; Steward et al., 2013).
This requires not only discounting but also additional assumptions about future prices and productivity.
Moreover, as depleting groundwater and associating deeper groundwater levels result in increased extrac-
tion costs (Foster et al., 2015), an extraction cost model with technological capacity should also be included,
as well as including the economic lifetime of nonrenewable groundwater assets. This can only be done rea-
listically by including a groundwater flow model.

In order to arrive at economically efficient allocation of groundwater resources, a more elaborate water‐
cost model is also needed. Apart from extraction and distribution costs, such a water‐cost model would
also include current and future opportunity costs and preferably also environmental and economic
externalities. The combination of shadow pricing with such a water‐cost model would allow to search
for the allocation of both blue water and nonrenewable groundwater for which net societal benefits are
maximized with minimal depletion rates; note that economically efficient use of groundwater resources
may involve some degree of depletion. If regionally observed yield data and inputs are available, regional
differences can be included in the econometric model, allowing for better estimation of the shadow price.
This framework would also be suitable to optimize investments in water‐saving technology or increasing
water supply.
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