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A B S T R A C T   

Faecal pathogens can be introduced into surface water through open defecation, illegal disposal and inadequate 
treatment of faecal sludge and wastewater. Despite sanitation improvements, poor countries are progressing 
slowly towards the United Nation’s Sustainable Development Goal 6 by 2030. Sanitation-associated pathogenic 
contamination of surface waters impacted by future population growth, urbanization and climate change receive 
limited attention. Therefore, a model simulating human rotavirus river inputs and concentrations was developed 
combining population density, sanitation coverage, rotavirus incidence, wastewater treatment and environ
mental survival data, and applied to Uganda. Complementary surface runoff and river discharge data were used 
to produce spatially explicit rotavirus outputs for the year 2015 and for two scenarios in 2050. Urban open 
defecation contributed 87%, sewers 9% and illegal faecal sludge disposal 3% to the annual 15.6 log10 rotavirus 
river inputs in 2015. Monthly concentrations fell between -3.7 (Q5) and 2.6 (Q95) log10 particles per litre, with 
1.0 and 2.0 median and mean log10 particles per litre, respectively. Spatially explicit outputs on 0.0833 ×
0.0833◦ grids revealed hotspots as densely populated urban areas. Future population growth, urbanization and 
poor sanitation were stronger drivers of rotavirus concentrations in rivers than climate change. The model and 
scenario analysis can be applied to other locations.   

1. Introduction 

Rotavirus (Group A) predominantly causes acute gastroenteritis in 
children below 5-years worldwide (Tate et al., 2016). An infected person 
excretes between 1010 to 1012 particles per gram of faeces (Bishop, 
1996). Individuals get infected through the ingestion of contaminated 
water, food or person-to-person contact (Rodrigues et al., 2002; Tate 
et al., 2009). Open defecation, indiscriminate disposal and the inade
quate treatment of wastewater and faecal sludge can introduce such 
pathogens to surface water (Caceres et al., 1998; Williams and Overbo, 
2015). These faecal contamination pathways are common in densely 

populated urban slums (Katukiza et al., 2012; Kayima et al., 2010). 
Progress monitoring of the 2030 Sustainable Development Goals 

(SDGs) indicated 9 out of 10 countries with <5% basic sanitation 
coverage in 2015. A majority of the 2.3 billion people without basic 
sanitation use unimproved technologies like unlined pit latrines, 
hanging or bucket toilets, or practice open defecation (WHO and UNI
CEF, 2017). In Uganda, our case study, 75% of the population mostly 
uses unsafely managed onsite sanitation (pit latrines and septic tanks) 
while the rest practices open defecation. The coverage of sewerage 
systems is lower than 1% and is limited to larger cities (Okaali and 
Hofstra, 2018). During heavy rainfall, unlined pit latrines and 
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stormwater drains can overflow and their contents wash out, intro
ducing high concentrations of pathogens into the environment 
(Berendes et al., 2018; Peal et al., 2020; Schoebitz et al., 2016). 

Modelling microbial water quality can be a first step towards 
informing sanitation management decisions in data-poor areas (Hofstra 
et al., 2019; van Vliet et al., 2019). The models can study pollutant 
sources, identify hotspots and assess the impacts of environmental 
change. Our study used the process-based Global Water Pathogens 
(GloWPa) model which simulates global, regional and national scale 
outputs (Hofstra et al., 2013; Kiulia et al., 2015; Vermeulen et al., 2019). 
Generally, the model explores sanitation service chain pathways for 
pathogen sources and then conceptualizes operational sink-to-source 
processes. Point source emissions are estimated from sewerage sys
tems and urban open defecation, while diffuse source emissions are from 
rural open defecation. Onsite sanitation technologies are treated as 
non-sources. However, not all faeces from onsite sanitation can be safely 
contained (Schoebitz et al., 2016; Williams and Overbo, 2015). Unsafely 
managed onsite technologies in unplanned densely populated settle
ments have also been linked to microbial surface and groundwater 
contamination (Berendes et al., 2018; Katukiza et al., 2013; Murungi 
and van Dijk, 2014). 

Fate and transport studies highlight the role of hydrological flows in 
mobilising pathogens from land to water by correlating disease out
breaks to rainfall events (Ferguson et al., 2003; Mawdsley et al., 1995; 
Schäfer et al., 1998). In surface water, pathogens can die off from 
stressors like temperature, salinity, sunlight, presence of bacteria, 
organic matter and sedimentation (Pinon and Vialette, 2018). There
fore, integrating microbial loss-survival components can improve model 
reliability (Mawdsley et al., 1995). Moreover, surface runoff and 
discharge data can be used to quantify microbial streamflow concen
trations. Consequently, microbial exposure risk can be predicted and the 
disease burden estimated when population exposure behaviours are 
understood. 

Future climate change is predicted to increase diarrhoeal disease 
burden, particularly in low and middle-income countries, under socio- 
economic scenarios of continued fossil fuel use (IPCC, 2014; Levy 
et al., 2018). However, such studies mostly use historical diarrhoeal 
disease patterns. An integrated modelling approach combining 
socio-economic development and climate change impacts could provide 
new knowledge on future microbial water quality and the resulting 
diarrhoeal disease burden (Hofstra, 2011; Hofstra et al., 2019). Thus far, 
such studies are grossly limited. 

Our study aimed to simulate spatially explicit rotavirus river con
centrations, accounting for onsite sanitation technologies (pit latrines 
and septic tanks) in addition to sewerage systems (offsite) and open 
defecation; and to analyse the impacts of future sanitation management, 
population, urbanization and climate change on rotavirus concentra
tions. The GloWPa-Rota C2 model presented here simulates rotavirus 
concentrations in rivers, with rotavirus as an exemplar waterborne 
pathogen. The model and scenario analysis were applied to Uganda as a 
case study with prevalent sanitation challenges. Pathogen sources, 
hotspots, and future impacts of population growth, sanitation manage
ment, and climate change on rotavirus concentrations in Uganda’s rivers 
were explored. The model can be applied to other countries and used for 
monitoring SDG6.3 progress. 

2. Methods 

We build on the GloWPa-Rota H1 (Kiulia et al., 2015; Okaali and 
Hofstra, 2018) and GloWPa-Crypto C1 (Vermeulen et al., 2019) models 
in this paper. Detailed model descriptions can be found in these sources. 
Here, we focused on modifications and input variable changes. Table S1 
and Figure S1 in Supplementary materials (S) presents the models, 
variables and literature resources applied in this paper. Briefly, the 
GloWPa-Rota H1 model simulates global human rotavirus emissions 
reaching surface water while the GloWPa-Crypto C1 model simulates 

global human and animal Cryptosporidium concentrations in rivers. Both 
models compute annual spatial outputs from human or animal pop
ulations, faecal pathogen shedding, sanitation coverage, storage sur
vival and wastewater treatment removal represented on 0.5 × 0.5◦ grid 
resolution. Emissions are calculated from point (sewerage systems and 
urban open defecation), and diffuse (rural open defecation or animal) 
sources. For the current paper, onsite sanitation technologies were 
added to the existing GloWPa-Rota H1 model (Section 2.1) to produce 
human emissions for Uganda’s 112 districts. Rotavirus transported by 
surface runoff, the environmental survival fraction, and river discharge 
data were used to build the GloWPa-Rota C2 model for simulating 
concentrations (Section 2.2). Surface runoff and discharge are outputs 
from the distributed Community Water model (CWatM) for water re
sources assessment cropped to within Uganda’s geographical extent. 
Prior to our study, CWatM was used to assess how water demand and 
availability evolve in the extended Lake Victoria basin using 
socio-economic and climate change scenarios for the year 2050 (Burek 
et al., 2020). 

2.1. The GloWPa-Rota H2 model: Onsite sanitation integration and 
simulating rotavirus river inputs 

The GloWPa-Rota H1 model simulated annual human rotavirus 
emissions from sewerage systems and open defecation (Kiulia et al., 
2015; Okaali and Hofstra, 2018), summing human emissions from urban 
and rural populations (Section S2). In the current study, onsite sanita
tion was added into the existing GloWPa-Rota H1 framework by inter
preting faecal sludge management practices in Uganda. Unlike in Kiulia 
et al., where a constant fraction transported by surface runoff was used, 
we computed diffuse emissions by calculating grid-to-grid land retention 
fractions using grided surface runoff data. The sum of point and diffuse 
source emissions was thereafter referred to as ‘river inputs.’ 

Although faecal sludge management data may be limited, excluding 
onsite sanitation technologies for areas with a large coverage is unre
alistic. In an example of Kampala, Uganda, faecal sludge disposal events 
can variably include the appropriate emptying and transport to treat
ment, illegal dumping into water or land and the flushing into storm
water channels (Murungi and van Dijk, 2014; Schoebitz et al., 2016; 
Tsinda et al., 2015). Therefore, differentiated onsite sanitation man
agement events and pathways in Figure 1 were integrated into the new 
GloWPa-Rota H2 model as: 

OSu,r = Pu,r × fu,r.age × fu,r.em × Vp*f X ×
(
fdl + fdw + ffw + fet × (1 − frem)

)

u,r

(1)  

Where OSu,r is the urban or rural rotavirus river inputs from onsite 
sanitation, Pu,r is the urban or rural district population, fu,r.age is the 
fraction of the urban or rural age group (<5, >5 years), fu,r.em is the 
faecal sludge fraction emptied from pit latrines and septic tanks in urban 
or rural areas, Vp is the rotavirus shedding calculated by multiplying 
rotavirus excretion and incidence rates in the age group, and fX is the 
average survival fraction during storage time. The illegal faecal sludge 
disposal proportions are: fdl for the fraction emptied and disposed on 
land, fdw into water, and ffw is flushed into waterways. Appropriately 
disposed faecal sludge, fet, is emptied and transported to wastewater 
treatment facilities, and frem is the fraction of rotavirus removed by the 
treatment type and stage (Section S2). 

Occurrences for illegal faecal sludge disposal are unknown. A study 
in Kampala estimated 46% of faecal sludge as unsafely managed and 
54% safely managed (Schoebitz et al., 2016). From Murungi and van 
Dijk (2014); Schoebitz et al. (2016) and Tsinda et al. (2015), the greatest 
proportion is flushed out such as during rainfall events. Therefore, we 
assumed the ratios fdl = 5%, fdw = 15% and ffw = 80%) constitute the 
46% unsafely managed waste. A fraction of faecal sludge was assumed as 
not emptied and was excluded as a non-source (Figure 1: Remaining 
contained). For all urban areas, unsafe faecal sludge management was 
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assumed to include illegal flushing and dumping into water or land 
while safe faecal sludge management included emptying followed by 
treatment. A common practice in rural areas due to the available space is 
digging a new pit elsewhere. Therefore, rural illegal disposal activities 
were excluded. 

The GloWPa-Rota H2 model assigned both offsite and post-treatment 
onsite emissions to respective grid location of the 25 wastewater treat
ment plants, instead of gridded averages in the GloWPa-Rota H1 model. 
Each wastewater treatment plant was assigned an output fraction 
depending on its configuration (activated sludge or stabilization ponds) 
and capacity. 

The average storage survival fraction of rotavirus was calculated 
from the rate order exponential decay basing on the Cryptosporidium 
animal manure storage survival estimation in Vermeulen et al. (2017). 
Rotavirus decay day− 1 during storage time (Kpit) was obtained from a 
systematic literature review of pathogen survival in untreated excreta 
(Fleming, 2017). 

In Vermeulen et al. (2019), surface runoff was used to calculate 
grid-based river inputs. Because runoff does not mobilise all pathogens, 
a significant fraction is retained in the soil and vegetation. Vermeulen 
et al. (2019) and our literature review (Section S3) found no standard for 
modelling microbial transport from land to rivers. Consequently, we 
calculated the retained fraction from diffuse sources using surface runoff 
data. Upper and lower retention values from literature were assigned 
naturalized global runoff ranges such that grids with high runoff 
received lower retention values and vice versa (Section S3, Table S2). 
Diffuse emissions were multiplied with the runoff fraction and added to 
point emissions to obtain grid-based annual rotavirus river inputs. 

2.2. The GloWPa-Rota C2 model: Simulating rotavirus concentrations in 
rivers 

Like Vermeulen et al. (2019), grid-to-grid pathogen survival in rivers 
for a particular month was estimated from literature and the total loss 
rate coefficient developed by summing rate order die-offs due to tem
perature and solar radiation, before the loads were routed downstream. 
Sedimentation in water was excluded as being implausible for rotavirus. 

2.2.1. Temperature dependent decay of rotavirus in fresh surface water 
Literature on infectivity inactivation of rotavirus in fresh surface 

waters was reviewed. Section S4 and Table S3 present the review 
approach and the few resources meeting our criteria. Recorded data (KT,i 
day− 1) was used to obtain the first-order decay rate in equation below. 

KT,i = β0 + β1Ti, (2)  

with KT being the gridded temperature-dependent decay rate at water 
temperature T (◦C) in month i (β0 = − 0.0397, β1 = 0.0089, n = 20,
P < .001). T was obtained from CWatM. 

2.2.2. Sunlight dependent decay of rotavirus in fresh surface water 
A few studies from literature reviewed on rotavirus solar inactivation 

in fresh surface waters or synthetic aqueous conditions are assembled in 
Table S4 (Section S5). Decay versus insolation values was estimated by 
fitting a line into the data for full spectrum irradiation in solutions 
containing sensitizers (Figure S4). Solar radiation dependent decay was 
then modelled using the Thomann & Mueller (1987) equation: 

KR,i =
klIA,i
keZi

(
1 − e− keZi

)
(3)  

Where KR is the depth-averaged solar radiation dependent decay 
(day− 1), kl is the proportionality coefficient (m2KJ− 1), IA is the average 
daily surface insolation (KJm− 2day− 1), ke is the solar radiation attenu
ation or light extinction coefficient (m− 1), and Z is the average river 
depth (m) for month i. IA and Z are obtained from CWatM. 

Kirk (1981) and Lee et al. (2005) showed how ke can be modelled 
using inherent optical properties of water like absorption, reflection and 
refraction. Consequently, the relation between downwelling scalar 
irradiance (Ed(z0)) at water depth 0 and irradiance at a certain depth z 
(Ed(z1)) for photosynthetically available radiation can be described as: 

Ed(z1) = Ed(z0)e− ke(z1 − z0) (4) 

In general ke increases with water depth z, and can be averaged over 
a mixed water column as shown in equation 5 (Lee et al., 2005). ke is the 
average attenuation coefficient (m− 1) between z0 at the surface and at 
depth z1. 

ke(z0 ↔ z1) =
1

z1 − z0
ln
Ed(z0)

Ed(z1)
(5) 

The euphotic depth (zeu) was used to represent z1. zeu is the distance 
from the surface to the point where light penetration reaches just 1% of 
the insolent surface radiation (Kirk, 1994, 1981). At z0, this amount is 
100% (Ed(z0)). Solar radiation penetrating beyond this point may be 
inadequate for photosynthesis. We assumed the same for virus decay. 
Therefore, z1 = zeu, with z0 = 0 at the surface, Ed(z0) = 100% and 
Ed(z1) = 1%. Two studies support this approach, arguing that calcu
lating depth-averaged light extinction is more useful than obtaining 
point values in the water column (Lee et al., 2005; McCormick and 
Højerslev, 1994). The new depth and radiation values were substituted 
into equation 5, making ke dependent on zeu (ke = 4.6052/zeu). Typical 
zeu ranges in Uganda’ rivers were not found. However, 67 zeu data points 
were obtained from two studies on Murchison Bay, Fielding Bay and 
Napoleon Gulf along the northern shores of Lake Victoria between 2001 
and 2004, which predicted the mean monthly ke profile (Figure S5). 
Finally, we substituted for KR, ke, z and IA to obtain the coefficient kl at 
any value of the former parameters (kl = 4.71 × 10− 5). 

2.2.3. Routing of rotavirus concentrations in rivers 
Prior to routing, the GloWPa-Rota C2 model used streamflow net

works from CWatM’s gridded flow direction and flow accumulation 
outputs. River depth (m), width (m) and flow velocity (m3s− 1) were 
calculated from the CWatM’s naturalized discharge (m3s− 1), with water 
demand for domestic, agriculture, livestock and industry excluded, 

Fig. 1. Adding onsite sanitation to the GloWPa H2 model: modelled pathogen 
pathways (arrows) and die-off or retention processes (circles) during the 
collection, storage, conveyance, treatment and disposal of faecal sludge. 
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enabling the estimation of water residence time. Residence time per grid 
cell is the river length (straight-line river stretch between adjacent grids) 
divided by flow velocity. During residence time, more water accumu
lated in a grid cell, depending on the number of surrounding to-draining 
cells. Routing of river inputs started from low accumulation cells, such 
that the next grid cell received additional loading from the previous cell. 
Total loading for the current grid cell was calculated and adjusted for 
environmental survival using the loss rate coefficient as: 

Li,n =
(
Diffi +Pnti+ Li,n− 1

)
*e− Kiti (6)  

Where Li,n is the loading per month in month i, in a grid with flow 
accumulation number n from diffuse (Diffi) and point (Pnti) sources, 
Li,n− 1 is the routed loading from the previous grid to the current grid, Ki 

is the total loss rate coefficient and ti is the residence time in days. Ki 
depends on pathogen environmental survival presented earlier. Total 
monthly concentrations were then calculated from discharge (Qi) as: 

Ci =
Li
Qi

(7)  

2.3. Model sensitivity 

Mathematical, nominal and exclusion tests were performed in the 
sensitivity analysis. In the mathematical approach, values were changed 
by increasing or decreasing variables with the same proportion. For 
nominal sensitivity, variables were given upper and lower values based 
on the indicated literature. The GloWPa-Rota C1 median and mean 
concentrations output changes were then investigated for sensitivity to 
changes in input variables (see details in Section S6). 

2.4. Scenario analysis 

2.4.1. Narratives and data sources 
Baseline and scenario GloWPa-Rota C2 model input data were 

representative for approximately the years 2015 and 2050, respectively. 
These data included urban and rural populations, sanitation coverage, 
faecal sludge management, wastewater treatment proportions (Table 
S6) and climate change data (surface runoff, water temperature, solar 
radiation and river discharge) from CWatM. Scenario inputs were based 
on two Shared Socio-economic Pathways (SSPs) and three Representa
tive Concentration Pathways (RCPs). SSPs are the five alternative nar
ratives for future socio-economic development, assessing climate change 
impacts, vulnerabilities, adaptation and mitigation (Riahi et al., 2017). 
The RCPs are the four greenhouse gas concentration trajectories devel
oped by the global climate modelling community with radiative forcings 
2.6, 4.5, 6.0 and 8.6 Wm− 2, spanning up to the year 2100 (van Vuuren 
et al., 2011). 

The CWatM outputs for SSP1 and SSP2 represented two plausible 
futures in 2050 for the extended Lake Victoria Basin (Tramberend et al., 
2020). SSP1 is the ‘sustainability’ narrative, describing optimistic 
prospects on socio-economic development, population growth and ur
banization. Inclusive development and environmental limit awareness 
lead towards achieving SSP1climate targets. SSP2 is the ‘mid
dle-of-the-road’ narrative with a near-customary pattern, dominated by 
unequal socio-economic growth. RCPs for the extended Lake Victoria 
basin are simulations from General Circulation Models (GCMs) (Tram
berend et al., 2020). Four GCMs from the Coupled Model Intercompar
ison Project 5 (CMIP5) (Flato et al., 2013) are used in the Inter-Sectoral 
Impact Model Intercomparison Project (ISI-MIP) (Frieler et al., 2016). 
These GCMs were bias-corrected to represent the current climate, and 
out of the four, HadGEM2-ES and MIROC5 were selected as the most 
feasible GCMs for the East African region (Tramberend et al., 2020). 

Grided RCPs 2.6, 4.5 and 6.0 data for surface runoff, water temper
ature, solar radiation and river discharge were used as climate inputs 
into the GloWPa-Rota C2 model for 2050. Urban and rural populations 

for Uganda were compiled from the SSPs public database (Riahi et al., 
2017). We assumed urban and rural grids grow proportionally from the 
baseline such that no new densely populated grids are formed and the 
current urban or rural grids remain in 2050. Detailed data for population 
and sanitation coverage assumptions, and climate change analysis are 
provided in Section S7. 

3. Results 

3.1. Rotavirus sources and river inputs in Uganda’s surface waters in 
2015 

The GloWPa-Rota H2 model simulated human rotavirus river inputs 
from sanitation systems for the baseline year 2015. Urban open defe
cation contributed a total of 15.5 (87%), sewerage 14.5 (9%), onsite 
14.1 (3%) with almost all the share of 92% coming from illegal flushing, 
and rural open defecation 13.3 (1%) log10 particles per year to surface 
water annually. Hotspots were identified as the various densely popu
lated centres across the country, with outputs between 12.0 and 14.5 
log10 particles per year. Overall, population density and sanitation 
coverage accounted for the spatial distribution of river inputs (Figure 2 
(a)). Districts with higher emissions also identified in Okaali & Hofstra 
(2018) included Kampala, Wakiso, Masaka and Iganga, had an average 
of 14 log10 particles per year. However, point source emissions domi
nated diffuse source emissions by 99%. 

3.2. Uganda river concentrations of rotavirus in 2015 

Monthly rotavirus river concentrations from the GloWPa-Rota C2 
model mostly fell between -5 and 5 log10 particles per litre, with me
dians between -0.3 and 2 log10 particles per litre of surface water. 
Figure 2(b) shows annual mean rotavirus concentrations in small and 
large rivers across the country at a spatial resolution of 0.0833 ×
0.0833◦ grids. Most of the routed grid-to-grid concentrations were 
transported downstream, attributable to the simulated monthly KT and 
KR and the high survival fractions (Figure S7 and S8). Lake Victoria was 
excluded because the model was assumed less representative for large 
water bodies, arising from among others, uncertainties in estimating 
retention time, travel distance and the virus loss-survival fraction. Grids 
with discharge values below 1 m3s− 1 were also excluded, because the 
model would predict unreasonably high concentrations. Monthly dif
ferences in concentrations were largely due to changes in river 
discharge, as seen in the examples of July (dry) and November (wet) in 
Figure 2(c) and 2(d) respectively. For these months, differences were 
observable in the south western parts of the country, likely resulting 
from the seasonal wet-to-dry shifts relative to other parts of the country. 

3.3. Sensitivity analysis of the GloWPa-Rota C2 model 

The GloWPa-Rota C2 median and mean concentrations outputs 
increased significantly by 2 and 10 orders of magnitude when rotavirus 
incidence and excretion rates were doubled or increased by 1 log10, 
respectively. While the influences of changes in temperature and solar 
dependent decays were limited, excluding Kpit alone contributed 2.76 
(median) and 2.99 (mean) orders of magnitude to outputs, respectively. 
However, the model mostly accommodated other given variable fluc
tuations. For instance, median and mean results were largely unchanged 
whether faecal sludge is emptied yearly or every 10 years, registering 
limited to no interaction between Kpit and the faecal sludge emptying 
ranges. Varying log land retention, surface runoff and maximum and 
minimum monthly runs for river discharge, runoff, water temperature 
and solar radiation registered limited to no output changes. Detailed 
results are discussed in Section S6. 
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3.4. Rotavirus concentrations in Uganda’s rivers in 2050 

Rotavirus river concentrations were lower in SSP1 than in SSP2 
across all RCPs in 2050. Mostly falling between -4 and 3 log10 particles 
per litre in SSP1 and -4 and 5 log10 particles per litre in SSP2, monthly 

minimum and maximum concentration medians were simulated at -0.2 
and 0.1 versus 1.6 and 1.9 rotavirus particles per litre in SSP1 and SSP2, 
respectively (Figure 3 and Figure S10). Although the GCM and RCP 
patterns in Figure 3 may be striking and resulting from variances in river 
discharge, there were limited overall output differences between RCPs 
and GCMs in SSP1 or in SSP2. The slightly reduced median concentra
tions from RCPs 2.6 to 6.0 for both GCMs was likely due to overall 
increasing comparative river discharge, producing a river dilution ef
fect. Predicted increases and reductions of river discharge from the 
baseline in RCP 2.6 and 4.5 at the northwest and southwest of the 
country in HadGEM2-ES likely offset their influence on scenario rota
virus concentrations, thereby producing limited comparative differ
ences. The spatially explicit results across the country show higher river 
contamination in SSP2 than in SSP1 (Figure 4). 

In comparison to the baseline for all RCPs, SSP2 median concentra
tions from HadGEM2-ES and MIROC5 increased by between 44% and 
75%, and mean concentrations were between 25% and 36% higher. 
Some differences between GCMs were also highlighted as more impor
tant than the differences between RCPs. For MIROC5 stronger increases 
were simulated than in HadGEM2-ES for both median and mean rota
virus concentrations, resulting from the discharge-related dilution in 
HadGEM2-ES. In contrast, in SSP1 all GCMs and RCPs showed strong 
rotavirus concentration reductions. The medians fell by between -100% 
and -121% and means by between -54% and -61%. Like in SSP1, across 
RCPs, GCM median and mean concentrations were lower in HadGEM2- 
ES than in MIROC5 when compared to the baseline. Detailed results are 
presented in Table S7. 

Fig. 2. Uganda’s spatially-explicit rotavirus loadings into surface water in 2015. Respectively, (a): river inputs,(b): mean annual river concentrations, (c): con
centrations in November (wet), and (d): July (dry), simulated at a 0.0833 × 0.0833◦ grid resolution. 

Fig. 3. Monthly Q50 rotavirus river concentrations for SSPs 1 and 2, and RCPs 
2.6, 4.5 and 6.0 from two GCMs (HadGEM2-ES and MIROC5) simulated 
for 2050. 
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4. Discussion 

4.1. The GloWPa-Rota C2 model sensitivity 

Our sensitivity analysis highlighted that strongly reducing Kpit and 
changes in prevalence and excretion rates of rotavirus influenced the 
simulated rotavirus concentrations the most. 

Orner et al. (2019) argued that longer storage or emptying periods 
contribute more to microbial die-off than factors like pit storage tem
perature, pH and moisture content. The high Kpit and the consequent 
large rotavirus storage reductions achieved on site may explain the 
limited output correlation to changes in emptying frequencies. Howev
er, an emptying event much earlier than the baseline’s 3 years likely 
mobilises more viable rotavirus particles. We tested the influence of a 
much shorter storage time from the baseline’s once in 3 years to monthly 
and obtained 3 orders of magnitude increase in mean rotavirus con
centrations. Interestingly, emptying frequencies may even be higher in 
densely populated areas or in non-household sanitation technologies 
(Schoebitz et al., 2017, 2016). 

The uncertainty in rotavirus shedding is primarily due to limited 
epidemiological observations. Whenever present, rotavirus incidence 
and prevalence data are constrained by spatial variability, symptomatic 
and asymptomatic prognosis and inequities between hospitalization and 
health care access (Bwogi et al., 2016; Fuhrimann et al., 2016; Mwenda 
et al., 2010; Troeger et al., 2018). For instance, a study combined 
gastroenteritis from various pathogens, including rotavirus, of 10.9 
(adults) and 8.3 (children) episodes per person per year for populations 
along an open-drain water system in Kampala (Fuhrimann et al., 2016). 
Another study compiled a national rotavirus incidence of 0.694 episodes 
per person per year from the Global Burden of Disease study (Troeger 
et al., 2018), likely representing populations along a polluted water 
system. Wastewater surveillance could be a better estimator of com
munity faecal pathogen incidence and excretion levels. It could be an 
early warning tool, such as recently applied for the coronavirus disease 
(Ahmed et al., 2020; Medema et al., 2020). Nevertheless, high rotavirus 
incidence rates, particularly in children below 5 years, and the conse
quent excretion rates are primary drivers of rotavirus loading as 
observed in this and other studies (Ferguson et al., 2007; Okaali and 
Hofstra, 2018; Reder, 2017; Vermeulen et al., 2019). 

4.2. Simulating baseline rotavirus river inputs: input data and 
assumptions 

The results were influenced by model assumptions and input data 
uncertainties. As expected, illegal pit flushing in urban areas contributed 
the largest onsite sanitation share compared to the dumping on water, 
on land or from treated faecal sludge. Ratio assumptions for illegal faecal 

sludge disposal were informed by literature and were considered 
representative for all urban areas, which may be unrealistic because of 
the possible faecal sludge management differences. The legally emptied- 
to-treatment faecal sludge loadings were largely reduced by the assumed 
steady-state Kpit, irrespective of the contemporary storage times, as 
shown by the sensitivity analysis. Although our sensitivity analysis 
shows limited influences of changes in illegal disposal ratios, fractions 
and emptying frequencies, the GloWPa model would benefit from formal 
and informal faecal sludge management field records. However, such 
data are not readily available because unregulated disposal activities are 
complex to document (Schoebitz et al., 2017). 

A large section of Uganda’s rural population uses onsite systems, 
where rotavirus particles were assumed to be safely contained. Rural 
open defecation inputs were dependent on surface runoff and the frac
tion of rotavirus land retention estimated from our literature review. 
Although the model was less sensitive to changes in land retention, 
robust approaches and data were limited in the literature. Grid cells with 
high runoff were crudely assigned low retention values and vice-versa. 
Landscape characteristics such as vegetation cover, physical and 
chemical soil properties were assumedly captured in the retention esti
mates. Davidson et al. (2016) correlated the decreasing recovery of 
rotavirus in surface runoff to vegetation cover, which further decreased 
virus particle soil infiltration. Therefore, using the data in Davidson 
et al. (2016) was our pragmatic choice. 

4.3. Environmental survival and routing of rotavirus concentrations 

Rotavirus river concentrations are dependent on environmental 
survival. Pancorbo et al. (1987) and Ward et al. (1986) showed that 
environmental survival and infectivity variably depend on virus type 
and matrix conditions. We focused on first-order rotavirus decay due to 
temperature and solar radiation in natural surface or representative 
waters; modelling both K’s using best-fitted log-linear relationships. 
Obviously, the available empirical literature requires updating. 
Although the derived K values may be uncertain, the sensitivity analysis 
showed that changes in temperature and sunlight dependent decay were 
of limited influence, and that rotavirus was relatively persistent in fresh 
surface waters. Additionally, despite not influencing model sensitivity 
and therefore uncertainty, it is likely that local characteristics in rivers 
such as euphotic water depth (zeu) used to determine ke and KR vary from 
location to location. Notwithstanding, high river discharges such as 
>100 m3s− 1 seen from CWaTM (Figure S6), may translate into less 
residence time for reductions by KT and KR. Moreover, virus inactivation 
may not always be log-linear due to matrix conditions and antiviral 
agents producing shoulder, tailing or biphasic die-off kinetics (Abad 
et al., 1997; Pinon and Vialette, 2018). Kraay et al. (2018) positively 
correlated rotavirus decay to water temperature while determining 

Fig. 4. Spatially-explicit mean annual rotavirus concentrations in Uganda’s rivers in 2050 for SSPs 1 and 2 matrixed with RCPs 2.6, 4.5 and 6.0. RCPs are generated 
from two GCMs (HadGEM2-ES and MIROC5) at a 0.0833 × 0.0833◦ grid resolution. 
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waterborne transmission between communities. However, their regres
sion analysis generated limited significance to decay for a combination 
of natural, secondary effluent, distilled and sterilized water types. 
Moreover, die-off curves of most microbes are typically non-linear but 
can be approximated as a first-order exponential decay with character
istic decay, particularly under limited data, such as resulting from our 
literature reviews for KT and KR (González, 1995). 

The GloWPa-Rota C2 routed rotavirus concentrations from low to 
high accumulation grids using input data within Uganda. Thus, border 
entry points were not specified and accounted for, because 
neighbouring-country input data was not used and river discharge was 
cropped within Uganda’s borders. However, extended fluvial networks 
are often trans-border and mobilise various contaminants. Therefore, we 
identified 5 most important border grids and estimated river inputs 
introduced into each of the cells (Figure S9). Notably, the most impor
tant border grid is the single exit of Lake Victoria, with originally higher 
discharge values than the median, between 800 and 1500 m3s− 1. Except 
for this grid, the model simulated loads and concentrations travelling 
downstream but running within the borders of Uganda where input data 
is available. The need to adjust for border inflows other than at the Lake 
Victoria exit point may currently not be necessary. 

4.4. Rotavirus concentrations in 2050: changes in model output drivers 

In 2050, rotavirus concentrations will be largely driven by popula
tion, urbanization and sanitation changes, rather than by hydrological 
inputs. In SSP2, more rotavirus contamination was mobilised when 
more people were using sewerage systems, while the adequately treated 
wastewater proportions remained largely unchanged. This means that 
stronger and more deliberate interventions will need to be adopted to 
reduce surface water loadings in SSP2 to SSP1 levels. In the latter sce
nario, treatment removal was improved by 3 logs in wastewater stabi
lization ponds, non-treatment was eliminated and all collected 
wastewater reached tertiary treatment in conventional systems. 

Compared to historical data, RCP 6.0 was the most plausible medium 
climate scenario for the extended Lake Victoria basin and SSP2 sug
gested to lead towards RCP 6.0 in 2040 (Tramberend et al., 2020). 
However, GCMs may provide limited spatial variability for local regions 
such as below 200 km resolution at monthly or daily timesteps (Mendez 
et al., 2020). Averaging and exclusion of local features in GCMs may 
explain the limited differences between the RCP outputs in our study. 
The low-detailed spatial and temporal resolutions likely aggregate the 
hydrologic processes dynamics. Consequential uncertainty may there
fore accumulate in the GloWPa-Rota C2 outputs. For instance, Ver
meulen et al. (2019) found that a version of the GloWPa model 
simulated high Cryptosporidium concentrations in some larger rivers. 
Moreover, the current monthly GloWPa-Rota C2 output resolution does 
not include flash weather events such as floods. However, anticipated 
extremes of Uganda’s climate towards drier or wetter seasons such as 
after 2050 may not directly translate into higher or lower pathogen 
loading into rivers. Similar model outcomes may also hold for neigh
bouring countries with projected seasonal precipitation variabilities 
(Gebrechorkos et al., 2019), where without strong improvements, future 
regional GloWPa-Rota C2 outputs may continue to be largely driven by 
population, urbanization, and sanitation coverage. 

4.5. Performance and future potential of the GloWPa-Rota C2 model 

Among others, one key approach towards building trust in models for 
data-poor areas and, therefore, in the GloWPa-Rota C2 model is to 
compare outputs with observational data (Strokal, 2016). Rotavirus is 
not regularly measured in Uganda’s surface waters. However, a recent 
study measured rotavirus concentrations in an open drain wastewater 
system in Kampala (O’Brien et al., 2017). Average copies per litre 
ranged between 1.08*102 - 1.25*102 in a channel before a wastewater 
treatment plant, 4.22*102 - 3.77*103 in the influent, 1.87*102 - 

3.72*103 in a channel after treatment and 6.49*101 - 2.99*102 in the 
draining swamp. These ranges fall within the GloWPa-Rota C2’s baseline 
results, particularly closest to the median and mean of 1 and 2 log10 
particles per litre, respectively. Vermeulen et al. (2019) also simulated 
Cryptosporidium concentrations within the ranges of observed data for 
various global locations for their version of the GloWPa model. Our 
sensitivity analysis, Section 3.1, is another a step towards building 
model trust. It revealed that the GloWPa-Rota C2 model was largely less 
sensitive to nominal changes in most variables, except for pathogen 
incidence and excretion in faeces. This makes both the spatial and nu
merical outputs relatively reproduceable and dependable, highlighting 
urban hotspot areas with predominant sanitation challenges. However, 
obtaining more spatial observation data will help to comprehensively 
validate the model. 

Finally, besides sanitation improvement and water quality moni
toring applications for SDG6.3, outputs of the GloWPa-Rota C2 could aid 
estimation of exposure risks and the resultant rotavirus diarrhoeal dis
ease burden. With more detailed population, sanitation and hydrologi
cal data, the model could be applied to a local situation or even produce 
global outputs using country-level input data. Moreover, we could learn 
from various spatial- and temporal-scale influences generated from both 
input data types. Future scenarios could also examine the impacts of 
mass vaccinations campaigns on concentrations and the diarrhoeal 
disease burden. The model could be applied to other bacteria, protozoa, 
virus, and helminths pathogens groups, like Giardia, Salmonella, cholera, 
norovirus, and hepatitis, although animal sources need to be considered 
where applicable. 

5. Conclusions 

The GloWPa-Rota C2 model simulated spatially explicit rotavirus 
river inputs and concentrations at subnational levels for Uganda from 
both onsite and offsite point and diffuse sanitation sources.  

• Urban open defecation, treated wastewater effluent and the unsafe 
faecal sludge disposal contributed the largest shares to rotavirus 
river loadings for the baseline year 2015.  

• Major hotspots of rotavirus contamination are the densely populated 
urban centres with predominant sanitation challenges typical in slum 
dwellings. 

• The modelling framework showed that stronger and deliberate in
terventions including ending open defecation, safe management of 
faecal sludge, adequate wastewater treatment and reducing un
treated proportions should be adopted, otherwise the rotavirus or 
similar pathogen loading into surface water will not be reduced.  

• For future scenarios population growth, urbanization and inadequate 
sanitation are stronger contamination drivers than climate change. 

To our knowledge, rotavirus rivers concentrations have been 
modelled for the first time, applied to Uganda but replicable elsewhere. 
Besides informing SDG6.3 progress monitoring, aiding sanitation 
service-level and microbial water quality management, simulated rota
virus concentrations can be inputs for quantitative microbial risk as
sessments under different exposure scenarios to attribute the burden of 
disease. 
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