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Abstract 
 

The availability of nutrients exerts major control on ecosystem structure, functioning and responses 

to global change. Process-based ecosystem models therefore increasingly incorporate nutrient cycles, 

but forest and other ecosystem modules in integrated assessment models, used to advise policy 
making based on trade-offs and feedbacks within and among economy, agriculture, forestry etc., 

nutrient availability is usually poorly accounted for. Here, we explored whether in a statistical random 
forest model predicting site productivity, replacing soil type by key soil properties (organic layer C:N 

ratio, upper soil organic carbon concentration (SOC), organic layer pH) would improve predictions 
across Swedish and European forests. We found substantial variation in the key soil properties and a 

nutrient availability metric (which à priori integrated the same soil properties), both among and within 

soil types. Because of the within-soil type variation in nutrient availability, both random forest models 
using soil properties and these using the nutrient availability metric predicted significantly better 

forest site productivity than the soil type-fed models across Sweden and Europe. We recommend the 
inclusion of often available, resource-use related soil properties such as C:N, SOC and pH into random 

forests that feed into integrated assessment models. Substituting individual soil properties by an à 

priori defined nutrient availability metric can reduce overfitting in statistical random forest models. 
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Introduction 
 

The availability of nutrients exerts strong control on the structure and functioning of forests and other 

terrestrial ecosystems. Increasing nutrient availability not only positively influences biomass 

production (Bergh et al., 1999; 2005), but also promotes aboveground carbon allocation (Ågren & 

Franklin, 2003), can suppress soil respiration (Janssens et al., 2002 - but see Zhou et al., 2014), 

enhances the dominance of competitive species at the expense of stress-tolerant species in diverse 

communities (Hautier et al., 2009), and it has an overall unimodal effect on biodiversity (Fraser et al., 

2015). Because of its influences on the C and other biogeochemical cycles, as well as on biodiversity, 

nutrient availability is also recognized as a key modifier of ecosystem responses to global change. For 

instance, ample availability of nutrients reinforces the CO2 fertilization effect (Terrer et al., 2019), but 

can increase ecosystem sensitivity to droughts (Van Sundert et al., 2021). 

 

Progressively more ecosystem models account for nutrient availability. In predominantly process-

based models, such as land surface models (LSMs) used for i.e., climate change projections, the 

nitrogen (N) (Lawrence et al., 2019) and occasionally also phosphorus (P) cycles (Fleischer et al., 

2020; Sun et al., 2021) are increasingly explicitly included (but see Canadell et al., 2021: about half 

of CMIP6 LSMs still are C-only models). Nutrient pools in biota and soil are calculated per time step as 

a function of in- and output processes, analogous to the fashion in which the C cycle is represented 

(Thomas et al., 2015). An advantage of such approach is that it allows for addressing interactions 

among biogeochemical cycles that feed back to the overall functioning of ecosystems over time. 

However, each additional incorporated nutrient substantially raises model complexity since nutrient 

pools are determined by an extensive number of processes that are often not fully understood and 

have not sufficiently been measured in the field (Vicca et al., 2018). 

 

Integrated assessment models combine modules originating from various disciplines (e.g. economics, 

forestry, energy science, agronomy, ...) to investigate trade-offs and feedbacks among landscape-

scale processes and policy decisions. For example, bio-energy can be used as a means to substitute 

fossil fuels, but large-scale deployment can reduce regional land C sinks (Böttcher et al., 2012) and 

come into competition with crop production (Smith et al., 2019), depending on additional policy 

decisions such as regulations, carbon pricing, etc. (Kindermann et al., 2006). In integrated 

assessment modeling, fully process-based forest models are rarely used because of their high 

computational demands. Instead, simpler large-scale forest models are used which do not explicitly 

address nutrient limitation of net primary productivity in forest ecosystems. Instead, some indirectly 

account for nutrients’ influence on forest functioning by including soil type as one of the 

environmental and forest features influencing site productivity (e.g. Kindermann, 2018). While 

nutrient availability indeed differs among soil types (e.g. sandy podzols are generally nutrient poorer 

than fine textured, young cambisols - IUSS Working Group WRB, 2015), the possibility exists that 

accounting for within-soil type variation in nutrient availability-relevant soil properties (e.g. C:N ratio, 

soil organic carbon concentration (SOC), pH – Van Sundert et al., 2020) may significantly improve 

estimates of site productivity, without inflating model complexity. 

 

Here, we investigated whether the inclusion of widely available soil properties into random forest 

models improves forest site productivity estimates across Swedish and European forests, compared to 

using soil type only (along with climate, species and stand age). We also compare an approach 

combining individual soil properties indicative of the nutrient status (organic layer C:N, 0-20 cm SOC, 

organic layer pH) in the random forest models, vs à priori integrating the same soil properties in a 

nutrient availability metric developed by Van Sundert et al. (2018; 2020), updated from an earlier 

agriculture-focused metric of IIASA & FAO (2012). Finally, we examined the performance of these 



 

 

2 

bottom-up random forest models based on environmental features (incl. soil) vs alternative site 

productivity estimates based on remote sensing-derived height assessments for Swedish forests. 

 

Methods 
 

Data sources 

 

Data from Swedish and European forest and soil inventories were used to calibrate and evaluate 

random forest models predicting site productivity. The Swedish dataset comprised spruce (n = 2219) 

and pine (n = 1869) forest productivity data (mean annual volume increment) from the Swedish 

National Forest Inventory (Lundin, 2011), soil property data on the same locations from the Swedish 

Forest Soil Inventory (Olsson, 1999; Lundin, 2011) and mean annual precipitation data derived from 

EC–JRC– MARS (http://spirits.jrc.ec.europa.eu/). The growing season temperature sum (TSUM) was 

calculated based on site coordinates and elevation, following an empirical equation by Odin et al. 

(1983), updated to the current climate, available at https://www.skogskunskap.se/. More details on 

the Swedish dataset were described in Van Sundert et al. (2018). European data from spruce-, pine-, 

beech- and oak-dominated forests (five-year averaged productivity, soil properties, climate, age) 

were available from the ICP Forests dataset, see also Van Sundert et al. (2020). 

 

Exploring soil property variation among and within soil types 

 

We used the R software (R Core Team, 2019) for all analyses. First, soil properties (organic layer C:N 

ratio, 0-20 cm SOC, organic layer pH) and the nutrient availability metric were plotted by soil type 

(package ggplot 2 – Wickham, 2016) to visualize variation in nutrient availability-related variables 

within and among soil types. Differences in soil properties and nutrient availability were then 

compared through ANOVAs and Tukey’s post-hoc test. Positively skewed variables were log-

transformed to reach the assumption of normality. 

 

Random forest model estimates, evaluation and comparison with an 

alternative 

 

Statistical random forests can be used to empirically predict site productivity based on environmental 

and stand-specific features, such as climate, soil type or nutrient status, and dominant species 

(Breiman, 2001). The resulting site productivity index can then feed into a forest module of an 

integrated assessment model, where it co-influences forest functioning along with dynamic processes 

(e.g. wood harvesting). The random forests method consists of building a set of decision trees, each 

trained on a random subset of the given dataset. Interactions among covariates and non-linear 

relationships are taken into account (Stekhoven & Buhlmann, 2012).  

 

We used random forest outputs (R packages caret – Kuhn, 2021, randomForest – Liaw & Wiener, 

2002, and randomForestSRC – Ishwaran & Kogalur, 2007; 2021; Ishwaran et al., 2008) to assess 

variable importance (out-of-bag MSE), and predict forest site productivity in training and validation 

datasets. A random subset of 75% of the Swedish and European datasets was used for training vs 

25% for validation. In the Swedish dataset, calibration was done based on southern sites only (TSUM 

> 1200°C days), with most variation in site conditions, because of heteroscedasticity in the dataset 

for the entire country: in the north, where productivity was low, also the variance was low in absolute 

terms, in contrast to southern sites. Evaluations were then performed for both the southern Swedish 

http://spirits.jrc.ec.europa.eu/
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validation dataset only, as well as the entire dataset for Sweden, taking à priori into account that 

potential biases may occur in predictions of northern sites outside of the training range. 

 

Model performance was expressed as R², i.e. the quadrat of the correlation coefficient between 

observation and prediction. Model performances were compared among models with alternative 

explanatory variables (soil type vs soil properties vs nutrient availability metric) and, in Sweden, 

against an alternative method estimating site productivity per 1x1 km pixel based on LiDAR height 

measurements vs. stand age and height-development curves (Franklin et al., 2020).  

 

Results and Discussion 
 

Soil property variation within and among soil types 

 

In both the Swedish and European forest datasets, significant differences emerged in average soil 

property values between different soil types, such that organic soil C:N ratio was minimal for 

Cambisols and Umbrisols, and greatest for Podzols (Figs. 1a and S1a; pine Sweden - F7,1848 = 28.00, 

P < 0.001; spruce Sweden – F7,2203 = 78.59, P < 0.001; Europe – F5,90 = 3.51, P = 0.006), thus 

indicating high and low N availability, respectively (Thomas et al., 2015). Cambisols and Podzols also 

exhibited significant contrast in organic soil pH (Figs. 1c and S1c) across both datasets (pine Sweden 

- F7,1848 = 55.65, P < 0.001; spruce Sweden – F7,2203 = 70.82, P < 0.001; Europe – F5,90 = 13.79, P < 

0.001). Organic Histosols, present in the Swedish but absent in the European dataset, evidently 

showed the maximum SOC (Fig. 1b; pine Sweden - F7,1848 = 199.83, P < 0.001; spruce Sweden – 

F7,2203 = 179.12, P < 0.001). 

 

Also within soil types, substantial variation in key soil properties occurred, to such extent that multiple 

soil types showed overlap in C:N ratio (Figs. 1a and S1a), SOC (Fig. 1b and S1b) and pH (Fig. 1c and 

S1c), and consequently also in the nutrient availability metric. This overlap in soil properties among 

soil types may indicate that analyses and also models addressing nutrient availability in more detail 

than soil type may allow more thorough investigation of ecosystems processes with regard to the 

nutrient status, and potentially use the identified relationships to make more accurate and precise 

predictions of site productivity. 
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Figure 1 | Soil properties by soil type in Swedish pine and spruce dominated forests. Letters indicate 

significantly different groups (α = 0.05).  
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Predicting site productivity: soil type vs soil properties vs nutrient metric 

 

Soil type is commonly used in forest modules of integrated assessment models (e.g. Kindermann, 

2018). In forest models used by IIASA (e.g. global forest model G4M), soil type is one of the 

variables often feeding into a random forest model, based on which site productivity is estimated per 

pixel. In order to explore whether random forest model performance would improve when replacing 

soil type by soil properties, and whether reasons exist to à priori integrate soil properties into a 

nutrient availability metric, random forests were calibrated and compared. 

 

Results indicated that random forest predictions based on soil type performed worse at estimating 

measured productivity in Swedish and European forests compared to models using soil properties, 

individually or integrated in a nutrient availability metric (Tables 1-3, Fig. 2). Moreover, assessments 

of variable importance through MSE showed that in the European soil type model, climate, age and 

species were more important predictors than soil, whereas in the European soil property/metric 

models, soil nutrient availability was more important than climate and forest stand features. Taken 

together, the enhanced predictive power of the random forest models including soil properties as well 

as the increased relevance of soil nutrient limitation in these models strongly suggest that if the 

necessary soil property data are available (which is at least for some or for all here discussed soil 

properties the case for various spatial scales, e.g. global - FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012, 

Europe - Ballabio et al., 2019, Sweden - Olsson, 1999; Lundin, 2011), large-scale forest management 

models would benefit from incorporating nutrient availability-relevant soil variables such as C:N ratio, 

SOC and pH, either individually or as components of a calculated nutrient availability metric. 

 

 

Table 1 | Soil type based random forest model performance (squared correlation coefficient R² - 

range based on three times running the code) to predict spruce and pine forest mean annual 

increment (MAI) in Sweden and spruce, pine, beech and oak current annual increment (CAI) in 

Europe (m3 ha-1 yr-1). Predictors were soil type, growing season temperature sum, mean annual 

precipitation and species in the Swedish dataset, and soil type, mean annual temperature, mean 

annual precipitation, species and stand age in the European dataset. 

Training dataset R²  

training dataset 

R²  

South Sweden 

(validation) 

R² 

Entire 

Sweden 

R² 

Europe 

(validation) 

South Sweden 0.76 – 0.78 0.70 – 0.75 0.54 – 0.55 - 

Europe 

  

 

0.86 

  

  

 

 

 

- - 

  

 
 

75% training dataset: 

0.19 – 0.71 

 

50% training dataset: 

0.35 – 0.47 
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Table 2 | Nutrient availability metric based random forest model performance (squared correlation 

coefficient R² - range based on three times running the code) to predict spruce and pine forest mean 

annual increment (MAI) in Sweden and spruce, pine, beech and oak current annual increment (CAI) 

in Europe (m3 ha-1 yr-1). Predictors were the nutrient availability metric, growing season temperature 

sum, mean annual precipitation and species in the Swedish dataset, and the nutrient availability 

metric, mean annual temperature, mean annual precipitation, species and stand age in the European 

dataset. 

Training dataset R²  

training dataset 

R²  

South Sweden 

(validation) 

R² 

Entire 

Sweden 

R² 

Europe 

(validation) 

South Sweden 0.80 – 0.81 0.71 – 0.75 0.57 – 0.58 - 

Europe 

  

 

0.88 – 0.89 

  

  

 

 

 

- - 

  

  

 
 

75% training dataset: 

0.40 – 0.81 

 

50% training dataset: 

0.47 – 0.69 

 

 

Table 3 | Soil properties based random forest model performance (squared correlation coefficient R² 

- range based on three times running the code) to predict spruce and pine forest mean annual 

increment (MAI) in Sweden and spruce, pine, beech and oak current annual increment (CAI) in 

Europe (m3 ha-1 yr-1). Predictors were soil properties, growing season temperature sum, mean annual 

precipitation and species in the Swedish dataset, and soil properties, mean annual temperature, mean 

annual precipitation, species and stand age in the European dataset. 

Training dataset R²  

training dataset 

R²  

South Sweden 

(validation) 

R² 

Entire 

Sweden 

R² 

Europe 

(validation) 

South Sweden 0.95 0.74 – 0.77 0.72 - 

Europe 

  

 

0.93 

  

  

 

 

 

- - 

  

  

 
 

75% training dataset: 

0.38 – 0.85 

 

50% training dataset: 

0.26 – 0.53 
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Figure 2 | Soil type vs nutrient availability metric based random forest model performance (squared 

correlation coefficient R² - range based on three times running the code) in the training datasets. 

Response variables were spruce and pine forest mean annual increment (MAI) in Sweden and spruce, 

pine, beech and oak current annual increment (CAI) in Europe (m3 ha-1 yr-1). Predictors were soil type 

vs the nutrient availability metric, growing season temperature sum, mean annual precipitation and 

species in the Swedish dataset, and soil type vs the nutrient availability metric, mean annual 

temperature, mean annual precipitation, species and stand age in the European dataset. 

 

Compared to using a nutrient availability metric, random forest models trained on individual soil 

properties performed better against their training dataset (Tables 2 vs 3). However, when site 

productivity of new data points (i.e. a validation dataset) was predicted, individual soil property 

models became less reliable: in the European forest dataset, predictions using individual soil 

properties underperformed predictions based on the nutrient availability metric (Tables 2 vs 3, Fig. 3). 

Such result aligns with the fact that a random forest model not using a pre-defined nutrient metric 

has more freedom to combine the three soil properties, such that predictions will fit the training data 

better. This, however, increases the probability of overfitting: optimal mathematical combinations 

from a training dataset may partly reflect coincidence, rather than actual among-predictor 

interactions and eventual influences on forest productivity. In this context, the nutrient availability 

metric, which was developed based on forest data as well as theoretical considerations (IIASA & FAO, 

2012; Van Sundert et al., 2018; 2020), can act as a more reliable alternative applicable to temperate 

and boreal forests that reduces overfitting. 

 

 

 

 

(a) (b) 

(c) (d) 
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Figure 3 | Nutrient availability metric vs soil property based random forest model performance 

(squared correlation coefficient R² - range based on three times running the code) in the European 

validation dataset. The response variable was spruce, pine, beech and oak current annual increment 

(CAI - m3 ha-1 yr-1). Predictors were the nutrient availability metric vs soil properties, mean annual 

temperature, mean annual precipitation, species and stand age. 

 

Predicting site productivity: random forest vs alternatives 

 

For certain integrated assessment model applications, it can be assumed that the average 

environment remains stable and is unlikely to influence further model processes and outcomes. In 

such cases, explicitly incorporating soil type, nutrient availability or even climate may not be 

necessary if alternatives exist to estimate inter-annual averaged site productivity for each pixel in the 

study region of interest. Franklin et al. (2020), for example, conducted a model-based study on trade-

offs between moose populations in Sweden and the choice between planting of spruce vs pine. Site 

productivity (mean annual volume increment) for spruce and pine across Sweden was estimated in 

this study by combining LiDAR-based height estimates (www.skogsstyrelsen.se/nyhetslista/nu-ska-

sveriges-skogar-laserskannas/) with ground-based stand age measurements, and applying height 

development curves (e.g. Ekö et al., 2008; Mensah et al., 2021) in each pixel with a 1x1 km 

dimension. 

 

Contrasting performance of the nutrient metric random forest model against the LiDAR remote 

sensing estimates (“IIASA estimates”) for validation data points indicated that the bottom-up 

approach using the metric and other environmental variables resulted in the most accurate 

productivity estimates in southern Sweden (Fig. 4a vs 4b). We therefore suggest that even in studies 

where soil and climate (change) are not of primary interest, explicitly including such environmental 

features can substantially improve predictions of other (response) variables, such as site productivity. 

Both better expressions of nutrient availability and remote sensing products should further enhance 

future predictions of forest productivity and other ecosystem processes. 

 

When considering entire Sweden (i.e. not only the southern region), the IIASA-estimates performed 

better than bottom-up random forest approaches using the nutrient availability metric, soil properties 

or soil type. Random forest predictions particularly overestimated site productivity in low-productive 

sites (Fig. 4c vs 4d). This pattern can be explained by the heteroscedastic nature of the Swedish 

dataset: variance increased along with the mean, i.e. the reason why the Swedish data were split into 

regions à priori to avoid violating assumptions of random forest modeling. For future research, we 

suggest addressing heteroscedasticity by adding a parameter that modifies the variance as a function 

(a) (b) 
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of the mean (Carrol & Ruppert, 1988). Considering the results from southern Sweden, it is likely that 

such heteroscedasticity-corrected random forest model would perform better than the IIASA-

estimates. 

 

 
 

 
Figure 4 | Nutrient availability metric based random forest model performance vs performance of 

alternative estimation by IIASA (squared correlation coefficient R² - range based on three times 

running the code) based on LiDAR-derived tree height estimates across Sweden, height-development 

curves and conversion to volume. Response variables were spruce and pine forest mean annual 

increment (MAI - m3 ha-1 yr-1). Predictors of the random forest model were the nutrient availability 

metric, growing season temperature sum, mean annual precipitation and species. 

 

Conclusion and recommendations 
 

In the present study, we made the case for incorporating nutrient availability more explicitly into 

forest modules of integrated assessment models. Such explicit accounting for nutrients is possible by 

including soil properties indicative of the nutrient status, such as soil C:N ratio, SOC and pH, which 

depend substantially less on species than for example leaf stoichiometry despite plant-soil feedbacks 

(Van Sundert et al., 2021). Statistical random forest models can estimate site productivity per pixel 

based on forest and environmental features including these soil properties, either each one 

individually or à priori integrated through a nutrient availability metric that avoids overfitting. The 

metric used here applies particularly to temperate and boreal forests. Further improvements to the 

metric, e.g. by more explicitly incorporating P availability (through C:P ratio, ... – Achat et al., 2012) 

could expand the regional scale of application. A better representation of nutrient availability in 

integrated assessment models should improve model estimates of forest productivity and C storage, 

thus allowing to (i) compare model outputs with in-situ observations and experimental meta-

(a) (b) 

(c) (d) 
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analyses; and to (ii) address relationships of nutrient availability with predictions of forest productivity 

under projected climate change scenarios. 

 

Regional (Olsson, 1999; Lundin, 2011), continental (Ballabio et al., 2019) and global scale soil maps 

and datasets (FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012) are available that allow including soil nutrient 

availability in predictions of ecosystem site productivity. Some of these maps and datasets explicitly 

present soil properties, but a common barrier to the usefulness of these data is the regular lack of 

separation of organic vs mineral soil layer properties, and reporting of thicknesses where such organic 

layer is present. Therefore, we recommend separate sampling, measuring and presenting of organic 

vs mineral soil layers and their properties for proposed soil inventories and future map development. 
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Supplement 
 

 

 

 
Figure S1 | Soil properties by soil type in European forests. Letters indicate significantly different 

groups (α = 0.05). 
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