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ABSTRACT

We show that the operators EG (conditional expectation
given a t-field G) and 3 (subdifferentiation), when applied
to a normal convex integrand f, commute if the effective

domain multifunction w-*{erRnlf(w,x) < +»o} is G-measurable.
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ON THE INTERCHANGE OF SUBDIFFERENTIATION
AND CONDITIONAL EXPECTATION FOR CONVEX
FUNCTIONALS

R.T. Rockafellar and R. J-B. Wets

We deal with interchange of conditional expectation and
subdifferentiation in the context of stochastic convex analysis.
The purpose is to give a condition that allows the commuting of

these two operators when applied to convex integral functionals.

Let (Q,A,P) be a probability space, G a t-field contained
in A, and f an A-normal convex. integrand defined on Q x R™ with
values in RU{«~}. The latter means that the map

. _ n+1
w+epi f(w,*) = {(x,a) ER la > £(w,x)}

is a closed-convex-valued A-measurable multifunction. See (2]
and [9] for more on normal integrands and their properties. 1In
particular recall that for any A-measurable function x:Q-*Rn,
the function

w=>flw,x{(w))

is a A-measurable and the <ntejral functional associated with f

is defined by

I.(x) = [f(w,x(w))P(dw) .
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To bypass some trivialities we impose the following summability

conditions:

(1) there exists a G-measurable x:0 > R"® such that If(x) is finite,

(2) there exists VGELl(G) = L1(Q,G,P;Rn) such that If*(v) is finite,
* . .
where £ 1is the (A-normal) conjugate convex integrand, i.e.

*
f (w,x) = sup n[v~x--f(w,x)]
XER

Finally, we assume that A -- and hence also G -- is countably gen-
erated, and that there exists a regular conditional probability

(given G), PG:A xQ—+[0,1]1. Whenever we refer to the conditional
expectation given G, we always mean the version obtained by in-

tegrating with respect to PG. Consequently all conditional

expectations will be regular.

In particular the conditional expectation EGf of £ is the

G-normal integrand defined by
(E%F) (0,x) = ff(clx)PG(dCIw) .

Also given T:QZIRn, a closed-valued A-measurable multifunction,
its conditional expectation given G is a closed-valued G-measur-
able multifunction obtained via a projection-type operation from

a set

L;, = {uel'(2,A,P:RM [uw) €T(w) a.s.} CL](A)

onto Ll(G) = L1(Q,G,P;Rn). Valadier has shown that a regular

version EGF:QZIRn is given by the expression
G _ G 1
E'T(w) = cl{|u(z)P (dz|w) |ue Ln(A),u(un €T (w) a.s.} .

We refer to [12] and the references given therein for the prop-
erties of EGf; in particular to the article of Dynkin and
Estigneev [3], which specifically deals with regular conditional

expectations of measurable multifunctions.




We consider I. and I as (integral) functionals on L7 (A)
£ EGf n
and L:(G) respectively. The natural pairings of Lz with L1 and
o %
(L) vyield for each functional two different subgradient multi-

functions. We shall use BIf and 91 G for designating L1—sub-

~— M

f
% * 00
gradients and 3 I_ and 3 I G for )*—subgradients. Rockafellar

£
E £
[8, Corollary 1B] shows that when the summability conditions (1)
and (2) are satisfied, one has the following representation for

w, * .
(L) -subgradients:

* a [ ] ]
(3) 9 If(x) = {v+vs|v€31 (x),vseSn(A) with vs[x—x ]1>0 ¥x edmnIf}

£
where Sn(A) is the space of singular continuous linear functionals

on L:(A), and
dom I = {XEEL:(A)IIf(x) < 4o}

. . » . . @ *
is the effective domain of If. (For the decomposition of (Ln)
consult [2, Chapter VIII]). Furthermore the L1-subgradient set

is given by
(4) BT (x) = {vel (A)]v(w) €3f(u,x(w) a.s.} .

The summability conditions (1) and (2) on f imply similar prop-

G

erties for EYf, so the formulas above also apply to I G." Thus

for xeL:(G) we get E7E

*

(5) 3 I (x) = {u+tu_|uelz (x),u_€3S_(G)

EGf s EGf S n
with u _[x-x'] >0, ¥x'€dom I }
s - G
E £
and

(6) 3T  (x) = {uGEL;(G)MJMH GBEGf(w,x(w)) a.s.}



We are interested in the relationship between BIf and 931 G
Relying on the formulas just given, Castaing and Valadier E°f
[2, Theorem VIII.37) show that if in place of the summability

conditions (1) and (2), one makes the stronger assumption:

(7) there exists XOEEL:(G) at which Ie is finite and norm

continuous,

then for every xEEL:(G) one gets:

G
(8) 3T o (x) = E (3T (x)) + reldl , (x)]
EGf £ EGf

where rc denotes the recession (or asymptotic) cone [2,7]. If

x €int dom I G’ oI G (x) is weakly compact and then rc(9dI G (x)] =
E £ E £ E £
{0}, in which case

EGaIf(x)

(9) 21 5 (%)
EGf

This was already observed by Bismut [1, Theorem 4]. For the
subspace of L: of constant functions, Hiriart-Urruty [4] obtains

a similar result for the e-subdifferentials of convex functions.

Here we shall go one step further and provide a condition
under which the rc term can be dropped from the identity (8)
without requiring that x € int dom I.. Very simple examples show
that the rc term is sometimes inescapable in (8). For instance,
suppose G = {¢,Q} (so EG = E) and consider f(w,*) = w(—w,E(wf]’
the indicator of the unbounded interval (-«,Z(w)], where £ is a
random variable uniformly distributed on [0,1]. 1In this case
w(-m,O] = Ef = EGf = IEGf, so that BIEGf(O) = R_ but EG(alf(O)) =
E{0} = {0}. Thus (8) would fail without the rc term.

THEOREM., Suppose £ is an A-normal convex integrand such

that the closure of tts effective domain multifunction

(10) wrD(w): = cl dom f(w,*) = cl {x €ER"|f(w,x) < +=}
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18 G-measurable. Assume that If(x) < +» for every erL:(G)
such that x(w) €dom f(w,*) a.s., and that there exists
XOGEL:(G) at which Ic 18 finite and norm continuous. Then

for every erL:(G) one has

(11) BEGf(-,x(-)) = EGaf(-,x(-)) a.s. ’

or in other words, the closed-valued G-measurable multi-
functions
G
whr IE f(w,x(w))
and

wr ECTOE (o, x ()] (w)

are almost surely equal.
Proof. From (8) it follows that
G
oI (x) CE (alf(x)) .
Ef

In view of (6) and (4) this holds if and only if

5% (+,x(+)) CE®3E(+,x(*)) a.s.

It thus suffices to prove the reverse inclusion. Let us suppose

that uezaEGf(-,x(-)). For every yeERn, define
glw,y) = f(w,y) - u(w)-y

This is an A-normal convex integrand which inherits all the

properties assumed for £ in the Theorem (recall that uéELl(G)).

Moreover OGEBEGg(-,x(-)). We shall show that OGEEGag(-,x(-)),

which in turn will imply that ueEEGaf(-,x(-)) and thereby com-

plete the proof of the Theorem.

Since almost surely OGEBECg(w,X(m)), we know that

*
0 €3I (x) Csy I (x). Hence x minimizes I G

on Lw(G). Let
£0qg £Cg ECqg n
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inj denote the natural injection of Li(G) into Li(A) with
W = inj [Ln(G)]

Now note that inj X = x also minimizes I g ©°n w<:L:(A), or equi-
Eg
valently I _on W, since the two integral functionals coincide on

W (by the definition of conditional expectation.) Thus
*
0€d (1g+ww) (x) '
where ww is the indicator function of W, or equivalently:
* *
0eod Ig(x) + 2 ww(x) '

since g is (norm) continuous at some x° = inj x° Ew. By (3), this

means that there exist veELl(A), VSEESn(A), such that

(12) vi{w) € 3g(w,x{(w)) a.s. ,
(13) vs[x—x'] >0 for all x' €dom Ig ’
and —(v-kvs) is orthogonal to W, i.e.
(14) (v4-vs)[x'] =0 for all x'€W
This last relation can also be expressed as
(v+v ) [inj yl = 0 for all y€L_(6) ,
or still for all yéEL:(G)
. V¥
inj (v+v )yl =0 /
Lk o * P * o L
where inj :(Ln(A)) +(Ln(G)) is the adjoint of inj. Thus the

v 3 3 0 I *
continuous linear functional inj (v-+vs) must be identically 0

on Ln(G), i.e. on Ln(G) one has




* , ¥ G
(15) inj v = -inj v = -E'v

*
The last equality follows from the observation that EG = inj

*
when inj is restricted to Ll(A), cf. [2, p.265] for example.

We shall complete the proof by showing that the assumptions
(12), (13) and (15) imply that

(16) (v - E%) (w) € 3g (w,x(w)) a.s.

This will certainly do, since it trivially yields the sought-for

relation

0 = EC(v-£%) erCag(-,x(-)) .
To obtain (16), it will be sufficient to show that
(17) E{ (-E%) (0) + [x () —y ()1} > 0

for all y €dom IgCZL:(A). To see this, recalthhat the relations
(17) and vffalg(x) (cf. (12)) imply that v - E vaBI (x), from
which (16) follows via the representation of L —subgradlents
given by (4). 1In fact, because the effective domain multifunc-
tion, or more precisely its closure w+D(w), is G-measurable,

it is sufficient to show that (17) holds for every y € dom IgnW.
Suppose to the contrary that (17) holds for every y € dom Igﬂw'-—
or equivalently because of the < inequality that (17) holds for
every y€cl dom Igﬂw -- but there exists y€ L;(A) such that

Ig(§) < 4o and for which (17) fails, i.e. we have
G n
E{ (-E"V) (w)* [x(w) =y(w)]} <0
Because -EGV and x are G-measurable, this inequality implies that
G G~
(18) E{ (-E v) (0) * [x(w) =E"y(w)]1} < O

Moreover, since Ig(§) < +o, it follows that almost surely

v(w) €Edom g(w,*) CD(w)



Taking conditional expectation on both sides, we see that
G~ G
(19) (Ey) (w) EE'D(w) = D(w) '

because D is a closed-valued G-measurable multifunction. Natur-
ally EG§€EW. Because Ig is by assumption finite on {zeEL:(G)I
z(w) €Edom g(w,*) a.s.}, and D(w) = ¢l dom g(w,*), it follows from
(19) that EG§€Ecl dom I_. Hence (17) cannot hold for every

y €dom Ignw since EG§ belongs to (cl dom Ig)ﬂw and satisfies (18).

There remains only to show that (17) holds for every nyL:(G)
such that inj y = y€€dom Ig. But now from (13) we have that for
each such y

vs[x-y] = vs[inj x=-inj yl > 0 ’
or again equivalently: for each y €dom IgﬂL:(G),

(inj v ) [x-yl > 0 .

But this is precisely (17), since we know from (15) that on Lz(G),

*
inj v, = -EGV. O

COROLLARY. Suppose £ 71s a A-normal convex integrand such
that F(x) < +o whenever x€dom f(w,+) a.s., where

F(x) = E{f(w,x)} .

Suppose moreover that there exists x®° e R" at which F is finite

and continuous, and that the multifunction

wr»D(w) = cl dom f(w,*)
18 almost surely constant. Then for all x €R",
(20) E[3f(-,x)] = 3F(x) '

where the expectation of the closed-valued measurable multi-



funection T Zs defined by
ET = cl{Jv(w)P(dw)IVWEL;(A),V(w)GEf(w)ia.s.} .

PROOF. Just apply the Theorem with G = {¢,Q}, and identify
the class of constant functions -- the G-measurable functions --
with R". O |

This Corollary was first derived by Ioffe and Tikhomirov
[5] and later generalized by Levin [6]. Note that our definition
of the expectation of a closed-valued measurable multifunction
is at variance with the definition now in vogue for the integral
of a measurable multifunction, which does not involve the closure
operation. (Otherwise the definition of the integral of a multi-
function would be inconsistent with that of its conditional ex-
pectation, in particular with respect to G = {¢,Q}, and also
when T +El is viewed as an integral on a spaée of closed sets_it

could generate an element that it is not an element of that space.)

APPLICATION

Consider the stochastic optimization problem:

(21) find inf E[f(w,x1(w),x2(w))] over all x,€L” (6), x

: €L (A,

2 2
where A and G are as before, and £ is an A-normal cohvex inte-

grand which satisfies the norm-continuity condition:

. e} (] [+ e} 00
(22) there exists (x1,x2)€ELn1(G) Xan(A)

at which If is finite and norm continuous.

Suppose also that the effective domain multifunction

1

n n
w>dom £(w,+,*) = ((x,,x,) €R ' xR 2|f(w,x1,x2)<+m}

is uniformly bounded and that there exists a summable function
he L' (4) such that (x;,%,) €dom £(y,++) implies that
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lf(m,x1,x2)| < h(w). Finally suppose that the multifunction

™ 2
wrDy(w) = cl {x; ER [Ix,€ER

such that f(w,x,,x,) < 4o}
is G-measurable. For a justification and discussion of these

assumptions cf. [11, Section 2]. From Theorem 1 of [11], it

follows that the problem

(23) find inf E[g(w,x,(w))] over all x1€EL§ (G) ,
1

where

q(m,x1) = EG{inf n f(°,x1,x2)}(w) '

2
) x2€R

is equivalent to (21) in the sense that if (51,§2) solves (21),
then §1 solves (23), and similarly any solution X, of (23) can
be "extended" to a solution (x1,x2) of (21). Both problems also

have the same optimal value.

The hypotheses imply that

is an A-normal convex integrand, since the multifunction
w»epi(infx f(m,x1,x2)) is closed~-convex-valued and A-measurable.

Its effecti%e domain multifunction, or more precisely
mv*D1(w): = cl dom g(w,*) ’

is G-measurable. Combining (11) with the representation for the
subgradients of infimal functions [13, VIII.4], we have that for

every x, € L: (G)
1

3 (%, (+)) = ET(v(w) [ (v(w) ,0) € _ 3f(u,x, (u),X,)
n

for some x2€R 2}

() ’

from which Theorem 2, the main result of [11], follows directly.
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REMARK. If the underlying probability measure P has finite
w ¥
support, then (L7)° = L!, and (11) and (20) are satisfied with-

out any other restriction.

On the other hand, if P is nonatomic, and the effective
domain multifunction (or its closure) is not G-measurable, then
the identities (11) and (20) do not apply. More precisely,
suppose that there exists a subset C of R" such that the A-

measurable set
{w|dom f(w,*) NC#4¢}

has (strictly) positive mass and is not G-measurable. Then the

term rc[dI G (x))] can never be dropped from the representation
Ef
of 91 G given by (8), as can be seen from an adaptation of the
E°f

arguments in Section 4 of [10]. 1In those cases the inclusion

EGBf<:8EGf will be strict for at least some xGEL:(G).
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