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What is IASA?

Established in 1972 near Vienna, Austria, as a bridge
between East and West, science diplomacy

Today: International, independent, interdisciplinary research
on major global problems

Solution oriented, integrated systems analysis into the
Issues of sustainability and global transformation

Dimensions: energy, land use, climate, air quality,
technology, biodiversity, food, demography, natural hazards

Currently 25 member countries
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Integrated Systems Analysis for Policy Advice

Science, Policy, Society
Partnerships
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IITASA & |[PCC  SDG implications coordinated by IIASA

Indicative linkages between mitigation options and sustainable
development using $DGs (The Unkages do not show costs and benefits)
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. . mitigation options deplayed in each sectar can be associated with potential positive effects (synergies) or
- . ; s {Lrade-olls) with the [ Goals (SDGs). The degree Lo which this
. pntermal is realized will depend on the selected portfolio of mitigation options, mitigation policy design,
and local circumstances and cantext. Particularly in the energy-cemand sectar, the potential for synergies is
£ . P v larger than for trade offs. The bars graup individually assessed optians by level of confidence and take into
B | | account the relative strength of the assessed mitigation-5DG connections,
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» P1: Ascenario in which social, P2: Ascenario with a broad focus on PP3: Amiddle-of-the-road scenarioin P4: A resource and energy-intensive

business, and technological sustainability including energy wh\ch societal as well aste(hnolog\(al scenario in which economic growth and I
innovations result in lower energy intensity, human devel foll globalization lead to widespread ,|
demand up to 2050 while living economic convergence and patterns. Emissions reductions are adoption of greenhouse-gas intensive
standards ise, especialyintheglobal intemational coaperation, as well s mainly achieved by changingthewayin festyles, including high demand for | | I
South. A down-sized energy system shifts towards sustainable and healthy which energy and products are transportation fuels and livestock
enables rapid decarbonisation of consumption patterns, low-carbon produced, and to a lesser degree by products. Emissions reductions are | I

5 energy supply. Afforestation is the only technology innovation, and reductions in demand. mainly achieved through technological I
CDR option considered; neither fossil well-managed land systems with means, making strong use of COR
fuels with CCS nor BECCS are used. limited societal acceptability for BECCS. through the deployment of BECCS.
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Guide the Paris Process through Globally
Coherent National Pathways

2010 : Emissions Contributions of Countries (2050)
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National modelling: IIASA-NITI Aayog‘
Energy model for India

IIASA-ENE’s tools are applied widely for national
energy planning

Launch of the NITI Aayog Energy Model in st
March 2018

Seamless integration with powerful
scientific programming languages

@ python” (R

Suite of mathematical models

Elaborate co-design and co-development phase e

Hands-on and on-line training

Poweredby ¢

J‘JDRACLG /]' MESSAGEj

| ]
Versatile spatial systems-economic model
x/Perfect foreswght or recursive- dynamlc
¥ Endogenous learning and spillov
v Easy to add new features & extensmns

Enabled through major investment by NITI into S, *"b;;itﬂub

own capacity Mm e ot e s

Similar co-development projects in Brazil (r),
China (u.d.), Israel (p), South Africa (r), Egypt
(p), and other countries..
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adverse effect co-benefit
A‘

Renewable
Energy

Marine
Ecotoxicity

Fossil
Resource

INDIA

Krey et al. (submitted) — under embargo, do not cite

Freshwater
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Human
Toxicity
Energy
Efficiency

Premature
Deaths PM2.5
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Mitigation co-benefits
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Water Land

Water Energy

Mitigation risks

PARIS 2015
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Unemployment
Food Price

Energy Access

Mineral
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Impacts of Stringent Mitigation on SDGs
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Origin of PM2.5 population exposure
by State/region in India, 2015
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Land-Energy-Water Nexus
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Sustainability challenges arising from cross-sector interactions
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Hotspots under 1.5, 2 and 3 "C climate change

~. 3.0°C

0 i 2| é éll 5 6 7 8 9
Multi-sector Risk Indicator

Integrated
solutions
urgently needed
to avoid risks

Byers et al. (2018, ERL)



Land restoration policies in India

DESERTIFICATION / LAND DEGRADATION STA

Py ISRO, 2018 A
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“| would like to announce that India would raise its ambition of the total area
e that would be restored from its land degradation status, from 21 million

hectares to 26 million hectares between now and 2030.”
[ Sept. 9, 2019; UNCCD COP14 ]
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Land policies are linked to energy and water

How can we design integrated policies that leverage
Interactions to improve resource efficiency?

Use an integrated or nexus approach
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Land-energy-water nexus in India

Depth to water level (pre-monsoon, 2014)

Growth in groundwater tubewells in Punjab
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Land-energy-water nexus

Pumping groundwater impacts CO2 emissions from
crop production in India
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Water for power in India

Uncertainty
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I Srinavasan et al. (2017)



Energy needed to support clean water goals in India
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NEW IIASA-MoEFCC partnership
Assessing interlinkages between land-use policies and
the SDGs In India using a nexus approach

Existing systems =————>

Land policies ~ =—>
IIASA Nexus Integrated System

Water policies ~ =———> Modeling Tools and Policy Solutions

Energy policies ——>

Future scenarios =————>

* Build local capacity to develop
and apply nexus models




Outputs and timeline

* [nception report (Sept 2019)

* Modeling tool and database (Jan 2020)
 Policy analysis / final report (Aug 2020)
e Plans for 2" phase (Aug 2020)



Previous IIASA work on nexus modeling
Integrated Solutions for the Water-Energy Land
Nexus Project

« 3-year Initiative funded by GEF and
UNIDO

ef

(@)

 Focus on SDGs, model
development, stakeholder
engagement and capacity building

 Case studies in the Indus and
Zambezi basins

Zambezi



he NExus Solutions Tool (NEST)
Multi-scale modeling for transforming systems

Objectives of the tool

* Design long-term pathways (2020 to 2050) for land,
energy and water systems

« Utilize a nexus approach to leverage interactions as
solutions

« Provide results at a sub-national level and to
Incorporate policies occurring across different
administrative levels



The NExus Solutions

Tool (NES

)

Multi-scale modeling for transforming systems
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Water supply-chain modeling

Water distribution Water demand Return flows*
M "
Elﬁ]]] M| &‘\
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rivers, canals . .
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f d l .
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¢ . .
5| Water diversion Energy sector
——
—= Seawater ——>| yyater distribu- Land sector
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* exogenous
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Vinca et al. (2019)
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Energy supply-chain modeling

Power plants

Water for = Fossil (natural

cooling N ﬁ E gas), coal, oil,
ccs
(O
— l'éi Nuclear

Bio-fuel” (ethanol — ’2- Biomass &
J

orsolid biomass) — 3 * co-firing

Retun flows €

—

-

- N
%% Solar & Wind

Hydroelectric .
potential _— Hydroelectric

* exogenous

Power transmission Electricity demand
% Mi
p
'd N .
Transmission HV 5&%2%&8“
(to other nodes)
ﬁ é
Distribution R
(internal)
~ )

Rural generation Water sector

Diesel generator

Small PV ——3 Land sector

Ethanol generator

()

Bio-fuel” (ethanol

or solid biomass)

A crop residues can be transported as solid biomass or converted in ethanol, technolgies not represented here

Vinca et al. (2019)
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Crop supply-chain modeling

Groundwater
recharge
jg Crops T
C N r M
Irrigated Crop products
Crop products eeneh
Electricity from Irrigation systems PP N /\/ by country
grid or local > [ < '
generators 1Y
Flood N y
Water for L | Srinkler - N
irrigation - Total land Land availability§
Drip _ constraints
\ 1 $

- J

Rainfed only

Crop residues

Biomass
Water for }2’0 transportation/ ———> Energy sector
blO—dfuel_ > 7 ¢ conversion
production

* exogenous.
§total available area for agriculture based on historical data

Vinca et al. (2019)
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Preliminary results: do not cite or quote

Input data

Mapping infrastructure, potentials and policies

v' Power generation (existing and planned) v' Irrigation intensity
Transmission and road networks
Groundwater pumping capacity
Wind, PV and hydropower potentials
Urbanization pathways

Indus water treaty allocations
Reservoirs (existing and planned)
Urban water transfers (e.g., Karachi)
Algorithms for model integration

AN N NN
AN N NN

Monthly irrigation withdrawals calibrated for 2015

AFG - Withdrawal IND - Withdrawal PAK - Withdrawal

Crop

2 - cotton
—— fodder

2 - — pulses
— Tice

Q- sugarcane

’\ wheat
— all
7

/
AL N

cubic kilometers
cubic kilometers
&
I

cubic kilometers

S WY

T 1
2 4 6 8 10 12

1T 1T 1T 1T 1
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Calibrating sub-national scenarios:
Stakeholder Engagement

China Meteorological Administration

Ministry of Planning Planning and Development
Integrated Research and Department
IRADe Action for Development 1 e, Development & Reform
A Q Y 4O
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teri el 22 Business ==
Institute for univers : NN Council w FAGHM THE AMERICAN PECPLE
Defencestudies and FOSTERING CONDOMIC CROWTH
Analyses

A Gerryy sl up under Sscton 42 o 1he (ompanie Onksencs 1004

IDRC 3& CRDI lead o0k g s

(Chingse Academy of Sciences
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. HUNGER AND SANITATION

Indus Analysis
How to strike a balance between objectives?

... and at what cost?

Transboundary Agreements &
SDGs Water-Energy-Food Security

CLEAN WATER

Afghanistan
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Scenario analysis

Baseline:
- Business as usual
- Indus Water Treaty

- Shared Socioeconomic pathways
(population and economic growth
assumptions)

SDG:

- Infrastructure access and
treatment rates

- Efficiency and emission targets

- Adaptation to impacts of climate
change

SDG policies added on top
of baseline setup

Baseline SSP
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Integrated analysis of system costs under
multiple SDG objectives

Average yearly costs for the entire basin

Indus Indus e Low carbon tech and

investment operational

wastewater distribution

N e and treatment.
] ey« Use of more efficient, but
§ 2. “y‘;t costly irrigation
g 'f:& technologies.
@ 10 — e o Higher land requirements
water distribution from reduced irrigation

baseline multiple_SDG baseline multiple_SDG

*Similar results can be generated for sub-basins and for each country’s basin area

S I Preliminary results: do not cite or quote 31
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Tracking basin-wide nexus interactions: 2030

T =3 B
°

baseline multiple SDG

Energy [G W

o 500 1000

Energy G W/;

o 500 1000 g5

)/

Less power plant / irrigation water requirement.
More energy for water distribution / treatment

td Preliminary results: do not cite or quote .



cubic Kilometers
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Impact of water availability

Indus = Runoff Indus - Runoff - extreme
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month of year month of year

Preliminary results: do not cite or quote

Decade

2015
2020
2030
2040
2050
2060
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Some key insights from the Indus analysis

Massive investments in water and energy
systems needed to achieve SDGs

Crop shifting can be an important solution but
has implications on local livelihoods

Cooperation across countries can reduce the
costs to implement the SDGs

Climate change impacts on water availability
significantly increase costs



Application to India
Water allocation policies made at the state-level

= L Requires updating




But water I1s constrained at the river basin-level

Indus
=
Ganges =Bramaputra
Sabarmati
Salween
: fahi Yasai Irrawaddy
W Narmada
[ Brghamahi
Tapti Mahand
Godavari
India Noth East Coast
Krishna
India We oast
‘ Pennar
Indég East Coast
Cauver
India South (_I:Rast




Mapping river flow directions between states

—— State Boundary
——— Major Rivers

' Elevation [ m ]
£t o o-200
¢ O 200-500
0O 500-1000
. O 1000-2000
Lﬂi)o " L 0O 2000-4000
Distance [ km ] Y O > 4000

0 250 500
C— —
Distance [ km ]

Basin—-State
International Centroid
Reduced River

Reduced form
river network
representation

Complex system with many inter-state and international water transfers




Assessment of data availability

 National and state-level databases provide

excellent coverage

— India Water Resource Information System
— ISRO land degradation maps

— Agriculture and irrigation maps

« But need to link with stakeholders for

representing policies and solutions

|||||
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Next steps

« Stakeholder engagement

— Interactive meetings with ministries involved
In land, water and energy planning

 Model development
— Converging on spatial and temporal scales

— Identifying the portfolio of technology
solutions

— Incorporating existing and future policies
« Capacity building
— Training MoEFCC staff

|||||



Thank you! Questions?

Special thanks to:

Shri Anil Kumar Jain and Shri Jigmet Takpa, MOEFCC
and
Dr. Simi Thambi, MOEFCC
and
Dr. Anindya Bhattacharya, The Celestial Earth / IIASA
and
Dr. Keywan Riahi, IIASA

For further details, please contact me at:

parkinso@iiasa.ac.at
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