
 

 

 

YSSP Report 

Young Scientists Summer Program 
 

 

Assessing copper use against housing service  

scenarios 

Tong Wang 

tong.wang.tw493@yale.edu  

 

 

 

 

Approved by 
 

 

Supervisor: Narasimha Rao 

Co-Supervisor: Jihoon Min 

 

Program: Energy 

 

 
 

This report represents the work completed by the author during the 

IIASA Young Scientists Summer Program (YSSP) with approval from the 

YSSP supervisor.  

 

It was finished by ______________________________ and has not 

been altered or revised since. 

 

This research was funded by IIASA and its National Member Organizations in Africa, the Americas, Asia, and Europe. 

 

 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. 

For any commercial use please contact repository@iiasa.ac.at 

 

YSSP Reports on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed 

herein do not necessarily represent those of the institute, its National Member Organizations, or other organizations supporting the work. 

 

ZVR 524808900 

mailto:tong.wang.tw493@yale.edu
https://creativecommons.org/licenses/by-nc/4.0/#_blank
mailto:repository@iiasa.ac.at


2 

 

Abstract 

In order to curb the growing material demand without compromising human needs, the material 

requirement needs better assessment to address the underlying services provided to human with 

more consistent material intensity information. A critical metal, copper, is being extensively used in 

buildings and household appliances which together provide the basic services like shelter and thermal 

comfort for human beings that was denoted as housing service. In this paper, we adopted the 

projected service level (floor space per capital) from the Resource Efficiency and Climate Change 

(RECC) framework that offers comprehensive set of global scenarios for housing, and built a dynamic 

stock and flow model to estimate future demand for residential buildings and appliances. We then 

used the cutting-edge industrial ecology tools to extend the dataset of copper intensity with value 

meanings being clearly illustrated as total copper requirement, direct copper input or copper content. 

Strategies including supply-side technological improvement and demand-side behavioral change were 

evaluated, and the potential and advantage of each strategy were analyzed. The results show that 

appliances dominate annual total copper requirements for housing service under all strategy 

scenarios. Behavioral change and lifetime extension have relatively immediate effect of reducing 

primary copper demand, but lifetime extension needs case-by-case assessment about the associated 

impact like energy consumption. Increasing recycling rate becomes most effective in the latter half of 

the century as the system becomes more and more circular. Policy making should combine those 

strategies in the way that addresses behavioral change as soon as possible and at the same time 

incentivizes improvement in technologies like modularity design and new recycling techniques.    
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Introduction 

Human living depends on various materials. Although the fundamental goal of material utilization is to 

provide human services like housing, education and mobility1, current usage of material is mainly 

derived in terms of different sectors like building and industry 2 rather than different service categories. 

The impact of demand-side behavioral change on material use and environmental impact is hence not 

fully assessed. In recent years, the links among services, in-use stocks and flows of products and 

materials that provide services, and environmental impacts have gained more attention 3–7. Industrial 

ecology tools, for example, have the potential to estimate consumption-based material needs. However, 

even if the product demand by per unit of service such as floor area is well assessed, the accounting 

of associated material use could be confusing induced by the use of inconsistent material intensity (MI) 

coefficient 8. MI has been estimated by calculating the ratio of economy-wide material consumption to 

gross domestic product 9, by referring to construction documents and on-site investigation 10, or by 

intensive literature review 8,11. The use of MI in literature is not explicitly differentiated among per unit 

material content, direct material input during the production process, or total material requirement. A 

clearer identification of material use underlying services is needed to address the urgent issues on 

climate mitigation and resource depletion through behavioral change, recycling and material efficiency 

strategies.  

As the best thermal and electrical conductor among all nonprecious metals, copper is increasingly 

demanded due to massive use in buildings and rapidly growing use in infrastructure and transportation 

sectors for economic development and transition to sustainable economy 12–14. Whether copper 

resource is sufficient for the next decades is still under debate 15–19. Primary copper production is energy 

intensive and has significant environmental impact especially human toxicity 20. Thus, reducing copper 

demand while not compromising human welfare is highly interesting. Buildings are crucial physical 

requirements to provide shelter and living conditions for a decent living together with other major 

household appliances like air conditioners. Around 50% of current in-use stock of copper is in buildings 

13,21 and 28% of the annual copper use in 2018 was for building construction. In this paper, we denoted 

the service provided together by the buildings and major household appliances as housing service. Due 

to the significant copper use in products providing housing service, better understanding of copper 
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demand for housing service could inform potential strategies to sustain copper supply and further the 

study of material use underlying services.  

Therefore, we in this paper modeled future copper requirements to fulfill the needs for housing 

services in terms of capital formation including residential buildings and major appliances and 

evaluated the potential to reduce primary copper demand by supply-side technological changes and 

demand-side behavioral changes. We seek to answer the following two questions: 

• What are the copper requirements to meet future housing service scenarios? 

• What are the potential opportunities of reducing primary copper use and how would these 

strategies compare against supply-side technological improvement and against demand-side 

behavioral change? 

Method 

The overall framework to derive copper use for housing services was shown in Figure 1. Three parts 

were addressed sequentially: housing service and required products (residential buildings and major 

appliances) to fulfill housing services; annual inflows of residential buildings and appliances; copper 

intensity and total requirements. To compare the strategies to reduce primary copper demand, 

scenarios for technological improvement and behavioral change were set up and assessed in the end. 

In this paper, we focused on the case of the US for detailed analysis. 

 

 

Figure 1 Overall framework of assessing copper use for housing service  

Housing service and required products 
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The required products include residential floor space and appliances. In-use stock of product p in year 

t was denoted as 𝐼𝑈𝑆𝑝(𝑡) and calculated separately for residential floor space (𝐼𝑈𝑆𝑝−𝐹𝑆(𝑡)) and 

appliances (𝐼𝑈𝑆𝑝−𝐴(𝑡)). 

In-use stock of residential floor space for housing services were estimated based on future 

population, the service level – per capital floor area, their archetype mix or market share of different 

archetypes, and heated/cooled proportion in the Resource Efficiency and Climate Change (RECC) 

framework 4,22–25. Following a what-if logic 26, the RECC framework defined parameters for 20 regions 

subject to three storyline (LED27, SSP1, and SSP225) narratives and region-specific historical trends by 

identifying existing scenario values in literature or by determining through time-series regression 

analysis and expert consensus approach. We adopted the parameters of the US in the SSP2 storyline 

as it represents a “Middle of the road” scenario following historical trends. The in-use stock of 

residential floor space was calculated as follows: 

𝐼𝑈𝑆𝑝−𝐹𝑆(𝑡)  = 𝑆𝐿(𝑡) ∗ 𝑃𝑂𝑃(𝑡) ∗ 𝐴𝑆(𝑡) (1) 

where product p includes the provided residential floor space by single family house (SFH), 

multifamily house (MFH) and others; SL(t) represents service level in year t; POP(t) represents 

population in year t; AS(t) represents archetype split among SFH, MFH and others in year t. 

Appliance in-use stock was estimated by combining appliances demand per floor space (𝐴𝐷𝑃𝑝(𝑡), in 

unit/m2), total residential floor space and heated/cooled proportion (𝐻𝑃(𝑡) /  𝐶𝑃(𝑡)). Appliances 

demand per floor space was estimated based on 2015 Residential Energy Consumption Survey 

(RECS)28 and was kept constant for future projections (Table 1). This paper has analyzed the copper 

intensity for various appliances and chose the following copper-intensive appliance types as major 

appliances for detailed analysis (See Results for detail): heating equipment (heat pump, central warm-

air furnace, steam or hot water system, electric units, and others represented by solar), air 

conditioner, air cooler, clothes washing machine, television (TV), dish washer, refrigerator, clothes 

dryer, computer screen, desktop without screen, microwave, laptop.  

𝐼𝑈𝑆𝑝−𝐴(𝑡)

{
 
 

 
 𝑆𝐿(𝑡) ∗ 𝑃𝑂𝑃(𝑡) ∗ 𝐴𝐷𝑃𝑝(𝑡), 𝑓𝑜𝑟 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒𝑠 𝑜𝑡ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 

ℎ𝑒𝑎𝑡𝑖𝑛𝑔/𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝑆𝐿(𝑡) ∗ 𝑃𝑂𝑃(𝑡) ∗ 𝐻𝑃(𝑡) ∗ 𝐴𝐷𝑃𝑝(𝑡), 𝑓𝑜𝑟 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

𝑆𝐿(𝑡) ∗ 𝑃𝑂𝑃(𝑡) ∗ 𝐶𝑃(𝑡) ∗ 𝐴𝐷𝑃𝑝(𝑡), 𝑓𝑜𝑟 𝑐𝑜𝑜𝑙𝑖𝑛𝑔 𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡

  

(2) 
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Annual inflows of residential buildings and appliances 

As residential buildings and appliances have significantly different lifetimes (Table 1), their flows need 

to be assessed separately. Annual demand for residential buildings were estimated based on the 

building types, cohorts and lifetime distributions4,22,23,29. The appliance lifetime distributions were 

adopted from Wang et al.30. To be consistent with other appliances, we used the same data source of 

lifetime distribution for heating appliances which was lower than the assumed lifetime in Ecoinvent 

(e.g. lifetime for some heat pump was assumed to be 20 years in Ecoinvent). Appliance age file of 

2015 was estimated from the Residential Energy Consumption Survey (RECS) and then used together 

with appliances lifetime distribution to project annual demand for appliances.  

Table 1 Lifetime distribution and average demand per floor space of major household appliances  

Appliances Weibull parameters Average number of 

appliance per 

thousand square 

meters in 2015 US 

based on 28 

Shape k Scale λ 

Heating equipment-Heat pump 1.830 15.830 0.70 

(per heated area) 

Heating equipment-Others represented by 

solar 

1.830 15.830 1.65 

(per heated area) 

Heating equipment-Central warm-air furnace 1.830 15.830 3.64 

(per heated area) 

Heating equipment-Steam or hot water 

system 

1.830 15.830 0.47 

(per heated area) 

Heating equipment-Electric unit 1.830 15.830 1.68 

(per heated area) 

Air conditioner (AC) 2.830 12.330 8.68 

(per cooled area) 
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Air cooler 2.430 13.630 0.19 (per cooled 

area) 

Clothes washing machine 2.230 13.930 4.42 

Television (TV) 2.130 1230 12.34 

Dish washer 1.630 13.130 3.61 

Refrigerator 2.230 16.530 6.91 

Clothes dryer 2.630 16.530 4.30 

Computer screen  2.5 30 

(represented 

by flat panel 

display) 

7.5 30 

(represented 

by flat panel 

display) 

2.65 (assume the 

same as Desktop) 

Desktop without screen 2.130 9.630 2.65 (assume the 

same as Desktop) 

Laptop 1.530 5.230 5.22 

Microwave 0.830 14.730 5.36 

Residential building 2.829 73.529  

 

Annual inflow in year t of product p (𝐴𝐼𝑝(𝑡)) includes two parts: annual in-use stock increasing and 

outflow replacement of all previous years. Annual in-use stock increasing (IUSI) from year (t-1) to 

year (t) of a product (p) was calculated as follows: 

𝐼𝑈𝑆𝐼𝑝(𝑡) = 𝐼𝑈𝑆𝑝(𝑡) − 𝐼𝑈𝑆𝑝(𝑡 − 1) (3) 

where 𝐼𝑈𝑆𝑝(𝑡) includes both 𝐼𝑈𝑆𝑝−𝐹𝑆(𝑡) and 𝐼𝑈𝑆𝑝−𝐴(𝑡). 

Outflow replacement of product p of all previous years in year t (𝑂𝑅𝑝(𝑡)) was determined by 

summing up the outflow in year t from all the age-cohorts. The earliest year was set to be 1990. 

𝑆𝐹𝑝(𝑡
′, 𝑡) represents the proportion of product p purchased in year 𝑡′ that was still in-use in year t, 

and was calculated using its shape parameter  𝑘𝑝 and scale parameter 𝜆𝑝 in Table 1.  

𝑆𝐹𝑝(𝑡
′, 𝑡) = 𝑒−((𝑡−𝑡′)/𝜆𝑝)

𝑘𝑝
 (4) 
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𝐶𝑜ℎ𝑜𝑟𝑡𝑝(𝑡
′) was the original inflow cohort of p in a previous year 𝑡′ before year t (𝑡′ ≤ 𝑡). For 

convenience, we at first derived the cohorts of p before 2015 by using its 2015 age file and its 

Weibull survival function (SF). Based on the survival amount of inflow p from previous year 𝑡′ in 2015 

(𝑆𝐴𝑝(𝑡
′, 2015)) shown in the age file, 𝐶𝑜ℎ𝑜𝑟𝑡𝑝(𝑡

′) was calculated below. 

𝐶𝑜ℎ𝑜𝑟𝑡𝑝(𝑡
′) = 𝑆𝐴𝑝(𝑡

′, 2015)/𝑆𝐹𝑝(𝑡
′, 2015), 𝑡′ ≤ 2015  (5) 

The cohort of p after 2015 was the same as total annual inflow: 

𝐶𝑜ℎ𝑜𝑟𝑡𝑝(𝑡
′) = 𝐴𝐼𝑝(𝑡

′), 𝑡′ > 2015 (6) 

The outflow of p from a previous year 𝑡′ in year t (𝑂𝑅𝑝(𝑡
′, 𝑡)) was calculated as follows: 

𝑂𝑅𝑝(𝑡
′, 𝑡) = {

𝐶𝑜ℎ𝑜𝑟𝑡𝑝(𝑡
′, 𝑡) ∗ (𝑆𝐹𝑝(𝑡

′, (𝑡 − 1)) − 𝑆𝐹𝑝(𝑡
′, 𝑡)), 𝑡′ < 𝑡

0, 𝑡′ = 𝑡
,  

(7) 

The total outflow of p from all previous years: 

𝑂𝑅𝑝(𝑡) = ∑ 𝑂𝑅𝑝(𝑡
′, 𝑡)

𝑡

𝑡′=1990

 
(8) 

Annual inflow in year t of product p was then calculated as follows: 

𝐴𝐼𝑝(𝑡) = 𝐼𝑈𝑆𝐼𝑝(𝑡) + 𝑂𝑅𝑝(𝑡) (9) 

Copper intensity  

This paper consolidated the value of copper intensity by clarifying the data meanings and using 

various sources including input-output (IO) table, life cycle assessment (LCA) and literature review. 

Copper content (CC) is the copper actually embedded in copper products. It is useful in calculating 

current copper in-use stock and scrap generation potential. In this paper, CC was obtained by 

collecting data from literature review and by estimating using waste input-output material flow 

analysis (WIO-MFA) method31–33 on US IO table34,35 and EXIOBASE database36. Total copper 

requirement (TCR) is the total demand of copper considering all the upstream copper requirement at 

material level-usually refined copper or copper semis. TCR was estimated by LCA using the 

ecoinvent37 database and by the WIO-MFA method using IO table34–36. Direct copper input (DCI) is 

the direct refined copper input into the final-stage manufacturing process of appliances and was 

obtained using the ecoinvent37 database. 

There is little information in literature on copper intensity of heating equipment as heating equipment 

varies a lot in terms of types (furnace, heat pump, electric heater, etc.), heating fuel (natural gas, 
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electricity, wood, etc.) and power (in kW). For example, central warm-air furnace, heat pump and 

fireplace could all be used as main heating equipment according to RECS and the heat capacity of 

heating equipment could be 4 kW or 10 kW according to Ecoinvent. We matched the possible heating 

equipment between RECS and Ecoinvent and get the TCR and DCI for different heating equipment. 

Only those appliances with a capacity lower than 100 kW was considered to be used in residential 

buildings. 

Strategies of reducing primary copper demand  

Scenarios were set up to analyze the potentials of different strategies to reduce primary copper 

demand. We built up three types of scenarios: 

• Scenario 1 - Lifetime extension. By changing the scale parameter of Weibull distribution, the 

mean lifetime of residential buildings constructed after 2020 was increased to 100 years while 

the mean lifetime of major appliances produced after 2020 was extended by 2, 4 or 6 years. 

Both technological improvement and behavioral change can impact product lifetime. Lifetime 

extension will change in-stock and annual demand for housing services. 

• Scenario 2 - Faster saturation of service level due to behavioral change. The service level was 

set to stay constant after 2020. In-stock and annual demand for residential buildings and 

major appliances were reduced under this strategy. 

• Scenario3 - Higher end-of-life recycling input rate (EoL-RIR) of copper during copper 

production due to technological improvement through higher collection and separation 

efficiency, high yield ratio and better scrap management like blending. Ciacci et al.38 

suggested the copper from old scrap could only meet at best 65% of future copper demand; 

Deetman et al.39 estimated that the recycling building material could only cover about 55% of 

construction copper demand by 2050; Dong et al.14 mentioned that only half of the copper 

demand by China in 2050 could be met by secondary copper. We assumed that the EoL-RIR 

increased from the current 19% to 50% from 2016 to 2050 with a constant annual growth 

rate. Although we denoted this strategy mainly as supply-side technological improvement, we 

understand behavioral change such as better waste sorting could improve recycling rates. 

Higher EoL-RIR reduces the primary portion of copper intensity.  
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Results and discussion 

Copper intensity  

Appliances  

The results of copper intensity of different meanings and from various methods were shown in Figure 

2. Theoretically, TCR would always be the largest value for a certain appliance compared to CC and 

DCI as TCR includes all the upstream copper requirements. This was the case for most of the 

appliances including the most copper-intensive ones like heating equipment, TV and washing 

machine. For refrigerator and microwave oven, TCR and DCI were between the value of the highest 

and lowest values of CC due to the wide range and uncertainty of CC in literature. 

Copper intensity for heating and cooling equipment was significantly higher followed by other large 

home appliances. For the detailed copper requirements estimation in the following steps, we chose 16 

types of major appliances as shown in the Method Section and used average TCR value as copper 

intensity as to reflect the total copper material demand in the future. For air conditioner and air 

cooler, we used their largest CC values as proxies for TCR.  

As shown in Figure 2, this study largely enriched the dataset for more copper-intensive appliances 

like heating equipment. The value from WIO-MFA method using IO tables were not shown here due 

to their low resolution on appliances. For example, in the US IO table34,35, household appliances are 

only separated into household cooking appliance, refrigerator and freezer, laundry equipment and 

others; heating boilers and stoves are classified into heating equipment (except warm air furnaces); 

warm air furnace and heating pumps are in “Air conditioning, refrigeration, and warm air heating 

equipment manufacturing”40. 
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Figure 2 Copper intensity for home appliances. The appliances were ranked by the median value of their dataset including 

TCR, DCI and CC.  

Residential buildings 

As shown in Figure 3, CC results of single family and multifamily buildings from WIO-MFA method 

were acceptable compared with literature data for general residential buildings. Large uncertainty was 

noticed as the literature data includes different world regions from various years. Due to higher 

resolution and our focus on the US, we used the TCR results of residential buildings from WIO-MFA 

method using US IO table for further calculation.  
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Figure 3 Copper intensity for residential buildings. 

Due to the relatively low resolution of sectors, the copper intensity results using EXIOBASE was not 

used for further calculation in this paper.  

Copper requirements for in-use stock of housing services  

According to the model, remarkably more copper will be required to fulfill the in-use stock for 

multifamily buildings in the end of this century as there will be a larger proportion of multifamily 

construction in the newly built residential buildings. Copper requirements for heating and cooling 

equipment are about the same amount as the residential building with air conditioner being the most 
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significant. TV, refrigerator, clothes washing machine and clothes dryer account for an important 

portion of the TCR.  

 

Figure 4 Copper requirements for in-use stock of housing services in the US 

Copper requirements for annual demand for housing services 

Although the TCR for residential buildings is comparable to that of appliances for in-use stock, the 

appliances, especially those for thermal comfort (heating and cooling) and TV, dominate the TCR  for 

annual demand of housing services. The obvious hump around 2055 is mainly due to the boom of 

residential buildings in around 1990 and their average lifetime of around 65 years.  
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Figure 5 Copper requirements for annual demand for housing services in the US 

Strategies for reducing primary copper demand 

Appliances dominate the TCR for housing services under all scenarios (Figure 6). The strategy of 

lifetime extension for residential buildings only becomes effective in the latter half of the century due 

to their long lifespan, while for appliances this strategy makes significant difference after 2020. The 

performance of this strategy differs remarkably when extending the lifetime by different degrees. For 

example, when the lifetime of appliances is extended by 6 years, there are substantial amount of 

decrease for TCR throughout the century.  

When fixing the service level after 2020, there is a sudden drop for TCR as the increased demand for 

both appliances and residential buildings becomes less, and population growth drives the annual 

demand increase after the drop. Increasing EoL-RIR significantly reduces primary copper 

requirements and performs best in the long run.  
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Figure 6 Annual TCR for housing services under different scenarios. (a) shows the annual TCR for residential buildings and 

appliances separately. (b) represents the TCR for total housing services which is the sum of the TCR for residential 

buildings and appliances. 

Conclusion 

Although there is disagreement on future copper scarcity level, copper was recognized to have high 

Vulnerability to Supply Restriction (VSR) at national level 41,42 and copper primary production has high 

environmental impact 20. By using the cutting-edge industrial ecology tools to consolidate the highly 

uncertain and sometimes vague information of copper intensity, this paper for the first time estimated 

the future copper requirements to fulfill future human housing services and assessed both demand-

side and supply-side strategies to curb primary copper demand growth. 

Behavioral change and lifetime extension have relatively immediate effect of reducing copper 

demand. Lifetime extension of products from technological and behavioral aspects could be the most 

effective way to reduce primary copper demand if extended long enough (e.g. more than 6 years) 

but raises tradeoffs of energy saving and other environmental impact between conventional less 

energy efficient appliances and highly efficient new technologies. Crucial amount of TCR is for diverse 

appliances which currently have low EoL recycling rates 21. Increasing recycling rate is very promising 

in the long-run as the system becomes more and more circular.    
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This paper only takes into account the capital formation of housing services. Copper requirement for 

operational energy use in the forms of power plant and infrastructure including transmission and 

distribution network will be considered in future work. More service types like transport and more 

material types could be assessed using the same method. Uncertainty from lifetime distribution and 

change of copper intensity due to technological development will be discussed in future work. The 

results of this paper help inform policy makers of the total copper requirements for future housing 

services and the potential of both supply-side technological and demand-side behavioral strategies in 

reducing primary copper demand.
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