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1 | INTRODUCTION

ROE ET AL.

Abstract

Land-based climate mitigation measures have gained significant attention and im-
portance in public and private sector climate policies. Building on previous studies,
we refine and update the mitigation potentials for 20 land-based measures in >200
countries and five regions, comparing “bottom-up” sectoral estimates with inte-
grated assessment models (IAMs). We also assess implementation feasibility at the
country level. Cost-effective (available up to $1OO/tC02eq) land-based mitigation is
8-13.8 GtCO,eq yr! between 2020 and 2050, with the bottom end of this range
representing the IAM median and the upper end representing the sectoral estimate.
The cost-effective sectoral estimate is about 40% of available technical potential and
is in line with achieving a 1.5°C pathway in 2050. Compared to technical potentials,
cost-effective estimates represent a more realistic and actionable target for policy.
The cost-effective potential is approximately 50% from forests and other ecosys-
tems, 35% from agriculture, and 15% from demand-side measures. The potential
varies sixfold across the five regions assessed (0.75-4.8 GtCO2eq yr ) and the top
15 countries account for about 60% of the global potential. Protection of forests
and other ecosystems and demand-side measures present particularly high mitiga-
tion efficiency, high provision of co-benefits, and relatively lower costs. The feasibil-
ity assessment suggests that governance, economic investment, and socio-cultural
conditions influence the likelihood that land-based mitigation potentials are realized.
A substantial portion of potential (80%) is in developing countries and LDCs, where
feasibility barriers are of greatest concern. Assisting countries to overcome barriers
may result in significant quantities of near-term, low-cost mitigation while locally
achieving important climate adaptation and development benefits. Opportunities
among countries vary widely depending on types of land-based measures available,
their potential co-benefits and risks, and their feasibility. Enhanced investments and
country-specific plans that accommodate this complexity are urgently needed to

realize the large global potential from improved land stewardship.
KEYWORDS

AFOLU, co-benefits, demand management, feasibility, land management, land sector,
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AFOLU measures in their Nationally Determined Contributions

Land-based climate mitigation measures, also known as Agriculture,
Forestry and other Land Uses (AFOLU) mitigation or natural climate
solutions (Griscom et al., 2017)—which if implemented with benefits
to human well-being and biodiversity may also constitute nature-
based solutions—have gained significant attention and importance
in public and private sector climate strategies and policies (Seddon
et al., 2020). Land-based measures reduce greenhouse gas (GHG)
emissions and/or enhance carbon removals. They include supply-side
interventions in forests and other ecosystems (to protect, manage,
and restore), agriculture (to reduce emissions and enhance carbon
sequestration), and bioenergy (to reduce fossil fuel emissions and se-
quester carbon), as well as demand-side interventions on food waste,
diets, and resource use. As of March 2019, 186 countries had included

(NDCs) under the Paris Agreement, either by specifically listing ac-
tions or by including the land sector in their broader GHG reduction
targets (Crumpler et al., 2019). Collectively, AFOLU-related NDC
actions make up about 25% of planned GHG reductions in 2030
(Grassi et al., 2017), with most focus on reducing deforestation. Land-
based mitigation measures are also embedded in other international
agreements and initiatives, including the Sustainable Development
Goals (SDGs), Land Degradation Neutrality (LDN), Aichi Biodiversity
Targets, the goals of the New York Declaration on Forests (NYDF),
the Bonn Challenge, and the UN Decade on Ecosystem Restoration.
Recent studies estimate that land-based measures have the po-
tential to mitigate approximately 10-15 GtCO,eq yr’1 by 2050, corre-
sponding to about 20%-30% of the mitigation needed to achieve the
1.5°C temperature target (Griscom et al., 2017; Jia et al., 2019; Roe
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etal., 2019; UNEP, 2017). Not only can land-based measures help close
the mitigation gap, if actions are well designed and implemented, mit-
igation can be delivered in a way that is also cost-effective, enhances
resilience and adaptation to climate change, food security, biodiver-
sity and other ecosystem services, and contributes to international
sustainable development goals (Frischmann et al., 2020; Roe et al.,
2019; Smith et al., 2019a). Poorly planned and implemented AFOLU
mitigation activities, however, entail potential risks and tradeoffs, par-
ticularly concerning food security, biodiversity, and water quality and
quantity (Humpendder et al., 2018; Smith et al., 2020).

Achieving climate targets and addressing other land-related
challenges synergistically at national levels remains a large chal-
lenge and global progress is lacking. GHG emissions from AFOLU
have been increasing since 2000 (Jia et al., 2019). Between 2009
and 2019, policies have only delivered mitigation of about 8 GtCO,
from AFOLU, or ~0.5% of total emissions during that period (au-
thors' calculations available in Supplementary Information). Current
commitments under the Paris Agreement are more in line with 2.6-
3.1°C of warming by the end of the century than the 1.5°C and 2°C
committed to in the Paris Agreement (Rogelj et al., 2016). Although
some progress has been made, the Aichi Biodiversity Targets for
2020 and the goals of the NYDF, which aimed to halve deforestation
and restore 150 million hectares (Mha) by 2020, have not been met,
with reversals occurring in some instances since the targets were set
(NYDF Assessment Partners, 2020; Secretariat of the Convention
on Biological Diversity, 2020). Substantially more resources and ef-
fort will therefore be needed to scale-up land-based mitigation to
fulfill its potential, maximize benefits, and limit tradeoffs.

The efficacy and extent of benefits or risks of land-based mea-
sures largely depend on the type of activity undertaken, deployment
strategy (e.g., scale, method, complementarity with other measures
and sectors), and geographic context (e.g., current biome dynam-
ics, climate, food system, land ownership) (Smith et al., 2019a). As
such, successful and sustainable adoption and appropriate prioriti-
zation of land-based mitigation measures would benefit from more
regional and country-level information on drivers of emissions,
mitigation potentials, co-benefits, and risks (Crumpler et al., 2019).
Additionally, realizing AFOLU mitigation and co-benefit potential
will require policies and measures for land and food system man-
agement that are location- and context-specific, and adaptable over
time (Hurlbert et al., 2019). The success of different policies and
implementation of land-based measures is dependent on enabling
conditions and barriers that vary greatly by country. Available fund-
ing and economic incentives, governance and institutional capacity,
technological capacity, geophysical capacity, socio-cultural context,
and environmental-ecological conditions all make implementation
more or less likely (de Coninck et al., 2018). Accordingly, Parties
to the United Nations Framework Convention on Climate Change
(UNFCCC) have requested that the Intergovernmental Panel on
Climate Change (IPCC) Sixth Assessment Report (AR6) provide more
focused assessments of regional mitigation potential and their feasi-
bility. Such information could allow national and international actors
to better target investment and effort to areas of promise and need.

oo, MOEMIE

This study aims to address the outlined data needs by providing
(1) new and/or updated, country-level technical and cost-effective
(available up to $100/tCO,eq) mitigation potentials, using a sectoral
approach for 20 land-based measures; (2) new, regional land-based
mitigation potential estimates generated from the most recent da-
tabase on integrated assessment models (IAMs); (3) a national feasi-
bility assessment and index as a proxy for gauging the barriers and
enabling conditions of implementing land-based mitigation measures
by country; and (4) an analysis of countries by drivers of emissions,
mitigation potentials, and feasibility. We compare the available miti-
gation potentials in the sectoral and IAM approaches, and their fea-
sibility, globally, and across the five high-level IPCC regions: Africa
and Middle East, Asia and Developing Pacific, Developed Countries,
Eastern Europe and West-Central Asia, and Latin America and
Caribbean. Based on the mitigation potential and feasibility data,
combined with information on emissions drivers, we then provide a
framing of countries to highlight different contexts, challenges, op-
portunities, and priorities for land-based mitigation.

2 | METHODS

2.1 | Mitigation potential
We develop updated global and regional estimates of land-based miti-
gation potentials using both sectoral and integrated assessment model
(IAM) approaches and compare the results of the two (Figure 1) to es-
tablish a likely range of potential. The sectoral approach (also referred
to as a “bottom-up” approach) is based on an extensive literature re-
view and combines mitigation potentials from individual or sectoral
studies with available country-level data, and estimates “technical”
potential (possible with available technology, regardless of the cost)
and “cost-effective” economic potential (possible up to $100/tCO,eq)
in 2020-2050 for 20 land-based measures in the 250 countries in the
IPCC AR6 Working Group Il (WGlIII) country and region list. We con-
sider mitigation up to $1OO/tC02eq as cost-effective as it is in the
middle of the range for carbon prices in 2030 for a 1.5°C pathway,
and at the low end of the range in 2050 (Rogelj et al., 2018)—the
timeline that we target in this assessment. Since technical potentials
may not be plausible or desirable due to economic, social, political,
or environmental constraints and tradeoffs, we focus the regional as-
sessment on cost-effective potentials which represent a more realistic
level regarding public willingness to pay for climate mitigation. We do
not provide sectoral estimates for other carbon prices as there were
fewer available data. The IAM approach (sometimes referred to as a
“top-down” approach) adapts land sector data from the most recent
IAM intercomparison database, ENGAGE (Riahi et al., 2021), and esti-
mates cost-effective potential (possible up to $1OO/tC02eq) in 2050
across six models and 131 scenarios for seven land-based measures in
five regions. IAMs estimate economic potentials using carbon prices;
therefore, we do not provide technical potential estimates from IAMs.
IAMs assess the mitigation potential of multiple and interlinked
practices across sectors and regions and can therefore account for
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Mitigation potential at country-level (available
for >200 countries) aggregated from individual
and/or sectoral studies.
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FIGURE 1 Method and comparison of mitigation potentials using two approaches: Sectoral and IAM. The sectoral approach aggregates
10 studies and 25 datasets, each with a technical and cost-effective (possible up to $100/tC02eq) potential estimate for 1 of 20 land-based
mitigation measures in >200 countries. The mitigation potentials are averaged over the next 30 years (2020-2050). Data with * represent
those that were adapted from their original source, and thus represent new country-level data. Mean and min-max range values were used
for the five mitigation measures with more than one data source. BECCS and Clean cookstoves are excluded from the aggregate potential
to avoid double counting. Demand-side measures with ** exclude emissions from land-use change to avoid double counting. Substitution
options to calculate total potentials are indicated by symbols. The descriptions and methodologies for each measure are detailed in Table
1. The IAM approach estimates economic mitigation potential in 2050, up to $1OO/tC02eq in our assessment to compare to the sectoral
data. The intermodel median and min-max range is reported for seven land sector measures from six IAM models and 131 scenario runs in
the ENGAGE (Riahi et al., 2021) database. Each IAM measure is described in Section 2.1.2. The flow sizes are illustrative and do not reflect
relative mitigation potential sizes; however, the size of the aggregated technical and cost-effective boxes represent the data

interactions and tradeoffs (including land competition, use of other
resources, and international trade) between them. IAMs can also
optimize across mitigation measures based on market effects and
costs. A few sectoral models also consider some level of inter- and
cross-sector interactions and land allocation; however, when aggre-
gating potentials across sectoral estimates with different methods,
it is difficult to completely account for land competition and avoid
double counting. Since land-based mitigation is relatively new in
IAMs (Popp et al., 2017), only a limited portfolio of land-based mit-
igation measures is included (Figure 1). IAM data also generally have
coarser resolution compared to sectoral estimates, and as such, sec-
toral estimates may provide more robust mitigation estimates, in-
cluding country-level estimates for individual measures. To provide

a comprehensive understanding of land-based mitigation potentials
and their likely ranges and boundaries, it is therefore helpful to assess
and compare both types of approaches and estimates (Figure 1). We
use the sectoral estimates as the primary method in the regional miti-
gation assessment and feasibility (Section 3.2) given the country-level
disaggregation and availability of more mitigation measures. The two
approaches are described in more detail in Sections 2.1.1 and 2.1.2.

211 | Sectoral estimates

To assess national and regional mitigation potentials across a wide
suite of land-based measures, we compiled and developed both
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technical and cost-effective (possible up to $100/tC02eq) mitigation
potentials implemented between 2020 and 2050 (averaged) using
the best available data with country-level resolution. The mitiga-
tion potential quantified in the 20 measures include reductions and
removals of CO, and reductions of N,O and CH,. The mitigation
potentials are derived from individual and/or sectoral studies and
datasets which use a range of methods, including sectoral economic
modeling, optimization modeling, and spatial analysis (the definitions
and methods for each of the 20 mitigation measures are outlined
in Table 1). Indirect impacts such as the substitution effects of bio-
energy, biochar, and wood products on fossil fuel emissions are ex-
cluded due to a lack of country-level data. However, we provide a
global potential estimate for displacing fossil fuels with BECCS, bio-
char, and biogas from manure management (highlighted in Figure 3).
For BECCS, we estimated cost-effective potential for avoided fossil
fuel emissions by comparing the carbon contents and bioenergy use
of projected energy systems across a standardized set of baseline
and carbon price scenarios at 1OO$/tCO2 (Bauer et al., 2020), and
technical potential using the baseline carbon contents of the elec-
tricity system. For biochar and biogas from manure management
(anaerobic digesters), avoided fossil fuel emissions were estimated
using the same energy system emissions intensities as for BECCS,
assuming electricity is the primary product.

Our work builds on and advances previous global studies (Fuss
et al., 2018; Griscom et al., 2017; Jia et al., 2019; Roe et al., 2019;
Smith et al., 2013, 2014; UNEP, 2017) and regional studies (Griscom
et al.,, 2020; Roe et al., 2019) on land-based mitigation potentials.
Specifically: (1) Using existing studies or models, we developed new
country-level mitigation estimates on agroforestry, biochar, peat-
land degradation, peatland restoration, soil organic carbon enhance-
ment in croplands and grasslands, reduced food waste, and shifts
to healthy diets; (2) we adapted existing global mitigation estimates
and created country-level cost-effective mitigation potentials for: re-
duced deforestation, afforestation/reforestation (A/R), forest man-
agement, enteric fermentation, manure management, crop nutrient
management, rice cultivation, and bioenergy with carbon capture and
storage (BECCS); (3) we expanded the country-level data published
by Griscom et al. (2020) to provide global coverage where relevant;
(4) we developed data on land area (hectares) associated with mitiga-
tion potentials; and (5) we calculated “mitigation density” potentials
(cumulative technical mitigation between 2020 and 2050 divided
by total land area used) for each mitigation measure by country. For
measures with more than one dataset, we provided a range and cal-
culated average mitigation potentials for the aggregate estimates.

As much as possible, elements of the analysis were designed to
avoid potential double-counting of mitigation opportunities. When
aggregating total sectoral potentials, we excluded measures that
may overlap on the same land. To avoid double counting with re-
duced deforestation, we excluded increased clean cookstoves as
they may also reduce emissions from avoided forest loss and deg-
radation. We included demand-side measures, shifting to healthy
diets and reduced food waste in the aggregate estimate; however,
we only account for the GHG reductions from diverted agricultural

ST v -

production, and exclude emissions reductions associated with land-
use change. To avoid double counting with A/R and biochar, we also
excluded BECCS. We included reduced peatland degradation and
peatland restoration as the mitigation potential in our estimates do
not account for vegetation impacts (deforestation and reforesta-
tion), but rather, avoided emissions from draining and rewetting. We
selected reduced deforestation and A/R over the excluded activities
given their scale and geographic scope; however, a different alloca-

tion could also be chosen (Figure 1).

2.1.2 | |AM estimates

We assessed cost-effective land-based mitigation potentials from
the most recent IAM database, ENGAGE (Riahi et al., 2021), and
where relevant, additional scenarios based on recent model ver-
sions (see Supplementary Information), for six integrated assessment
models with available land sector data (AIM-Hub (Fujimori et al.,
2014), IMAGE (Stehfest & Planbureau voor de Leefomgeving, 2014),
MESSAGEix-GLOBIOM (Huppmann et al., 2019), POLES (Criqui et al.,
2015), REMIND-MAGgPIE (Kriegler et al., 2017; Luderer et al., 2013),
and WITCH-GLOBIOM (Bosetti et al., 2006; Emmerling et al., 2016).
We calculated the potential as the emission reduction and/or carbon
enhancement available at a carbon price of $100/tC02eq (range be-
tween $50 and 150/tCO,eq) compared to the “No Policy” baseline
scenario (“NPi2100” baseline for AIM and POLES models) in 2050. As
IAM mitigation estimates are based on a set of policy scenarios that
result in a range of carbon prices over time, we included the range
between $50 and $150/tCO,eq in 2050 to best represent mitigation
at $1OO/tC02eq (approximate median) across IAMs. Although 1AM
and sectoral approaches do not use the exact same carbon pricing
method, they are close approximations of cost-effective potential. We
chose the 2050 time horizon to be more comparable to sectoral es-
timates as model assumptions delay a majority of land-based mitiga-
tion to mid-century. We report the intermodel weighted median and
range mitigation potential values across 131 scenarios and 6 models
at a global and regional (five regions) level. We use a weighted me-
dian to avoid biasing estimates towards models with more scenario
runs. The weighted median compared to the natural median produced
slightly lower non-CO, mitigation and slightly higher BECCS mitiga-
tion. GWP100 values from AR5 (CH, = 28, N,O = 265) were used by
the IAMs to convert non-CO, gases into CO,eq.

Seven land-based mitigation measures comparable to our
sectoral list were available to extract across the I1AMs: (1) reduce
land-use change (“CO, positive | Land Use”); (2) A/R (“Carbon se-
questration | Land Use | Afforestation”); (3) enteric fermentation
(“CH4 Agriculture | Enteric fermentation”); (4) manure management
(“CH4 + N20O Agriculture | Manure mgmt.”); (5) rice cultivation (“CH4
Agriculture | Rice”); (6) crop nutrient management (N20 Agriculture
| “Managed soils”); and (7) BECCS (“Carbon sequestration | CCS
| Biomass”). We also report carbon sequestration from land use
(Figure 1) which includes all land-based carbon sequestration includ-
ing A/R (e.g., forest management and regrowth). For A/R, we provide
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two mitigation estimates, the first using the same “No Policy” base-
line as the other IAM mitigation estimates (which already deploys
some A/R), and the second using no baseline to illustrate the full
A/R potential and more easily compare to the sectoral studies.
When aggregating the CDR and total land-based mitigation values,
we use the first A/R mitigation potential estimate to maintain con-
sistency with the other measures. Baselines and their assumptions
differ across the models and can have a large effect on mitigation
potentials. For example, some baseline scenarios assume low carbon
prices and thus already include some emission reductions, which re-
duces the additional mitigation potentials when comparing a strong
mitigation scenario to the respective baseline. Similar to the sectoral
estimates, the IAMs considered in this assessment only account for
direct GHG emissions reductions or removals and do not include in-

direct substitution effects on fossil fuel emissions.

2.2 | Feasibility assessment

The global shift needed to limit warming to 1.5°C or 2°C will require
a range of enabling conditions to catalyze action and adequately ad-
dress the synergies and tradeoffs between mitigation and sustaina-
ble development (IPCC, 2018). The enabling conditions, or feasibility,
of effectively implementing mitigation measures, are highly contex-
tual and vary according to each country's circumstances. We devel-
oped a quantitative index as a proxy for country-level feasibility to
implement actions and realize mitigation potentials. Our framework
is based on the IPCC'’s definition of feasibility, defined as the capacity
of a system to attain a specific outcome (de Coninck et al., 2018), and
includes six dimensions of feasibility: economic, institutional, geo-
physical, technological, socio-cultural, and environmental-ecological
feasibility. Given the broad scope of “feasibility,” we considered a
range of enabling conditions across the six dimensions, including
both state capacity and private sector/land-owner enabling condi-
tions across all land-use management types. Our feasibility index
represents a first attempt to quantify country-level feasibility using
the IPCC's qualitative feasibility assessment framework. The result-
ing feasibility index is intended to illustrate where mitigation po-
tential and feasibility are correlated, and identify gaps that can be
addressed to increase likelihood of implementation. Where more de-
tailed regional data exist, the approach can be refined. The feasibil-
ity assessment consisted of a two-part literature review followed by
expert review of the datasets found, harmonization and scaling, and

finally, calculation of a feasibility score for each country.

2.21 | Literature review

A preliminary literature review identified the most important ena-
bling conditions and barriers for land-based mitigation actions. A list
of feasibility factors was drawn from this literature review, which
included a broad range of empirical and theoretical studies across
activities in the AFOLU sector. Factors were categorized under one

of the six abovementioned IPCC dimensions of feasibility. A second
literature review identified quantitative datasets describing the ena-

bling conditions and barriers previously documented as relevant.

2.2.2 | Expertreview and indicator selection

We evaluated the quality of the datasets to determine the country
coverage and to highlight potential correlations among potential
feasibility factors. For the final selection of indicators (Table 2), fea-
sibility factor candidates were required to meet a minimum of two
specific criteria. First, indicator data should be available from the
last 5 years for a sufficient number of countries (>100) to make a
meaningful assessment. Second, a clear logic should exist in the di-
rection of the relationship between the variable in question and the
feasibility of implementation of a mitigation measure. For instance,
increased tenure insecurity is associated with greater difficulty in
implementing land-use activities in the AFOLU sector (Djenontin
et al., 2018; Robinson et al., 2014). To incorporate more detailed
enabling factors, we included some indicators that apply to the fea-
sibility of implementing mitigation activities in either agriculture or
forests and other ecosystems (agricultural value added, agriculture
total factor productivity, and forest rents), recognizing that they may
not necessarily apply to the other. Variables that exerted either an
unclear or mixed effect (e.g., subsidies in the agriculture sector) were
excluded. These two criteria resulted in the selection of 19 feasibility
indicators (Table 2).

2.2.3 | Harmonization and scaling

Processing of the selected feasibility indicators and associated
data was done following a two-step approach. First, all raw data
were scaled from O to 100 using the formula: (x,-min(x))/(max(x)-
min(x))*100 where i indicates the value of indicator x for a given
country. When the raw data were already scaled 0-1, it was then
multiplied by 100. Where needed, the data were also harmonized
for direction by applying 1-x, to ensure that higher feasibility was
represented by a higher indicator value as well as to ensure consist-

ency between indicators.

2.24 | Feasibility score

The final step involved the calculation of feasibility scores by av-
eraging all indicators per category, then averaging each of the six
categories. We calculated scores including and excluding autocorre-
lated indicators (Score 1 and 2), then we calculated scores with com-
plete and incomplete country observations (Score 1a and 1b). Score
1 and 2 resulted in very similar feasibility rankings; therefore, we
chose to include all indicators. Using all indicators (Score 1), we then
calculated Score 1a by including only countries with complete obser-
vations (N=113); and Score 1b by including countries with five NAs
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out of six (N=169). Score 1a and 1b resulted in very similar feasibility
scores, although the latter allowed for a larger coverage of countries.
As such, Score 1a was chosen as the final country-specific feasibility

score (scores provided in Supplementary Information).

2.3 | Emissions and drivers

To contextualize regional- and country-level circumstances for
adopting and implementing land-based measures in our results
(Section 3.2), we assessed land cover areas (ha), total GHG emissions,
land-based emissions in agriculture and land-use change, and driv-
ers of agricultural emissions and forest cover loss for each country.
There is no current and publicly available data on total emissions per
country that combines CO, and non-CO, emissions from fossil fuels,
land-use change, and agriculture. Therefore, we summed the most
recent available data on fossil CO, emissions (5-year average; 2015~
2019) (Crippa et al., 2020), agriculture GHG emissions (5-year aver-
age; 2013-2017) (FAO, 2020a), and land-use, land-use change, and
forestry (LULUCF) emissions (5-year average; 2013-2017) (Grassi
et al., 2021). For each country, we then calculate cost-effective miti-
gation potential as a share of total emissions. To identify the main
drivers of land sector emissions in each country, we used agricultural
emissions data from FAOSTAT (2020) (5-year average; 2013-2017),
and tree cover loss data from Global Forest Watch (5-year average;
2013-2017).

3 | RESULTS
3.1 | Global
3.1.1 | Mitigation potential across land-

based measures

Between 2020 and 2050, the total cost-effective mitigation poten-
tial (up to $100/tCOzeq) of land-based measures using a sectoral ap-
proach is 13.8 + 3.1 GtCO,eq yrt, 42% of the technical potential
(Figure 2a). The cost-effective potential, which represents a more re-
alistic and plausible level of deployment, is a little more than the av-
erage annual AFOLU emissions in 2007-2016 of 12 + 2.9 GtCO,eq
yr! (Jia et al., 2019). Using the IAM approach, cost-effective poten-
tial (up to $1OO/tCOZeq) in 2050 is 6.9 median (0.4-11.3 range) for
AFOLU (agriculture +land-use change) and 8.0 median (0.8-16.5
range) for AFOLU +BECCS (total land-based mitigation) (Figure 2a).
The total cost-effective land-based mitigation potential from IAMs
is 58% of the sectoral potential. The difference is largely due to four
main reasons: (1) the IAMs currently incorporate only about a third
of land-based mitigation measures included in the sectoral approach
(Figure 1); thus, the inclusion of additional land-based measures (i.e.,
wetland protection and restoration, soil carbon sequestration, bio-
char, agroforestry, and food substitutes) could substantially increase
modelled potential; (2) some IAM baselines already have small

S e L

carbon prices which induce land-based mitigation, while in others,
mitigation, particularly from reduced deforestation is part of the sto-
ryline even without an implemented carbon price. Both of these ef-
fects dampen the mitigation potential available in the $1OO/tCO2eq
carbon price scenario; (3) the IAM estimates include overshoot sce-
narios which places a substantial portion of mitigation after 2050,
especially terrestrial carbon dioxide removal (CDR) options; and (4)
it is difficult to completely account for land and resource allocation
when aggregating sectoral potentials using different methods, and
although we attempt to avoid double counting (see Methods), there
is still a risk of overestimation in the aggregate estimates.

Total CDR potential in IAMs, combining land sequestration (A/R,
regrowth)and BECCS is 1.7 median (0.2-11.8) GtCO,, yrtupto $100/
tCO, in 2050. In the sectoral estimates, CDR potential, which makes
up “restore” measures in forests and other ecosystems, and “se-
quester carbon” measures in agriculture (excluding BECCS to avoid
double counting with A/R) is 20.3 + 3.0 GtCO, yr! for technical
and 6.6 + 0.3 GtCO, yr ! for cost-effective (Figure 2a). The sectoral
estimates have large CDR potentials from agriculture—agroforestry,
biochar, and soil carbon sequestration (4.8 GtCO, yrt up to $100/
tCO,)—which are not included in IAMs (Figure 3). The IAM CDR po-
tential is also limited by some A/R deployment in baseline scenarios
(see Figure 3 for comparison to a zero baseline) and slower response
from A/R in the given timeframe.

Forests and other ecosystems provide the largest share of land-
based mitigation. In sectoral estimates, there is 18.3 + 6.9 GtCO,eq
yr’1 technical potential and 6.6 + 2.9 GtCO,eq yr’1 cost-effective po-
tential, or 56% and 48% of the total land-based potential, respectively
(Figure 2). In IAMs, cost-effective potential from land-use change in
forests and other ecosystems in 2050 is 3.5 median (1.4-8.0 range)
GtCO,eq yr't, 44% of the total land-based potential. Within forests
and other ecosystems in the sectoral estimates, measures that “pro-
tect” (reduce deforestation and conversion and degradation of wet-
lands) make up 20% and 28% of the total technical and cost-effective
potential, respectively, measures that “manage” (improve forest man-
agement and grassland fire management) make up 6% and 7%, re-
spectively, while measures that “restore” (A/R, peatland restoration
and coastal wetland restoration (mangroves)) make up 30% and 13%
(Figure 2a). “Protect” measures make up an increased share of the
cost-effective land-based mitigation compared to the technical due
to its lower cost while “restore” measures decrease by about half due
to its higher cost of implementation. Across all land-based measures,
“protect” measures also have the highest mitigation density per year
between 2020 and 2050, at an average of about 320 tCO,eq ha™®,
followed by “restore” measures at 175 tCO,eq ha™. Protecting man-
groves and peatlands have particularly high mitigation densities at
about 1500 and 1230 tCO,eq ha™ (Figure 3). The protection of pri-
mary ecosystems has significant potential for delivering co-benefits
as these ecosystems provide vital ecosystem services (e.g., biodiver-
sity, water and air filtration, livelihoods, food) and can continue to
sequester carbon (Figure 3, Supplementary Information). If lost, many
natural ecosystems and their carbon stores are also irrecoverable by
the 2050 timeframe related to 1.5-2°C pathways and biodiversity
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FIGURE 2 Regional land-based mitigation potentials. (a) Country-level map of total cost-effective ($100/tC02eq) mitigation potential
(taking the average potentials for measures with more than one dataset). The five colors on the map correspond to the five IPCC regions
assessed in our study. Bar charts show the share of mean technical, cost-effective, and integrated assessments model (IAM) mitigation by
mitigation category, aggregated into the five IPCC regions. Pie charts illustrate global total potentials and share of mitigation potential by
mitigation category for sectoral and IAM approaches. Sectoral aggregate potentials exclude BECCS and clean cookstoves to avoid double
counting. (b) Country-level map of cost-effective mitigation potential density (potential per hectare in 2020-2050). Bar charts show the
regional mitigation density by category (cumulative potential divided by total land area per measure per region) for 2020 to 2050. “Protect”
measures in Developed Countries show high density due to the very small land area associated with high potential from peatland protection

goals (Barlow et al., 2007; Goldstein et al., 2020). The potential co-
benefits and possible tradeoffs of measures in forests and other eco-
systems depend on how and where the measure is implemented. In
the example of A/R, it will depend on the type of species used, scale
of deployment (land area is ~1000 Mha to realize technical potential
and ~300 Mha for cost-effective potential), method of deployment
(natural regeneration vs mixed species planting vs monoculture plant-
ing), and location (ecosystem, climate, and water availability) (Cook-
Patton et al., 2020; Holl & Brancalion, 2020). Tradeoffs from A/R
include risks to biodiversity and competition with producing food
crops, potentially resulting in indirect land-use change (Doelman
et al,, 2020; Kreidenweis et al., 2016).

Agriculture provides the second largest share of land-based
mitigation. The sectoral estimates are 11.3 + 0.3 GtCO,eq yrt
technical potential and 5.3 + 0.2 GtCO,eq yr'! cost-effective po-
tential, or 34% and 38% of the total land-based potential, respec-
tively (Figure 2a). In IAMs, cost-effective potential in agriculture
(non-CO,) in 2050 is 2.7 median (0-4.1 range) GtCO,eq yrt, 33%
of total land-based potential. IAM estimates for “emissions reduc-
tions” in agriculture are over fourfold larger than sectoral estimates
(0.6 + 0.2 GtCO,eq yr'! cost-effective) due to a few factors in-
cluding higher non-CO, baseline emissions in the IAMs used, more
conservative assumptions of mitigation technology uptake in the
sectoral approach, and global economic models used in IAMs cap-
turing additional demand responses and structural changes in ag-
ricultural production (Frank et al., 2018). Much of the agriculture
potential from sectoral estimates are in “carbon sequestration,” ac-
counting for 32% and 34% of the total technical and cost-effective
potential, respectively. Biochar stands out as the agriculture mea-
sure with the highest mitigation density, about 72 tCO,eq ha™t
between 2020 and 2050, followed by agroforestry and rice culti-
vation at about 45 tCOeq ha! each. Biochar also has the potential
to mitigate emissions from fossil fuel substitution (Figure 3). The
remaining measures have more modest mitigation densities rang-
ing from 8 to 24 tCO,eq ha™! as many agriculture measures can be
applied across more land (i.e., nutrient management and soil car-
bon management across a majority of croplands and pasturelands).
Unlike measures in forests and other ecosystems (aside from forest
management), multiple agriculture measures can often be applied
on the same parcel of land. Agriculture measures that enhance soil
quality, water efficiency, and yields and reduce pollution—such as
soil organic carbon sequestration, agroforestry, biochar, and nutri-
ent management—can provide a relatively wide array of potential
co-benefits (Figure 3, Supplementary Information).

Demand-side measures provide 3.1 GtCO,eq yr! technical and
1.9 GtCO,eq yr ! cost-effective potential, or 10% and 14% of the total
land-based potential, respectively (Figure 2a). Shifting to sustainable
healthy diets makes up 7% and 10% of the total land-based technical
and cost-effective potential, respectively, and reducing food waste
3% across both potentials. To avoid double counting with reduced
deforestation, these sectoral estimates exclude land-use change im-
pacts from reduced food waste and shifts to healthy diets, as well as
clean cookstoves. When the entire value chain is considered (land-
use change emissions and sequestration), the mitigation potential of
demand-side measures increases significantly (+52% for diet shifts and
+670% for reduced food waste in our estimates), and have among the
highest potentials to mitigate emissions in AFOLU (Bajzelj et al., 2014;
Roe et al., 2019; Smith et al., 2013; Springmann et al., 2016; Tilman &
Clark, 2014). Demand-side measures are included in IAMs as scenario
elements and/or as an endogenous response to food prices, which
typically increase in response to carbon prices. Generally, the more
sustainable the socioeconomic scenario used, the more diet shifts and
food system efficiencies are deployed. Decreasing consumption of
high greenhouse gas-intensive foods like animal-based proteins, par-
ticularly beef, and reducing food loss and waste, reduces land used
for feed, water use, and soil degradation, thereby improving efficiency
and generating substantial cost savings, increasing resources for im-
proved food security, reducing land competition, and catalyzing and
enabling supply-side measures such as reduced deforestation and re-
forestation (Figure 3, Supplementary Information).

Estimated mitigation from BECCS is modest, with technical and
cost-effective potential in our sectoral estimate of 2.5 GtCO,eq yr"1
and 0.5 GtCO,eq yr'}, respectively (Figure 3). Our estimate only in-
cludes the CDR potential, which accounts for the net mitigation,
considering the full life-cycle emissions (land-use change emissions,
forgone sequestration, bioenergy supply chain, etc.). This potential
is constrained by the 30-year payback-period used here and assum-
ing biomass supply from purpose grown crops only, with potentials
increasing at longer evaluation periods or if agricultural or forestry
residues were included (Hanssen et al., 2020). BECCS can also provide
energy and/or materials which may be used to substitute fossil fuels
and could increase mitigation potential by several orders of magni-
tude (Figure 3). In IAMs, the cost-effective potential of BECCS is 0.7
(0.01-7.7) GtCO,eq yr'1 in 2050 (9% of total land-based potential),
just slightly higher than the sectoral estimates. Both sectoral and IAM
potentials are lower than previous studies largely due to the $100/
tCO,eq cost constraint. BECCS potential in IAMs increase substan-
tially with higher carbon prices. In our sectoral estimates, the land
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FIGURE 3 Climate mitigation potentials for 20 land-based measures in 2020-2050, by region. Technical and cost-effective ($100/
tCO,eq) mitigation potentials are provided for each measure using a sectoral approach according to Table 1 and Figure 1. The 20 measures
are grouped into four systems-level mitigation categories, and seven management-level categories. For measures with more than one
dataset, the bar graph represents the mean estimate, and the error bars represent the min and max potential range. Global mitigation
potentials of substituting fossil fuels were estimated for BECCS, biochar, and manure management, shown in pink outline bars, illustrating
the median and 90" percentile values. IAM estimates (range and median, up to $100/tC02eq) are provided for the seven measures where
data are available in the ENGAGE database (Riahi et al., 2021). Potential co-benefits are indicated with icons, and the average global
mitigation “density” (cumulative mitigation potential divided by total hectares in 2020-2050) is noted for measures with available data

area required for BECCS to realize its technical potential is 740 Mha
and 160 Mha for cost-effective potential. Depending on scale and
method of deployment, type of biomass supply, and location, BECCS
poses tradeoffs and risks for resource use, land competition, and food
security. However, if well implemented (e.g., at lower scales and de-
ployed in tandem with forest management, A/R and biochar strate-
gies on marginal or degraded lands), BECCS also has the potential to
deliver co-benefits (Figure 3, Supplementary Information).

3.1.2 | Comparing mitigation potential across
countries and regions

The top 15 countries with the highest total cost-effective mitiga-
tion potential from land-based measures are (in descending order)
the following: Brazil, China, Indonesia, United States, India, Russian
Federation, Canada, the Democratic Republic of the Congo (DRC),
Colombia, Mexico, Argentina, Australia, Bolivia, Peru, and Myanmar
(Figure 2a). Together, they account for 62% of the global mitigation
potential. The countries with highest cost-effective mitigation poten-
tial are generally those with the highest AFOLU emissions. Countries
such as Ethiopia and Sudan are an exception, with high AFOLU emis-
sions and relatively lower cost-effective potential because their
emissions are predominantly from livestock, which are costlier to
mitigate. Total potential is generally highest in countries with large
land areas. However, when the density of mitigation potential (total
potential per hectare of land) is considered, some small island states
move to the top, largely due to high mitigation potential in protect-
ing or restoring wetlands and forests. The top 15 countries with the
highest cost-effective density potential are (in descending order) as
follows: Maldives, Brunei, Bangladesh, Indonesia, Vietnam, Trinidad
and Tobago, Malaysia, Malta, Rwanda, South Korea, Netherlands,
Cambodia, Mauritius, Philippines, and El Salvador (Figure 2b). The
full dataset on mitigation potentials by country is available in the
Supplementary Information.

Across the IPCC regions, the highest cost-effective potentials
are found in Asia and developing Pacific with 4.8 + 1 GtCO,eq yrt
(34%), followed by Latin America and Caribbean (3.4 + 1.2 GtCO,eq
yr'; 25%), then Africa and Middle East (2.5 + 0.7 GtCO,eq yr'
18%), Developed countries (2.5 + 0.1 GtCO,eq yr'l; 18%), and
Eastern Europe and West-Central Asia (0.8 + 0.1 GtCO,eq yrt; 5%),
(Figure 2a). The cost-effective mitigation potential is 42% of the global
technical potential, but with considerable regional variation: 48% is
cost-effective in Asia and developing Pacific, 42% in Africa and Middle

East, 41% in Latin America and Caribbean, 36% in Developed coun-
tries, and 39% in Eastern Europe and West-Central Asia. Tropical
countries in Asia, Africa, and Latin America have the largest propor-
tions of cost-effective potential; proportions are lower in developed
countries largely due to higher costs of implementation. Additional de-

tail on the five IPCC regions is outlined in Section 3.2 “Five Regions.”

3.1.3 | Feasibility across regions and
categorization of countries

Globally, the median feasibility score for implementing land-based
mitigation measures was 48 (40 - 56 IQR), which corresponds ap-
proximately to the median scores for developing countries (Figure 4).
The highest feasibility scores were for Denmark (74), the Netherlands
(73) and Luxembourg (72), while the lowest feasibility scores were for
Eritrea (20), Chad (24) and Central African Republic (27). Developed
countries had the highest median feasibility scores (64), followed by
developing countries (48) and then least developed countries (LDCs)
(36). Developed countries had higher scores in five of the six feasibility
categories assessed: economic, institutional, technological, social and
environmental, while developing countries and LDCs scored higher
in the geophysical category. Among developed countries, Denmark
(74) was highest overall, among developing countries, Brunei (68)
was highest, and among LDCs, Bhutan was highest (51). The Russian
Federation was lowest among developed countries, Republic of the
Congo among developing countries, and Eritrea, lowest in feasibility
among LDCs. Comparisons between regions show that Developed
Countries (Europe, North America, Developed Pacific) had a median
feasibility score of 64, followed by Latin American and Caribbean
countries with 50, Asian and developing Pacific countries with 48,
Eastern European and West-Central Asian countries with 47, and
African and Middle Eastern countries with 39.

When feasibility scores are compared to the share of cost-effective
land-based mitigation potential relative to national emissions, coun-
tries can be broadly categorized into nine categories (numbered
in Figure 4) of either high, medium or low across the two variables.
Countries in the top tier (#1-3) are those with land-based mitigation
potential greater than 100% of total country emissions, or “Surplus
potential” countries. Tropical forest countries with relatively low fossil
fuel emissions in Africa, Southeast Asia and Latin America are found
in the “Surplus potential” tier, with Iceland as the exception. Countries
in the middle tier (#4-6), or “High relative potential” countries, have
land mitigation potentials between 30% and 100% of economy-wide
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FIGURE 4 Country feasibility and cost-effective mitigation potential as a share of total emissions. (a) Boxplot of feasibility scores by region
(b) Feasibility score (0-100) by total cost-effective mitigation potential as percent of total country emissions. Circles show relative size of total
cost-effective potential in GtCO,eq yr‘l. The vertical dashed lines represent the interquartile range and median feasibility scores, and the
horizontal lines represent the share of cost-effective mitigation potential that land-based measures can deliver over 30% (in line with global
1.5°C trajectory) and over 100% (can achieve net zero emissions or negative emissions with land-based measures only). Countries are grouped
and numbered into 1-9 categories (except for 5 and 8 to improve data visibility), according to their relative mitigation potential as a share of
total emissions and feasibility score. In six countries, the proportion of cost-effective potential relative to total emissions is higher than the
y-axis of 250%: Papua New Guinea, Republic of Congo, Cameroon, Guyana, Suriname, and Rwanda; these can be seen in Figures 5-9

emission levels, higher than the global average of 20-30% to meet
the 1.5°C pathway (Roe et al., 2019). “High relative potential” includes
tropical forest countries and large agriculture countries with average
fossil fuel emissions. Countries in the lower tier (#7-9) have lower than
30% of mitigation potential relative to total emissions, largely due to
their high levels of fossil fuel emissions and/or low land-based po-
tential (e.g., desert biomes), thus labelled “Limited relative potential”
countries. The feasibility score categories of “low” (<25th percentile),
“medium” (25-75 percentile), and “high” (>75th percentile) largely
reflect countries’ development level, with LDCs predominantly ag-
gregated in “low”, developing countries in “medium” and developed
countries in “high”, with some exceptions including Bhutan (an LDC)
with a feasibility score above the 50th percentile and Russia (a devel-
oped country) scoring below the 50th percentile. Our characteriza-
tions of low, medium, and high feasibility are conceptual and should
not be interpreted as sharp distinctions, even though they use numer-
ical thresholds to define different zones.

Of the cost-effective mitigation potential, 19% is found in coun-
tries with “low” feasibility scores, 61% in countries with “medium”
feasibility scores, and 20% in countries with “high” feasibility scores.
Across feasibility categories, 22% of mitigation potential is located
in countries scoring above the global average in 0-1 categories, 58%

in 2-4 categories, and 20% in 5-6 categories. These values indicate
which categories may be targeted to improve countries’ feasibility
scores. For the majority (58%) of countries scoring above global av-
erage in 2 to 4 categories, addressing environmental, institutional,
and economic barriers would be the most important in unlocking po-

tential (i.e., increasing the feasibility) in this framework.

3.2 | Fiveregions

3.2.1 | Africaand Middle East

Africa and the Middle East (AME) comprises approximately 35 mil-
lion km?, of which 19% is forest (20.6% primary and 2% planted) and
39% is agricultural land. Total AFOLU emissions were 2.7 GtCO,eq
yr! (averaged between 2013 and 2017), 0.9 GtCO,eq yr™ (35%)
from agriculture and 1.8 GtCO,eq yr (65%) from land-use change.
The main drivers of agriculture emissions are enteric fermentation
(42%), manure left on pastures (30%), and the burning of grasslands
and savannahs (17%), whereas the main driver of tree cover loss
(proxy for land-use change) is shifting agriculture (90%), far ahead of
commodity production (4%).
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FIGURE 5 Africaand Middle East (AME) land-based mitigation potentials and feasibility. (a) Total cost-effective mitigation potential
by mitigation category (colored bars) and mitigation density of cost-effective potentials (gray bars), by country; (b) Total cost-effective
mitigation potential by mitigation category and measure in AME; c) Feasibility score by cost-effective mitigation potential as a share of total

country GHG emissions (%) in AME

The total technical mitigation potential in AME is 5.8 + 2.3
GtCO,eq yr'l, and the cost-effective mitigation potential ($100/
tCO4eq) is 2.5 + 0.7 GtCO,eq yr! (43%). The highest cost-
effective mitigation potential comes from reducing deforesta-
tion (0.97 + 0.4 GtCO,eq yr't; 39%), then afforestation and
reforestation (0.25 + 0.2 GtCO,eq yr'l; 10%), sequestering soil
organic carbon in grasslands (0.24 GtCO,eq yr't: 10%), shifting
diets (0.2 GtCO,eq yr't: 8%), and agroforestry (0.19 GtCO,eq yrt;
8%) (Figure 5b). The IAM cost-effective potential (up to $100 per
tCO,eq) for land-based mitigation (AFOLU + BECCS) is 1.8 (-0.1-
4.8) GtCO,eq yr " in 2050.

Across the countries, the DRC has the most cost-effective miti-
gation potential at 0.4 +0.2 GtCO,eq yr, or about 16% of AME po-
tential (Figure 5a). The DRC is followed by Nigeria, Tanzania, South
Africa, Republic of Congo, and Zambia. In the DRC, the Republic of the
Congo, Tanzania, and Zambia, where land-based emissions are largely
driven by deforestation from shifting agriculture, “forest protection”
measures present the highest cost-effective mitigation potential.

Over half (57%) of AME countries have cost-effective potentials that
are over 30% of their total emissions, or “High relative potential.” In
all, 16 countries have cost-effective potentials exceeding their total
emissions, or “Surplus potential” (Figure 5c). Rwanda, Mauritius, the
Republic of Congo, and Uganda have the highest mitigation densi-
ties at over 3 tCO,eq ha™ (Figure 5a). At the regional scale, average
mitigation density is at 1 tCO,eq ha™?, with the protection of forests
and other ecosystems offering the highest mitigation density at 274
tCO,eq ha™, followed by the restoration of forests and other eco-
systems at 180 tCO,eq ha™! and improved forest management at 46
tCO,eq ha™t (Figure 2b).

The median feasibility score in AME (39) is nine points below the
global median, with more than half of AME countries being below
the 25th percentile “low” and Israel being the only country above
the 75th percentile “high” (Figure 5c). AME countries scored below-
average feasibility compared to global scores in all six feasibility
dimensions (economic, institutional, geophysical, technological,
socio-cultural, and environmental-ecological).
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3.2.2 | Asiaand Developing Pacific

Asia and the developing Pacific (ADP) is approximately 21 million
km?, of which 28% is forest (22% primary and 20% planted), and 51%
is agricultural land. Total AFOLU emissions were 3.3 GtCO,eq yrt
(averaged between 2013 and 2017), 2.1 GtCO,eq yrt (63%) from
agriculture and 1.2 GtCO,eq yr ! (37%) from land-use change. The
main drivers of agriculture emissions are enteric fermentation (32%),
rice cultivation (21.5%), and synthetic fertilizers (18%), whereas the
main drivers of tree cover loss (proxy for land-use change) are agri-
cultural commodities (57%) and forestry (27%).

The total technical mitigation potential in ADP is 10 + 2.2
GtCO,eq yr}, and the cost-effective mitigation potential ($100/
tCO,eq) is 4.8 + 1.0 GtCO,eq yr! (48%). The highest cost-effective
mitigation potential comes from reducing deforestation (0.95 + 0.6
GtCO,eq yr't; 20%), then biochar application (0.8 GtCO,eq yrt
17%), shifting diets (0.6 GtCO,eq yr'l: 13%), peatland restoration
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(0.4 GtCO,eq yrt; 8%), and agroforestry (0.37 GtCO,eq yrt: 8%)
(Figure 6b). The IAM cost-effective potential (up to $100/tCO,eq)
for land-based mitigation (AFOLU +BECCS) is 2.2 median (0.8-4.4
range) GtCO,eq yrtin 2050.

Across the countries, China has the highest cost-effective mitiga-
tion potential at 1.4 + 0.1 GtCOeq yrt, or about 30% in ADP, largely
due to its size which is 45% of the land area in ADP (Figure 6a). China
is followed by Indonesia, India, Myanmar, and Vietnam (all five coun-
tries make up 75% of potential in ADP). China's AFOLU emissions are
concentrated in agriculture (97%), accordingly, its largest mitigation
potential is from “sequester carbon” measures in agriculture (48%),
demand-side measures (34%), then “reduce emissions” measures in
agriculture (11%). Land-based emissions in Indonesia, Myanmar, and
Vietnam are largely driven by deforestation due to commodity pro-
duction, forestry, and shifting agriculture, and thus have the largest
mitigation potential in the protection of forest and other ecosys-
tems. Similar to China, land-based emissions in India are dominated

— HEi
— IHEm
— HEan
— i
— [
— .|
—
— n
— I
—
- : Mitigation category
— m B Agricuture - Reduce emissions
— || Agricuiture - Sequester carbon
e | | . Demand-side
— 1 Forests & other ecosystems - Manage
—_— [T Forests & other ecosystems - Protect
— : [ Forests & other ecosystems - Restore
— |
— |
0 500 1000 150(
Cost-effective mitigation potential (MtCO,e year~")
Total cost-effective potential | :
P Papua New Guinea :
® = * IQR (40-56)
600 | @ 1000 :
Country development
® developing
® Idc

4

o
o

2

=]
=)

L]
‘Solomon Islands

Cost-effective potential as a share of total emissions (%)

g

Afghams?an LagPDR Mongola
. Bhutan
WyamTaT ey
| fi  Cambodial * ol Wglaysia S —
Pakistan ' - @ ailal o
e A Db rhipinct®®
Vanuatu TOMTETTT Maidives Korea, Rep.
0 ‘ @ ndia P, .
' China: ! -
30 40 50 60 70

Feasibility score (0—100)

FIGURE 6 Asia & Developing Pacific (ADP) land-based mitigation potentials and feasibility. (a) Total cost-effective mitigation potential
by mitigation category (colored bars) and mitigation density of cost-effective potentials (gray bars), by country; (b) Total cost-effective
mitigation potential by mitigation category and measure in ADP; (c) Feasibility score by cost-effective mitigation potential as a share of total

country GHG emissions (%) in ADP
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by enteric fermentation and synthetic fertilizer use, with highest po-
tential from soil carbon sequestration (63% of total potential). Seven
countries have “Surplus potential,” or cost-effective potentials that
are over 100% of their total emissions (Figure 6c). About half (49%)
of ADP countries have cost-effective potentials that are over 30%
of their total emissions (“High relative potential” tier). The Maldives,
Brunei, Bangladesh, Indonesia, and Vietnam have the highest miti-
gation densities at over 5 tCO,eq ha™ (Figure 6a), although the first
two countries have relatively modest total potentials due to their
small size. At the regional scale, mitigation density is 2.3 tCO,eq
ha™, with the protection (363 tCO,eq ha™) and restoration (281
tCO4eq ha™!) of forests and other ecosystems offering the highest
mitigation density, followed by “sequester carbon” measures in agri-
culture (53 tCO,eq ha™) (Figure 2b).

Countries in ADP are evenly distributed on either side of the
global median with regards to their feasibility scores, with most
countries being located in the 50th-75th percentiles, “medium.”
Brunei, the Republic of Korea, Malaysia, the Maldives, and Singapore
are above the 75% percentile, “high,” while Afghanistan, Lao PDR,
Myanmar, Pakistan, Papua New Guinea, the Solomon Islands, and
Vanuatu are below the 25% percentile “low” (Figure 6c). Relative to
global scores, ADP countries scored below-average in five feasibility
dimensions (economic, institutional, technological, socio-cultural,
and environmental-ecological) and above-average scores in the geo-

physical dimension.

3.2.3 | Developed countries

Developed countries (DC) cover approximately 33 million km?, of
which 31% is forest (32% primary and 12% planted), and 37% is
agricultural land. Total AFOLU emissions were 1.25 GtCO,eq yrt
(averaged between 2013 and 2017), 1.1 GtCO,eq yr‘1 (87%) from
agriculture and 0.17 GtCO,eq yr! (13%) from land-use change. The
main drivers of agriculture emissions are enteric fermentation (37%),
synthetic fertilizer use (18%), and manure deposition on pasture
(12%), whereas the main driver of tree-cover loss is forestry (76%).

The total technical mitigation potential in DCis 6.8 + 0.3 GtCO,eq
yr™l, and the cost-effective mitigation potential ($100/tCO,eq) is
2.5 + 0.1 GtCO,eq yr'! (36%). The IAM cost-effective potential (up
to $100 per tCO,eq) for land-based mitigation (AFOLU + BECCS) is
1.0 median (-0.1-3.0 range) GtCO,eq yr Y in 2050. The highest cost-
effective mitigation potential comes from biochar application (0.45
GtCO,eq yr'l: 18%), shifting to healthy diets (0.32 GtCO,eq yrt;
13%), afforestation and reforestation (0.29 + 0.04 GtCO,eq yr‘i;
12%), agroforestry (0.26 GtCO,eq yr % 11%), soil organic carbon se-
questration in grasslands (0.25 GtCO,eq yr % 10%), and improved for-
est management (0.22 + 0.1 GtCO,eq yr 't 9%) (Figure 7b).

Across the countries in DC, the United States (US) has by
far the largest cost-effective mitigation potential at 0.96 + 0.05
GtCO,eq yr’i, 39% of the potential (Figure 7a), followed by Canada
(0.40 +0.02 GtCO,eq yr , 16%), Australia (0.21 + 0.02 GtCO,eq yr %,
9%), Ukraine (0.09 + 0.01 GtCO,eq yrt, 4%), and Japan (0.08 +0.02
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GtCO,eq yr'i, 3%). When the EU27 (current European Union coun-
tries) is aggregated, it has the second highest mitigation potential at
0.52 + 0.04 GtCO,eq yr‘l, 21%. The land-based emissions from the
top countries are primarily driven by agriculture, as such, the highest
cost-effective mitigation potentials are in “sequester carbon” mea-
sures (highest proportion of the US’, EU27’s Australia's and Ukraine's
total cost-effective potentials), followed by demand-side measures.
Forest measures (protection, reforestation, and forest management)
also provide significant potentials across these countries, represent-
ing the highest opportunities for Canada and Japan, respectively.
In all, 14 DC countries have cost-effective potentials that are over
30% of their total emissions, “High relative potential,” while Iceland
is the only country to have cost-effective potential exceeding its
total emissions “Surplus potential” (Figure 7c). Bermuda, Malta, the
Netherlands, and Denmark have the highest mitigation densities,
more than 3 tCO,eq ha™! (Figure 7a). At the regional scale, average
mitigation density is 0.74 tCO,eq ha™, with the protection of forests
and other ecosystems offering the highest mitigation density at about
1150 tCO,eq ha™ (very high as the estimate mostly covers a small
area of peatlands and coastal wetlands) followed by the restoration
of forests and other ecosystems at 120 tCO,eq ha™ and “sequester
carbon” measures in agriculture at 32 tCO,eq ha™* (Figure 2b).

The median feasibility score in DC (62.3) is well above the global
median, a vast majority of DC countries being above the 75th per-
centile, or “high” feasibility (Figure 7c). For the remaining countries,
eight are in the 50th-75th percentiles, Turkey is the only country in
the 25%-50% percentiles, and no DC country scored under the 25th
percentile. DC countries obtained above-average scores compared
to global scores in five out of the six feasibility dimensions (all but
the geophysical dimension).

3.2.4 | Eastern Europe and West-Central Asia
Eastern Europe and West-Central Asia (EEWA) is approximately
21 million km?, of which 41% is forest (33% primary and 3% planted)
and 25% is dedicated to agriculture. Total AFOLU emissions were
0.2 GtCO,eq yr ! (averaged between 2013 and 2017), 0.19 GtCO,eq
yrt (95%) from Agriculture and 0.01 GtCO,eq yrt (5%) from land-
use change. The main drivers of agriculture emissions are enteric
fermentation (46%), manure management (11%), and synthetic ferti-
lizers (10%), whereas the main drivers of tree cover loss are wildfires
(59%) and forestry (35%).

The total technical mitigation potential in EEWA is 1.9 + 0.1
GtCO,eq yr, and the cost-effective mitigation potential ($100/
tCO,eq)is 0.75 + 0.1 GtCO,eq yr't (39%). The highest cost-effective
mitigation potential comes from agroforestry (0.18 GtCO,eq yrt
24%), then forest management (0.12 + 0.08 GtCO,eq yrt: 16%), soil
organic carbon in croplands (0.11 GtCO,eq yrt; 13%), peatland res-
toration (0.1 GtCO,eq yrt: 13%), and shifting diets (0.07 GtCO,eq
yrt; 10%) (Figure 8b). The IAM cost-effective potential (up to $100/
tCO,eq) for land-based mitigation (AFOLU + BECCS) is 0.12 (0.04~
0.7) GtCO,eq yr " in 2050.
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Across the countries, Russia has the largest cost-effective mit-
igation potential at 0.47 + 0.05 GtCO,eq yr'L, or about 62% in
EEWA, largely due to its size which is 78% of the land area in EEWA
(Figure 8a). The Russian Federation is followed by Kazakhstan, Belarus,
Uzbekistan, and Turkmenistan. The land-based emissions in these
countries are attributed to agriculture, and the highest cost-effective
mitigation potentials are in agricultural carbon sequestration measures
(except for Belarus, where improved forest management measures
have the highest potentials due to the importance of their forestry
sector on emissions). Demand-side measures are also important in
Russia, Kazakhstan, and Uzbekistan. Six EEWA countries have cost-
effective potentials that are over 30% of their total emissions, “High
relative potential,” however, unlike in other regions, none have cost-
effective potential exceeding their total emissions (Figure 8c). Belarus
has the highest mitigation density, at 1.8 tCO,eq ha™. At the regional
scale, average mitigation density is fairly low, 0.36 tCO,eq ha™!, with
the restoration of forests and other ecosystems offering the most

mitigation density at about 100 tCO,eq ha™?, followed by carbon se-
questration in agriculture at 28 tCO,eq ha™ (Figure 2b).

The median feasibility score in EEWA (47) is slightly below the
global median, with half of EEWA countries in the 50th-75th per-
centiles and one-third in the 25-50th percentiles (all “medium” fea-
sibility). No EEWA country lies in the 75%-100% percentiles, while
Tajikistan and Turkmenistan are below the 25% percentile, or “low”
feasibility (Figure 8c). EEWA countries have below-average scores in
five feasibility dimensions (institutional, geophysical, technological,
environmental-ecological, and socio-cultural), and above-average
scores in the economic dimension.

3.2.5 | Latin America and Caribbean

Latin America and the Caribbean (LAC) is approximately 20 million
km?, of which 47% is forest (46% primary and 3% planted) and 36%
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is dedicated to agriculture. Total AFOLU emissions were 2.2 GtCO,eq
yr! (averaged between 2013 and 2017), 0.9 GtCO,eq yrt (40%)
from agriculture and 1.3 GtCO,eq yr™! (60%) from land-use change.
The main drivers of agriculture emissions are from livestock produc-
tion, enteric fermentation (58%), and manure left on pasture (23%),
whereas the main drivers of tree cover loss (proxy for land-use change)
are commodity agriculture (51%) and shifting agriculture (38%).

The total technical mitigation potential in LAC is 8.1 + 2.3
GtCO,eq yr}, and the cost-effective mitigation potential ($100/
tCO2eq) is 3.4 + 1.2 GtCO,eq yr 1 (42%). The highest cost-effective
mitigation potential comes from reducing deforestation (1.6 + 0.96
GtCO,eq yr''; 49%), then biochar application (0.42 GtCO,eq yr';
13%), A/R (0.4 + 0.1GtCO,eq yr '; 12%), BECCS (0.23 GtCO,eq yr ;
7%), shifting diets (0.22 GtCO,eq yrt; 7%), soil organic carbon in
grasslands (0.17 GtCO,eq yr't; 5%), and agroforestry (0.13 GtCO,eq
yr't; 4%) (Figure 9b). The IAM cost-effective potential (up to $100
per tCO,eq) for land-based mitigation (AFOLU + BECCS) is 1.9 (0.2-
3.8) GtCO,eq yr " in 2050.

Among the LAC countries, Brazil has the highest cost-effective
mitigation potential by several orders of magnitude at 1.7 + 0.5
GtCO,eq yr !, accounting for about 50% in LAC, largely due to its size
which is 42% of the land area in LAC (Figure 9a). Brazil is followed
by Colombia, Mexico, Argentina, and Bolivia which are predominantly
high forest and/or high meat-producing and consuming countries and
thus have protecting forests, restoring forests, shifting to healthy
diets, and carbon sequestration in agriculture among the highest po-
tentials (Figure 9b). A large majority (>70%) of LAC countries have
cost-effective potentials that are over 30% of their total emissions,
higher than the global median to achieve a 1.5°C trajectory, or “High
relative potential.” High forest and lower fossil fuel emissions coun-
tries, Guyana, Suriname, Bolivia, Peru, Colombia, Brazil, and Costa
Rica all have cost-effective potentials that are over 100% of their
total emissions, or “Surplus potential” (Figure 9c). The density of cost-
effective mitigation potentials (total potential by total area) across
all countries is 1.7 tCO,eq ha™ (Figure 9a). Trinidad and Tobago, El
Salvador, and Barbados have the highest mitigation densities, at >3
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tCO,eq ha™, even though they have relatively modest total potentials
compared to the other countries in the region (Figure 9a).

Most countries in LAC have higher feasibility scores than the global
median and are in the 50-75% percentiles (“medium” feasibility). Costa
Rica, Chile, Trinidad and Tobago, and Uruguay are above the 75% per-
centile (“high” feasibility), while Haiti is below the 25% percentile (“low
feasibility”) (Figure 9c). Relative to global scores, LAC countries scored
below-average in four feasibility dimensions (economic, institutional,
geophysical, and environmental-ecological) and above-average scores
in the technological and socio-cultural dimensions.

4 | DISCUSSION AND CONCLUSIONS

In this study, we provide a comprehensive and updated assessment
of global, regional, and country-level land-based mitigation poten-
tial, and examine country-level feasibility. We show that our sectoral
portfolio of 20 land-based mitigation activities has the potential to

deliver 13.8 + 3.1 GtCO,eq yr™t within the cost-effective range (up
to $1OO/tC02eq), about 40% of the technical potential. The land-
based mitigation potential across the integrated assessment models
(IAMs) is 8.0 median (0.8-16.5 range) within the cost-effective range
(up to $100/tC02eq), about 60% of the sectoral estimate. Combining
both approaches, we conclude that the likely range of cost-effective
land-based mitigation is 8-13.8 GtCO,eq yrt between 2020 and
2050. Cost-effective mitigation potentials represent a more realistic
and actionable target grounded in public willingness to pay for cli-
mate mitigation, and therefore, are more relevant in policy-making
than technical potentials.

Our land-based mitigation estimates are broadly in line with
previous studies including the IPCC-AR5 AFOLU economic mitiga-
tion potential of 7.2-10.6 GtCO,eq yrtin 2030 (Smith et al., 2014);
the UNEP Emissions Gap potential of 12 (9-15 uncertainty range)
GtCO,eq yr'!in 2030 (6.7 and 5.3 GtCO,eq yr! for agriculture and
forests, respectively) (UNEP, 2017); the cost-effective potential of
11 GtCO,eq yr 't in 2030 estimated by Griscom et al. (2017); and the
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median supply-side potential (including technical and economic) of
10.6 GtCO,eq yr ' and 1.5°C land sector roadmap of 14-15 GtCO,eq
yr'1 between 2030 and 2050 from Roe et al. (2019). Our sectoral es-
timate of 13.8 + 3.1 GtCO,eq yrtis also on par with modelled 1.5°C
pathways for the land sector, 13.8 median (9.9-17.6 IQR) GtCO,eq
yr'tin 2050 (Roe et al., 2019). Our work builds on and includes sev-
eral advances (detailed in Methods 2.1) beyond these and other pre-
vious studies on land-based mitigation (Griscom et al., 2017, 2020; Jia
et al., 2019; Roe et al., 2019; Smith et al., 2013, 2014; UNEP, 2017),
including the first cost-effective potential for demand-side measures
and soil organic carbon sequestration in croplands and grasslands (full
dataset in Supplementary Information). Compared to previous stud-
ies, our estimates present lower BECCS potential due to the $100/
tCO,eq cost constraint, lower demand-side potential as it does not
include emissions reductions from land-use change to avoid double
counting, and higher biochar and soil carbon management potential
due to refined methods that capture a broader set of activities.

Our land-based cost-effective potential is roughly 50% from
forests and other ecosystems, 35% from agriculture and 15% from
demand-side measures (Figure 2a). When the full value chain emis-
sions of demand-side measures are considered, their potential
increases threefold. Each of the 20 land-based measures incorpo-
rated in our study has potential co-benefits and risks, depending
on how and where they are implemented (Figure 3, Supplementary
Information). Protection of forests and other ecosystems, particu-
larly of primary ecosystems, and demand-side measures present
high mitigation efficiency, high provision of co-benefits, and rela-
tively lower costs. However, feasibility barriers, including economic,
institutional, and technological constraints (Figure 4), could limit
countries from realizing their climate mitigation potentials and the
associated co-benefits. A substantial portion of the global cost-
effective potential (80%) is in developing countries and LDCs, where

feasibility issues are of greatest concern.

4.1 | Dataadvances made, but gaps remain

Despite the advances made in this study, certain limitations and
gaps remain. As previously outlined in the Methods, completely
accounting for land competition, and avoiding double counting of
mitigation, is difficult when aggregating sectoral estimates from
different activities and methodologies. Separate studies may allo-
cate the same land for divergent abatement activities. We attempt
to limit double counting by excluding certain measures that could
overlap (Methods 2.1.1). While we can limit overlapping activi-
ties, we are not able to adequately account for land competition
and suboptimal allocation of land and feedstocks when combin-
ing all activities from our sectoral approach assessed in Table 1.
Due to these limitations, we also provide a comparison with IAM
estimates that account for land allocation and optimization across
all economic sectors, and thus avoid double counting. IAMs, how-
ever, have other limitations. As outlined in the Methods Section
2.1.2 and Results 3.1.1, IAMs only include about one-third of the
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land-based measures in the sectoral estimates, and thus may be
underestimating mitigation potential in the land sector. In addi-
tion to a more limited portfolio of land-based measures, IAMs are
generally coarser in resolution than sectoral studies, and a ma-
jority do not provide country-level estimates. IAM mitigation po-
tential estimates also have large ranges as different models and
scenarios vary in their baseline assumptions (e.g., some already
include carbon prices and reduced deforestation in baseline which
reduce mitigation potential) and timing of mitigation (e.g., some
scenarios generate temperature overshoots which place most of
the mitigation after 2050—beyond the time horizon considered in
our estimates).

Our estimates (both sectoral and IAMs), as with most current
land-based mitigation estimates, do not account for (1) substitu-
tion effects for avoiding fossil fuel emissions (although we provide
global estimates for BECCS, biochar, and manure management); (2)
foregone sequestration potential from avoided land-use change
(with the exception of the BECCS estimate); and (3) potential im-
pacts from future climate change. These issues could have a sub-
stantial impact on land-based mitigation globally and regionally.
Substitution effects of land-based measures, particularly of BECCS,
biochar and wood products have the potential to reduce significant
fossil fuel emissions. Accounting for the continued carbon seques-
tration potential of protecting forests and other ecosystems, rather
than just avoided emissions, would also increase mitigation poten-
tial. On the other hand, inadequate action to reduce atmospheric
GHG concentrations enhances the risk that climate impacts will
reduce future potential for land-based mitigation and turn resid-
ual land sinks into sources (Jia et al., 2019). Additional research is
therefore needed on the impact of substitution effects, foregone
sequestration, and climate change impacts on individual land-
based mitigation activities at a regional or country level. More data
on country-level tradeoffs (e.g., biodiversity impacts, resource-use
limitations) from land-based measures could also aid country-level
planning. Finally, expanding the portfolio of land-based mitigation
measures in IAMs (e.g., non-forest ecosystems, soil carbon seques-
tration in agriculture, demand-side measures) and country-level
sectoral approaches (e.g., blue carbon from seagrass and marshes,
savanna and grassland restoration, management of hard wood
products, enhanced rock weathering) would broaden the range of
AFOLU potential considered.

4.2 | Global and temporal implications of land-
based mitigation

To stay on a 1.5°C pathway, total emissions will need to fall by about
50% each decade, until net zero emissions are reached about mid-
century (Rockstrom et al., 2017; Roe et al., 2019; Rogelj et al., 2018).
This process will require the transformation of every economic sec-
tor (Rogelj et al., 2018). Because of their economic characteristics,
their substantial co-benefits, their ability to work in tandem with
the decarbonization of other sectors, and their potential for rapid
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implementation, land-based mitigation activities could provide a large
share of the near-term (next decade), low-cost mitigation necessary to
meet such ambitious decadal milestones. Although some land-based
mitigation potentials could be realized comparatively quickly, cur-
rent levels of financing and investments in land-based mitigation and
nature-based solutions (UNEP, 2021) continues to be inadequate in
unlocking mitigation at the cost-effective levels outlined in our study.
Mobilizing sufficient investments in the next few years will be criti-
cal for near-term mitigation gains. Longer-term opportunities which
require more time to realize mitigation gains, like carbon sequestration
measures (A/R, soil carbon management) and/or additional research,
technology and development, such as the deployment of BECCS, will
need up-front investment and long-term land-use planning including
risk mitigation.

Our analysis adds new dimensions relevant to strategic planning
and successful implementation of land-based measures, which can
be used to plan and prioritize country-specific policies and measures
that target co-benefits and help achieve other international goals and
targets, such as the goals formulated under the NYDF and the UN
Decade on Ecosystem Restoration, and the SDGs. Land-based miti-
gation potential roughly correlates with countries’ land area, but our
analysis of mitigation densities reveals that many smaller countries
have disproportionately high levels of mitigation potential for their
size, suggesting fertile ground for targeted investments. Our feasi-
bility assessment also suggests that weak governance, low economic
development, limited access to technology, socio-cultural conditions,
and low acceptance of policies could create barriers for implementing
land-based mitigation, particularly in developing countries and LDCs.
However, implementation barriers as well as opportunities also de-
pend on the type and site-specific location of land-based measure.
Collaborative efforts to reduce barriers and open opportunities at the
country or regional level may release globally significant quantities
of near-term mitigation at relatively low costs. The timing, quantity,
co-benefits, and cost are key considerations for external actors who
seek to help these countries mobilize their mitigation potential. Our
research suggests that investments to increase feasibility and readi-
ness may prove to be more cost-effective than investments aimed at
the land-based mitigation activities themselves (i.e., by helping shift
countries from left to right in Figures 4-9, mobilizing mitigation that

might otherwise be infeasible).

4.3 | Country context for implementing and
scaling-up action

Our results show that the opportunities among countries are quite
heterogeneous, in terms of the relative scale of mitigation poten-
tial, the types of land-based measures available, their potential co-
benefits and risks, and the feasibility of realizing them. Strategies
that determine what, where, when, and how mitigation meas-
ures are implemented will therefore vary significantly by country.
Implementing mitigation measures that maximize co-benefits and

limit risks will require strategies that consider mitigation costs and

opportunities in other sectors, environmental and socio-economic
consequences across stakeholders, consider tradeoffs and spillovers
among mitigation actions and with other policy goals, and budget-
ary implications. To aid the development of such strategies, it is
helpful to look at individual country plans and glean lessons learned
from experiences in implementing land-based mitigation measures
and policies. We highlight three countries below according to three
mitigation potential tiers “Limited relative potential,” “High relative
potential,” and “Surplus potential” (Figure 4, Section 3.1.3) to outline
some lessons and considerations in scaling-up action.

China, a “Limited relative potential, medium feasibility” country,
recently announced a long-term climate mitigation plan to peak emis-
sions before 2030 and achieve net zero emissions, or carbon neutrality,
by 2060. To achieve its goals, China has to restructure its economy
(Mallapaty, 2020), including a 90% reduction of all GHG emissions
by 2050 compared to 2005 levels and carbon removals using natural
carbon sinks such as A/R and other CDR technologies (Tianjie, 2020).
China has significant experience with large-scale A/R programs, includ-
ing the Grain for Green initiative to mitigate soil erosion, that resulted
ina 25% net increase in global canopy area on 6.6% of global vegetated
area between 2000 and 2017 (Chen et al., 2019). However, some of
China's afforestation efforts generated significant localized tradeoffs
such as water depletion and reduced biodiversity, which led to criti-
cisms of, and adjustments to government programs (Hua et al., 2016).
China's long-term climate mitigation plan highlights the need to har-
monize climate with sustainable development goals. However, China
has not yet included policy targets or measures for maintaining healthy
diets or reducing food waste, which make up about 35% of its cost-
effective land-based mitigation potential and can deliver significant co-
benefits. China is an example of an industrialized country which, as a
matter of priority, has to decarbonize its energy and industrial sectors
(>90% of its emissions), but can use AFOLU mitigation to tap into near-
term mitigation potentials that can deliver social and environmental
co-benefits. Furthermore, any efforts to shift diets and reduce food
waste could alter the long-term trajectory of agriculture emissions in
China and beyond, especially considering its role as a major importer
of agricultural commodities, including those that cause deforestation.

In contrast, the Democratic Republic of Congo, a “Surplus poten-
tial, low feasibility country,” is characterized by relatively low fossil
fuel emissions and high AFOLU emissions. DRC has the potential to
generate surplus AFOLU mitigation, largely through the protection
of forests and other ecosystems (95%), that can enable the country to
achieve net negative emissions by mid-century. However, according
to their NDC, the DRC faces a series of feasibility challenges that un-
dermine the deployment and scaling up of mitigation action: limited
national financial resources, external financial support, and techni-
cal, jurisdictional and institutional capacity; as well as the absence
of policies and incentives that adequately addresses competing sec-
toral interests (mining, agriculture and forestry) (Government of the
Democratic Republic of the Congo, 2015). Activating DRC's mitiga-
tion potential will require addressing drivers of deforestation (com-
mercial agriculture (40%), subsistence farming (20%), or wood fuel
harvesting (20%) and development challenges at the nexus of food
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security, rural development, energy supply, and forest conserva-
tion. Various programs and initiatives to reduce deforestation in the
DRC have been in place since 2015 (Central African Forest Initiative
created, FCPF Readiness Package approved); however, funding has
been slow to materialize and feasibility constraints make it difficult
for DRC to access result-based finance. DRC is an example of a for-
est LDC country that would significantly benefit from deploying an
integrated development strategy that leapfrogs carbon-intensive
development in favor of clean and sustainable development choices,
and from international partnership and assistance.

Another example, Ecuador, is a “High relative potential, medium
feasibility country” with large potentials for protecting forests and
other ecosystems (~60%). Reducing deforestation is identified as one
of the main mitigation options in the country's NDC, which proposes
to reduce deforestation by 4% (unconditional) or 20% (conditional on
support) compared to a 2000-2008 reference level (Government of
the Republic of Ecuador, 2015). The country's existing payment-for-
ecosystem services program, established in 2008 (Acuerdo Ministerial
161, Plan Nacional del Buen Vivir), proves the ability to successfully
realize AFOLU mitigation potentials while delivering substantial co-
benefits including ecosystem services and income to forest com-
munities. Landowner contracts are for 20 years and commit to the
preservation of tree cover. As of December 2018, almost 175,000
people participated in the program, resulting in estimated avoided
deforestation of 1.6 Mha, spanning about 15% of Ecuador's territory
(Ecuadorian Ministry of Environment, 2018). The program also led to
a decrease in land conflicts in areas with ambiguous land titles (Jones
et al,, 2020) and generated both socioeconomic and ecological bene-
fits. However, the program depends on continued government funding
to incentivize persistent conservation behavior (Etchart et al., 2020).
Ecuador expanded its funding sources for conservation programs by
receiving results-based finance from the REDD+ Early Movers pro-
gram (Germany/Norway, signed 2018) and the Green Climate Fund
(2019). The country's experience with payment-for-ecosystem services
shows how conservation payments can strengthen land governance
but also that continued funding and support is essential for its success.

These country examples within our country categories (Figure 4,
Section 3.1.3) highlight various important considerations in imple-
menting and scaling-up land-based mitigation. (1) AFOLU mitigation
strategies are more successful when part of long-term strategies and
policies that have a holistic view of emissions and decarbonization
options from other sectors, of various land-use needs and challenges,
and of sustainable economic development (Hurlbert et al., 2019). (2)
Allowing for adaptive adjustments over time could enable needed
corrections and enhance program sustainability and effectiveness
(Hurlbert et al., 2019; Smith et al., 2020). (3) The integration of global
commodity markets means that demand-side measures should
complement local supply-side measures. Embedded emissions and
carbon leakage, particularly for large agricultural importers, make
it difficult for medium- or low-feasibility countries to collectively
address AFOLU emissions, particularly where agricultural demand
and economic opportunity act as drivers of deforestation (Pendrill
et al,, 2019). While demand-side measures are largely lacking in
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country NDCs, they are essential to achieve AFOLU potentials. (4)
Developing and LDC countries will need to continue to develop, and
could benefit from leap-frogging fossil-fuel intensive infrastructure
and moving directly to sustainable energy infrastructure (Levin &
Thomas, 2016). (5) Global cooperation and tailored assistance could
help address feasibility barriers in developing countries, particularly
to increase economic and institutional capacity and to help develop

country-specific plans to start implementation.
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