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Abstract 

 

Smallholder farmers’ decisions have important implications for the global food system and global 

environmental changes. Models have been successfully used to understand human decision-making, 

including that of farmers, and to explore policy interventions towards sustainability. A frequent 

approach has been to represent economic decisions in aggregate ways and to assume perfect 

information and utility maximisation. In reality, farmers have to cope with uncertainties about the 

dynamics of the social-ecological system (SES) that they are part of and they also act in ways that 

deviate from rational choice theory. As such, learning processes and adaptive behaviour represent an 

unexplored, but potentially rich avenue for understanding decision-making. In this paper we study the 

social-ecological outcomes of two such processes that have been suggested as key by sustainability 

scholars: learning-by-doing and social learning. We expand a pre-existing stylised agent-based model 

(ABM) of human decision-making within an SES to include learning-by-doing and social learning agents, 

and we study the impact of their learning strategies on economic, ecological and social outcomes. Our 

results show that learning agents are able to better match their decisions to the ecological conditions 

than non-learning agents. In addition, depending on the normative goals pursued, one learning strategy 

might be more suitable than the other. Lastly, we analyse diffusion dynamics and we find that an initial 

share of learning-by-doing agents of about 11% might constitute a critical mass for this behaviour to 

become dominant in a population. This points to research areas of policy relevance that could be 

explored in future studies. 
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1. Introduction  

Smallholder farmers’ decisions affect all of us, as they relate to the global availability and affordability 

of food. The International Fund for Agricultural Development estimates that there are 500 million 

small farms in the world and more than 2 billion people depend on them for their livelihoods (IFAD, 

2003). In addition, farmers’ decisions have implications on the health of our planet and long-term 

food security, as they impact the environment in numerous ways, ranging from land-use and 

land-cover changes, to biodiversity loss, soil nutrient depletion, pressure on the aquatic resources and 

climate change, among others (Foley et al., 2005; Tilman et al., 2001). 

Computational models have long proven to be a useful tool for studying agricultural systems and 

human-environment interactions more broadly. When trying to understand how farmers shape 

social-ecological systems, the typical approach has been to take an economic perspective and to 

model their decisions in aggregate ways and as a direct response to market influences (Brown et al., 

2017; Huber et al., 2018; Janssen et al., 2007). This assumes access to perfect information on 

market conditions, strategy options and the associated payoffs, as well as a rational choice 

perspective on behaviour. In reality, resource and economic dynamics are often unknown or known 

partially, either due to inherent uncertainties about underlying processes, such as input availability, 

environmental variability or price fluctuations, as well as due to social structures and institutions 

mediating the flow and access to certain information. In addition, even if full certainty about the 

system dynamics were possible, we know from empirical studies that individual behaviour is rather 

irrational and sensitive to cognitive shortcuts, experimentation, peer influences, habits, and cultural 

norms (Simon, 1955; Camerer, 1995; Kahneman et al., 2000). Also, see (Meyfroidt, 2013) for an 

overview of behavioural theories relevant to understanding social-ecological feedbacks). As such, 

numerous calls have been made for improving the representation of decision-making within 

computational models by moving beyond classical rational choice approaches (Parker et al., 2003; 

Rounsevell et al., 2014; Huber et al., 2018; Schlüter et al., 2012).  

The modelling of human behaviour within social-ecological systems beyond classical rational choice is 

still in its early days. However, significant progress has been recently made in specifying alternative 

behavioural theories, as well as in designing and parameterising agent decision models using clear 

theoretical assumptions or empirical data (Groeneveld et al., 2017; Schwarz et al., 2019; Filatova et 

al., 2013). And yet, one area that remains underdeveloped is the representation of learning processes 

as part of agents’ heterogeneous decision-making.  

Learning is closely linked to adaptation and, as such, it has become a normative goal within the 

social-ecological systems literature (Baird et al., 2014; Armitage et al., 2008). In particular in the case 

of farmers, adaptation is seen as an important variable characterizing decision-making and it is 

understood as a set of “adjustments in agricultural systems in response to actual or expected stimuli 

through changes in practices, processes and structures” (Robert et al., 2016, p. 2). Within this 

context, learning processes are what drive behaviour as a function of observations from the 

environment. As Miller et al. (2007) point out, while there is only one way to optimise, there are 

multiple ways to adapt, and it may be the case that different types of adaptive behaviour are 

equivalent in terms of outcomes. A key question is, therefore: “can we create a coherent science of 

adaptive agents?” (Miller et al., 2007, p. 82). To answer this broad question, we posit, learning 

processes need to be better understood and more often explicitly included in models of 

decision-making. This proposition is consistent with many reviews calling for more attention to 

representing learning, risk and uncertainty and social interactions within agent-based models (ABMs) 

(Huber et al., 2018; Schlüter et al., 2012; Schulze et al., 2017; Bousquet et al., 2004). 
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In this paper we focus on studying two learning processes that have been often mentioned in the 

sustainability science and social-ecological systems literatures as playing a key role in human 

decision-making for environmental resource management: learning-by-doing and social learning. The 

former stems from adaptive management literature and involves a process of adjusting one’s actions 

based on observed feedback from the environment. The latter is linked to the literature of 

co-management (i.e. with multiple stakeholders) and it involves changes of understanding rooted in 

participatory processes and social interactions. We provide a clearer delineation of both concepts in 

the next section.  

Against this background, the main objective of our study is to contribute to the research agenda on 

understanding adaptive agents in general, and farmer behaviour in particular, in two ways: a) by 

making a conceptual and methodological contribution as to how learning-by-doing and social learning 

may be represented in a social-ecological model; b) by advancing our current theoretical 

understanding of how these processes and their interactions might affect smallholder farmers’ 

decision outcomes.    

The first contribution, we hope, is explicit in Section 3 and in Section 4 where we detail our approach 

to integrate a learning component into an already existing agent-based model of an agro-pastoral 

system, RAGE (Dressler et al., 2019). The second contribution is realised by asking the following 

research questions to inform our explorations of the model presented in the “Results” section: 

1) How are the outcomes of agents’ decisions affected by different learning types? 

2) How do different types of learning interact and to what effects?  

We situate our efforts at the intersection of several literature streams. Firstly, our approach is 

grounded in a social-ecological systems perspective, meaning that we understand 

human-environmental interactions to be more than the sum of social and ecological processes. 

Instead, social-ecological systems are “integrated systems characterised by strong connections and 

feedbacks within and between social and ecological components that determine their overall 

dynamics” (Biggs et al., 2021, p. 5), where relational, co-evolutionary and emergence aspects are key  

(Preiser et al., 2018; Schlüter et al., 2019). 

Secondly, consistently with the social-ecological systems lens (Preiser et al., 2018), the paper takes a 

“complex adaptive systems perspective” on farming systems. This means, among others, that time is 

a key variable, there is path dependency and learning is seen as an ongoing and interactive process 

where decisions at the level of the farm are influenced by the broader context in which it operates 

(Darnhofer et al., 2010).  

Thirdly, in line with the adaptive co-management literature, farmers’ learning is not limited to 

individual experimentation, but can also result from interaction and discussions with others 

(Munaretto et al., 2012; Darnhofer et al., 2010). Our choice of learning processes to be studied here 

is thus justified.  

A final important observation to be made is that, in our study, we consider both learning-by-doing 

and social learning as processes taking place at the individual level, represented in the model as one 

household unit. This is in contrast to learning processes situated at the level of an entire community 

and expressed as culture, norms and institutions.  
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2. Theoretical Background  

Learning has been conceptualised in many ways and it is beyond our purpose here to provide an 

extensive review of its understanding in fields as diverse as psychology, economics, organizational 

management, educational sciences. We will instead focus on the two types of learning that are the 

subject of our study to briefly situate them within the literatures from which they emerged and to 

specify, along the lines suggested by Bennett et al. (1992), who learns, what is learnt and to what 

effect. 

2.1. Learning-by-Doing 

The concept of learning-by-doing originates from studies of aircraft and ship production in the 1930s 

when Wright (1936) started plotted produced quantities against costs and observed a 20% reduction 

of unit costs with a doubling of output (see Dosi et al., 2017). Driven largely by empirical 

observations, the concept entered economics where similar cost-quantity relationships, i.e. “progress 

curves”, began to be quantified for different products. As one of the assumed driving mechanism 

behind these cost reductions is that with experience it takes less time to produce one unit of output 

(Miketa et al., 2004), the notion of “learning curves” gained traction. Other terms that are used 

interchangeably are “progress curves”, “startup curves”, or “improvement curves” (Glock et al., 

2019). However, Thompson (2011) caution that a “progress curve”, in the way originally determined 

by Wright, is more than a “learning curve” as it allows for other explanations beyond cumulative 

experience for the observed relation between unit costs and output volume, for instance R&D, 

product design changes, capital investment.  

For learning curves, the relationship between experience indicators and performance indicators is 

usually expressed by a power function (Dosi et al., 2017). Yet, applications also exist with two-factor 

learning curves that distinguish between cumulative experience – “learning by doing” and 

accumulated knowledge – i.e. “learning by searching” (Miketa et al., 2004). Such curves have become 

mainstream in assessing energy technology policies and in modelling energy transitions. For instance, 

the concept of “learning by doing”, understood as the declining cost of renewable energy substitutes 

as a function of production capacity, has been used to evaluate the role of backstop technologies and 

the optimal time for transitioning to alternatives (Jouvet et al., 2012). More recently, “learning-by-

searching” has also become increasingly used to refer to incorporating R&D costs in driving energy 

innovation (Berglund et al., 2006). 

In homo-technological systems, the concept of learning-by-doing is also sometimes equated to 

experiential learning and is related to humans’ ability to learn from their mistakes (Bointner et al., 

2016). This is a measure of the failure rate of a specific system which is supposed to decline with 

experience. However, because mistakes can occur also due to other factors than lack of learning, e.g. 

forgetting, scholars emphasize the need to distinguish between “errors of commission” and “errors of 

omission” (Bointner et al., 2016). 

A closely related concept stemming from psychology is that of reinforcement learning. Its roots go 

back to Skinner’s (1938) operational conditioning and it suggests that negative outcomes will lead to 

avoiding a specific action in the future, while positive outcomes will make the action reoccur. In 

contrast to cognitive conscious learning, which allows for beliefs about relationships to be formed, the 

original understanding of reinforcement learning involves no conscious reflection (Brenner, 2006). 

However, in practical economic applications, considerations of an automatic response to stimuli have 

been mostly left aside, and implementations of reinforcement learning have been closer to what 

Brenner (2006) calls routine-based learning models, i.e. models where “there is a direct connection 

from the agent’s experiences and observations to their behaviour” (Brenner, 2006, p. 908). For 
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instance, a typical way to model reinforcement learning is by assigning higher probability in the future 

to actions that have proven successful in the past (Arifovic et al., 2004).  

In its broader understanding, reinforcement learning is important to our discussion because it opens 

the door to a broad literature on possible algorithms for updating routines based on experimentation.  

Beyond its uses in economics, Thompson (2011) claims that learning-by-doing had already gained a 

lot of popularity at the beginning of the twentieth century as an educational method, following from 

the ideas developed by Dewey (1988). Closely related, experiential learning was later coined by Kolb 

Kolb (1984), the founder of organizational learning, to describe how abstract concepts and 

generalizations are formed by observation and then tested in new situations (see Miettinen, 2000). 

Within these interpretations, the concepts of “experience” and “reflection” are central.  

Finally, within adaptive management, learning-by-doing and experiential learning have been used 

interchangeably to refer to knowledge generation processes in systems characterised by uncertainty 

and environmental change (Lindkvist et al., 2014). As such, learning-by-doing is a structured process 

of adaptation and it refers to gradual changes in behaviour based on observations of past actions. 

The subject of learning – who learns – is sometimes left ambiguous, while some authors explicitly 

claim that learning-by-doing through experimentation manifests itself not only as a change in 

individual behaviour, but also at the community level (Munaretto et al., 2012). This proposition 

situates learning-by-doing close to some views of social learning, as explained further below.  

For our purposes, we understand learning-by-doing as an individual process of adjusting decisions 

based on observations from the environment. Heuristics are employed as to how to adjust the 

decision based on observations. This is first-order learning because the rule by which behaviour is 

adjusted is not in itself altered. It is also a process that takes place at the level of each individual 

household, without consideration of external factors or other agents. Lastly, learning-by-doing in this 

conception does not exclude optimisation, as the goal is still to take a decision that reduces losses. 

However, it is not optimisation in the sense of estimating future outcomes, but rather as a reactive 

decision to observations.  

2.2. Social Learning 

Just like learning-by-doing, the concept of social learning has also been subjected to diverse and 

often conflicting interpretations.  

According to Muro et al. (2008), the conceptual origins of social learning are grounded in the work of 

Miller et al. (1941) who were the first to propose that individuals observe others and then behave 

according to formed expectations about benefits and rewards. Later on, Bandura (1977) further 

developed these insights into his social learning theory emphasizing the role of observing, modelling 

and imitating others. Whereas earlier behaviourist models assumed that it was not possible to 

observe factors mediating stimulus and response relations, Bandura’s model was a cognitive one, 

suggesting that an observation would lead to a specific behaviour after some thinking process. 

Within economics, imitation has been mostly modelled based on the authors’ assumptions and 

depending on the purposes of the model (Brenner, 2006). Typically, individuals would observe others 

in their close proximity and employ a certain heuristic on when to imitate and when not. Decision 

rules could include, for instance, imitating agents with highest performance of those observed or 

calculating and executing an average behaviour (Brenner, 2006).  

Within the domain of agriculture, imitation strategies are recognized as effective ways of minimising 

risks and they often entail copying decision rules rather than specific farming activities (Le et al., 

2012). Particularly in situations of risk or where outcomes are highly uncertain, individuals start 

considering the experiences of others around them (Nowak et al., 2017). In addition, there is 
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evidence that farmers’ decisions are influenced by their social milieu, i.e. their networks and 

interactions with friends and neighbours (Janssen et al., 2007; Hunecke et al., 2017). Although trust 

relationships and personal networks are important in agricultural decision-making, social mimicry 

alone might sometimes explain how behaviour spreads (Rebaudo et al., 2011). As innovation 

diffusion theories suggest, others’ behaviours influence decisions when clear benefits of adoption are 

observed or when there is sufficient adoption of an innovation in a community as to alter perceived 

norms (Nowak et al., 2017).  

These latter insights already suggest a slightly different interpretation of social learning than the one 

originally advanced by Bandura (1977), where the emphasis is on behaviour occurring and diffusing 

in social networks rather than as a consequence of individual observation.  

Furthermore, within collaborative natural resource management, social learning is often understood 

as a process taking place during participatory processes (Schusler et al., 2003), and which results in 

three distinct outcomes: changed knowledge, changed actions and changed actor relations (Beers et 

al., 2016). Similarly, Reed et al. (2010) provide a much cited definition of social learning as “a change 

in understanding that goes beyond the individual to become situated within wider social units or 

communities of practice through social interactions between actors within social networks” (p.6). This 

perspective on social learning as a process of social change deviates from the conceptualisation of 

Bandura (1977) as change within an individual (Reed et al., 2010; Apetrei et al., 2021). 

A useful way for thinking about these differences has been advanced by Rodela (2011) who identified 

three perspectives on social learning: an individual-centric perspective refers to changes in personal 

understanding based on social relations, a network-centric perspective emphasizing changes in 

practices and relationships at group level and a system-centric perspective describing changes in 

institutional settings and broader policies. It is especially in relation to the latter two that some 

authors within adaptive (co)management have linked processes of learning-by-doing to social 

learning, where experiments are seen as boundary objects facilitating community participation and 

exchange (Munaretto et al., 2012). 

In our study, we will primarily look at social learning as an individual process of imitating other 

successful agents. However, we also consider a second type of social learning as a diffusion process 

over the entire network.  

2.3. Effects of learning and process interactions 

To describe what changes as a consequence of learning processes and the various scales at which 

learning is situated, the concept of a feedback loop is quite useful.  

Le et al. (2012) discuss feedback loops and various types of adaptation in the modelling of land-use 

decisions in an ABM setting. Building upon the Human-Environment System framework developed by 

Scholz (2011), they distinguish between a primary and a secondary feedback loop that determine 

human behaviour by feeding information from the environment. The primary loop refers to how 

„human agents perceive the status of the environment and react to it”, while the secondary loop 

requires a „reframing of the agent’s behavioural program” (Le et al., 2012, p. 84). This echoes 

conceptualizations of single-loop, double-loop and triple-loop learning. Single-loop learning refers to 

correcting errors by changing actions based on observed feedback from the environment, double-loop 

refers to changing existing values and rules that drive actions, while triple-loop learning is about 

changing the broader institutional and societal context underpinning the set of possible 

rules/strategies (Armitage et al., 2008; Pahl-Wostl, 2009).  

Within adaptive management, some scholars also distinguish between technical learning, aimed at 

reducing structural uncertainty about the dynamics of the resource, and institutional learning, which 
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is a social process leading to an alteration of the decision architecture (Williams et al., 2016). 

Technical learning is an adjustment made after monitoring and evaluating the state of the resource, 

and it is nested within institutional learning. Together, these two processes are also referred to as 

double-loop learning (Argyris et al., 1978), although note that compared to Le et al.'s (2012) 

approach, the subject of learning is not necessarily the individual.  

While learning loops clarify what the learning can be about, they are not always explicit about who is 

learning. Diduck (2010) identifies five levels at which learning can take place: individual, action 

group, organizational, network learning, societal learning. We have also mentioned some of these 

levels and how they relate to the two core processes that are of interest in our study.  

2.4. Linking learning to theories of behaviour 

One aspect that still remains unclear is the relationship between various learning processes and 

theories of behaviour. This is of particular relevance for including learning into agent-based models. 

The modeller is confronted with four main tasks: finding theories about decision-making, formalizing, 

implementing and documenting them (Schwarz et al., 2019). Against this background, some learning 

processes are seen as theories of decision-making in their own right, for instance reinforcement 

learning and social learning are situated on equal footing with rational choice or bounded rationality 

meta-theories (Schwarz et al., 2019). More conceptual teasing will be needed in order to advance a 

framework for how to make systematic choices about incorporating behaviour, and learning in 

particular, into ABMs. Based on the literature review above, it appears that some learning processes 

might be compatible with specific behavioural theories, but not with others. 

For instance, Schlüter et al. (2017)  suggest a list of behavioural theories that can be used as a 

departure point for modelling human behaviour in ABMs. Among these, the theory of descriptive 

norms, which assumes that actors will behave in accordance to observed behaviours of others, 

matches our conceptualisation of social learning at the individual level. Similarly, habitual behaviour 

theory suggests a response to positive experiences as assumed by learning-by-doing and 

reinforcement learning. However, at a rather superficial interpretation which is disconnected from the 

philosophical roots in which those theories emerged, we note that both theories allow for an 

operationalisation of learning that is grounded in both a rational choice and a bounded rationality 

view. The theory of descriptive norms tells us that an agent might imitate the behaviour of others, 

but it does not tell us which others matter in this decision: will the agent attempt to maximise their 

utility by imitating the most successful agent they see, or will they take a satisficing approach where 

they will imitate the first agent they meet that performs slightly better, or will they imitate the closest 

agent in the network regardless of their performance? We hope that the field will advance to offer 

more tools for disentangling such considerations. 

In the case of our study, we implement learning and adaptive agents, but their ultimate motives are 

still related to utility maximisation. We acknowledge that alternative goals will lead to different 

implementations, and these will require additional research.  

3. Conceptual work  

3.1. Towards a framework for modelling farmers’ learning-by-doing 

and social learning 

Based on all of the considerations above, we propose here a preliminary and very much simplified 

conceptual framework for studying farmers’ learning-by-doing and social learning in an agent-based 

model. Below, we briefly reiterate some of the conceptual boundaries we set, but we also highlight 
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operationalisation choices that we made for our model and what alternative options might be 

considered by modellers in future similar studies. 

First, we discuss both learning processes as individual learning, i.e. changes taking place at the level 

of one agent, in this case one household. Learning-by-doing is a change of actions in response to 

observed feedback from the environment and a cognitive approach to information processing is 

assumed. We distinguish among several types of social learning. Social learning 1 is also modelled as 

a change at the level of a household, but the trigger is an observation of other agents’ outcomes.  

Social learning 2 refers to a double-loop type of learning, where agents learn by imitation and alter 

their decision-making algorithm (i.e. they adopt a different learning type / behavioural strategy). The 

effects of this learning about learning are manifested both at the individual level as a change in 

behavioural strategy, but also at the community level because the initial distribution of learning types 

in a heterogeneous population changes as a consequence of strategy switching. The effects at the 

community level have an emergent character and they depend upon the changes happening at the 

individual level. As we will show further, in our analyses of Social learning 2 we will only evaluate the 

impacts of community level effects (Table 1). 

Table 1. Conceptual framework for modelling learning-by-doing and social learning. Highlighted rows indicate the 
model analyses that we address in this study. 

Model 

elements 

Learning 

types 

Level of 

learning 

effect 

Target of learning 

(what changes) 

Explanatory process 

description 

Behavioural 

strategy 1 

Learning-

by-doing 

Individual level Agent actions Cognitive processing of 

information from the 

environment 

Behavioural 

strategy 2 

Social 

learning 1 

Individual level Agent attributes Imitation of other agents’ 

characteristics / heuristics 

Strategy 

switching 

Social 

learning 2 

Individual level  Agent learning type (i.e. 

behavioural strategy) 

Imitation of other agents’ 

learning type 

 Community level Distribution of learning 

types in the simulated world 

Diffusion of learning types 

 

Second, we note that, in our implementation, the drivers behind the explanatory processes described 

in Table 1 are consistent with an economic view where agents pursue the goal of profit maximisation. 

In future models, alternative goals could be used as driving the learning behaviours presented. 

Third, although this issue is not explicit in our theoretical considerations of learning, agent 

heterogeneity in dealing with uncertainties is an important aspect that needs to somehow be 

captured when modelling learning behaviours. For instance, pest dynamics models revealed that 

there are broad differences in how information is diffused, perceived and used (Rebaudo et al., 

2011). In our model we include such heterogeneity by introducing a stochastic “resistance” 

parameter to mediate behavioural responses to feedback (see Section 4.2).  

3.2. Eliciting the relationship between uncertainty and learning 

As it has already emerged from our literature review above, learning in environmental management is 

a process aimed at reducing uncertainty. Within the context of adaptive management, Williams et al. 

(2016) discuss four sources of uncertainty: structural uncertainty, environmental variation, partial 
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control and partial observability. Structural uncertainty refers to a limited or no understanding of the 

underlying dynamics that governs how the resource state changes from one time step to the next. 

Environmental variation includes external factors that affect resource dynamics, for instance 

precipitation patterns. Partial observability of the resource may be linked to problems of access, but 

we also add here distorted or noisy information flows, as well as what other authors call epistemic 

uncertainty, i.e. limited knowledge of the state of the resource due to improper measurement or 

insufficient data, among others (Regan et al., 2002). Finally, partial controllability denotes a 

difference between the intended effects and those that actually occur. This can be due to properties 

of the agent (attitudes, limited cognitive abilities, errors), but also to other factors affecting the 

resource state, for instance when multiple users manage the same resource.  

Within the context of agricultural systems and our discussions of two learning processes, we add to 

the typology above another source of uncertainty, i.e. partial observability of the social conditions. 

This is particularly relevant in the context of farmers’ imitation behaviour, as certain aspects behind 

others’ performance or decisions might not be fully accessible, behaviour might be difficult to copy 

(Le et al., 2012) or strategies might be difficult to infer from observations (Miller et al., 2007). 

Furthermore, the observability of the broader social environment depends on the structure of one’s 

personal network.  

In Figure 1, we elaborate on Williams et al.'s (2016) work to represent these sources of uncertainty 

and their relationship to learning-by-doing and social learning. We argue that these considerations of 

uncertainty are playing an important role in the micro-decisions made by the modeller when 

implementing learning processes. For instance, assumptions need to be made about the extent to 

which an agent can correctly sense the state of an environmental resource. As such, a transparent 

acknowledgment of these uncertainty sources and how they are handled is necessary.  

Due to emergence properties at the level of the coupled social-ecological system, other sources of 

uncertainty might be relevant (see Schlüter et al., 2019), for instance not knowing whether the 

behavioural strategy observed socially might be correct when applied to one’s situation. For simplicity, 

we do not explicitly address these in our scheme, but these emergent sources of uncertainty should 

also be kept in mind and reported as relevant.  

 

Figure 1. Sources of uncertainty in adaptive management and their relationship to learning. Adapted from 
Williams et al. (2016). 
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4. Methods  

To realize our goal of advancing current understanding on how learning-by-doing and social learning 

affect smallholder farmers’ decision outcomes, we implement and study these processes in a 

pre-existing agent-based model of agro-pastoralist communities, RAGE. Agent-based modelling is 

particular suited to our purposes because it allows for implementing individual heterogeneity as 

discussed in Section 3.1., but also because it permits the observation of emergent behaviours, thus 

allowing us to study the effects of social learning 2 at the community level.  

We now proceed with a short description of the original RAGE model, followed by details on our 

learning extension.  

4.1. Original Model Description  

RAGE is a rangeland grazing model by Dressler et al. (2019), which has been explicitly developed to 

study diverse theories of human decision-making and their impacts within the context of resource 

management. Although inspired by empirical work, it is a stylised social-ecological model of resource 

use in a rangeland system, where both the ecological and the social dynamics are kept as simple as 

possible. The model was developed in NetLogo and it is made available Open Source, via the ComSES 

database: https://www.comses.net/codebases/5721/releases/1.0.6/. 

Our choice of using this model to address our research questions is justified as following. First, we 

were looking for a stylised model that allowed us to focus on the implementation of learning 

processes rather than on minute parameters describing very complex resource use dynamics. The 

very nature of the learning processes, and in particular of learning-by-doing, required that the model 

is a social-ecological one and that some feedback from the environment does exist. However, a too 

complicated model would have made it difficult to tease out impacts of learning from impacts of other 

variables. Second, the rangeland system was easy to repurpose to our thematic interest in 

smallholder livestock farmers. Third, because the model has been previously developed and used to 

study behavioural strategies beyond rational choice, it allows for future extensions of our work along 

the lines we suggested in Sections 2.4 and 3.1. Fourth, the model is a spatial one, which allows us to 

implement social learning based on observation of neighbours – a diffusion process which is typical 

for agricultural communities. Fifth, the RAGE model already includes a component of collective action, 

as it allows for certain social norms to be activated (e.g. pasture resting). Collective action and 

institutional emergence are aspects closely linked to social learning and they can also make the object 

of follow-up research to our work here (see Section 6). Lastly, the sharing and reuse of ABMs is 

encouraged within the SES literature as a way to enhance verification and transferability of insights 

(Schulze et al., 2017). 

In short, the RAGE model comprises of a social component and an ecological component that interact 

through various feedbacks. The agents are individual households who own livestock that are placed 

on pastures to graze. The pasture provides fodder for the livestock, and the livestock’s grazing 

affects, in turn, the amount of biomass on the pasture. The regeneration of the pasture is driven by a 

simple vegetation regrowth model which also depends on precipitation. There are two types of 

vegetation driving the pasture regeneration dynamics: green biomass and reserve biomass. Green 

biomass represents those parts of the plants that are easier to regenerate; these are consumed first. 

Reserve biomass represents the stock of stems and roots of the plants which, when affected, 

significantly slow down the regeneration of green biomass. The model is run over several time steps. 

At each time step, households sense the available biomass on surrounding pastures, as well as other 

information about resting state of certain pastures and they make decisions about where to place 

their livestock, within a knowledge radius, in such a way that they achieve the goals specific to their 

https://www.comses.net/codebases/5721/releases/1.0.6/
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behavioural type. Three behavioural types are implemented, each with its own theoretically-informed 

assumptions: traditionalist, profit maximiser and satisficer. Every year, livestock numbers increase 

through reproduction. Livestock heads exceeding the fodder availability on the pasture where they 

are placed die. When a household reaches livestock 0 it is removed from the world. Full details about 

the model components, including scheduling and the vegetation submodel, can be found in the 

ODD+D protocol included with the model at ComSES, also available as supplementary information for 

Dressler et al. (2019).  

4.2. Model Extension and Design Choices  

We implement learning processes within RAGE by designing an extension module that can be turned 

on and off from the visual interface in NetLogo. We explain the main aspects of our extension below. 

Model overview 

Figure 2 illustrates several modifications that we make to the main model components and the overall 

dynamics of the system.  

A first and important design choice that we made was to transform the model from rangeland to an 

agricultural system which allows individual households to learn solely from the environment and 

independently of the actions of other agents (unless this is done explicitly through social learning). As 

such, the decision that agents have to make each round is no longer about where to place their 

livestock, but rather on how many livestock to place on their own pasture. Each household exploits 

the pasture (patch) on which it is situated. The property regime thus also changes relatively to the 

original model from a common pool resource to a private good. Up to 100 households are randomly 

distributed across a 10x10 world at the beginning of the simulation. They are also endowed with the 

same number of initial livestock. The number of initial households and the number of initial livestock 

of each household are input parameters.  

Because all pastures are initialized with the same amount of green and reserve biomass and are all 

governed by the same resource dynamics, this design decision permits comparisons among agents’ 

performances as a result of their learning. Furthermore, stochasticity associated with precipitation is 

eliminated. Rain can be easily reactivated in the code, if needed, but learning effects under 

environmental variability (as discussed in Section 3.2.) do not make the object of our study.  

 

 

Figure 2. Schematic representation of the modified RAGE model with the learning extension activated. Adapted 
from Dressler et al. (2019). 

Decisions on how many livestock to place on the pasture are not limited numerically, as it is assumed 

that households have full control over the size of their herd and they are able to buy and sell as much 
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livestock as they need to achieve the desired number. Consequently, reproduction of livestock is no 

longer a relevant variable driving the size of the herd. 

Like in the original model, livestock placed on the pasture is feeding on biomass. First they consume 

the green biomass; if this is over, then they start consuming from the reserve biomass up to a 

percentage gr2, representing the grazing pressure. This gr2 parameter is fixed at 0.1 in our 

extension, meaning that the maximum reserve biomass that can be consumed at any time is 10% of 

the remaining available reserve biomass. The amount of fodder needed by each animal is fixed and 

the same for all households and across all time steps. If in a round more fodder is needed than the 

sum of available green biomass and 10% of the remaining reserve biomass, the exceeding amount is 

used to calculate how many livestock went hungry (this information is stored in a variable from the 

original model called “destock” and, under certain circumstances, it influences household decisions in 

the next round).  

The decisions of how many livestock to place on the pasture each round are affected by: a) the 

sensed available reserve biomass; b) the household’s behavioural strategy (agent learning type); c) 

previous decision on how much livestock to buy/sell; d) the number of livestock that were observed 

to be hungry in the previous round (destock value); and e) for agents for which social learning is 

applicable: the behaviour of neighbours who live within a knowledge radius k. The parameter k 

defines the size of the neighbourhood within which social information is searched for under social 

learning settings. In our model runs we use a value of k=1 as default, which defines the Moore 

neighbourhood of the agent. The k parameter stands as one way to model the partial observability of 

the social conditions. 

There are two sources of stochasticity in the extension model: 1) the distribution of the r-parameter 

in the population and 2) the spatial distribution of agents on the map. The scheduling of the different 

model processes is as following: at the beginning of each time step observations are made (about 

pasture condition or other agents’ state), then household decisions are made, livestock is placed on 

the pasture and feeds, the number of livestock that went hungry is calculated, the vegetation 

submodel updates the state of the pasture to be sensed in the next time step. 

Agent memory 

An important variable in the decision-making of learning agents is information from current and past 

observations, as well as about past decisions. That is why, the extension adds for all agents a 

memory of observations. Since the learning algorithms that we implement here are incremental, 

memory length is 1, i.e. only observations from time step t-1 are used. Specifically, information is 

stored about: how many livestock were hungry at the end of the last time step, how many livestock 

were placed last time (previous decision), what was the amount of observed reserve biomass at the 

beginning of the last time step.  

Agent heterogeneity in dealing with uncertainty: the r-parameter 

As we briefly touched upon in Section 3.1, we quickly realised that modelling learning required us to 

make some explicit choices about agent heterogeneity in preferences as well as in dealing with 

various types of uncertainty.  

Many scholars have drawn attention to such considerations. For instance, Huber et al. (2018) 

emphasize that farmers’ heterogeneous decision-making should capture not only cognitive processes 

or social interactions, but also the socio-economic and natural context in which they take place, such 

as opportunity costs for non-agricultural activities and various short-term and long-term calculations. 

Similarly, Darnhofer et al. (2010) highlight that farmers’ choices are constrained by their personal 

characteristics and external structures, which makes learning a relational understanding of reality 
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rather than an objective cognitive process. Other scholars call for attention to the role of risk attitudes 

in relation to learning (Marra et al., 2003) or to inaccuracies in payback calculations (Muelder et al., 

2018), the latter pointing to our earlier notion of partial controllability. Brenner (2006) warns that 

neglecting individual differences may entail important implications on model outcomes.  

But how to organize and operationalise such a broad spectrum of variables that may result in 

individual differences? A solution we found was to introduce a so-called “resistance-to-learning” factor 

to capture variability in how agents respond to the information that they acquire from their social-

ecological environment. This resistance is different for each agent and it represents a deviation from 

what the “perfect” learning effect of a specific learning algorithm would be.  

In their generic ABM of social learning, Nowak et al. (2017) use a similar mediating variable between 

observed outcomes and behaviour which they call “propensity to engage in a particular behaviour”. In 

their case, propensity is modelled as a probability of making a particular decision and it “incorporates 

beliefs, norms, self-efficacy, and intention, as well as other external factors such as access and 

barriers” (p.5). Individual propensity values can also be influenced by social processes. 

In contrast, we model resistance as a percentage r by which agents would deviate from the 

“rationalized”, learned value of how much livestock to place on the livestock. The r parameter can 

take any value between -0.95 and +0.95 in increments of 0.05 and it is randomly drawn from a 

discrete uniform distribution and fixed for each agent at the beginning of the simulation. It can 

represent either uncertainty in the sensing (partial observability of the resource system), noise in the 

information received, or an inherent characteristic of the agent, such as a risk attitude. In a world of 

perfect information and perfect action, the “rationalized” learned decision would be the one for r=0. 

In reality, and depending on the value of their r-parameter, agents might over-compensate or under-

compensate relatively to the rationalized number calculated via their learning algorithm, by deciding 

to place more or less livestock, respectively, by a deviation of up to 95%. The choice to limit the 

range of the r-parameter to -0.95 and +0.95 instead of -1 and +1 was made in order to avoid a 

situation where an agent deviates from the “rationalized” decision by giving up the entire livestock 

herd and essentially removing himself from the farming activity.  

Agent behavioural types 

The extension model does not make use of the original behavioural types, but instead includes three 

new types of agents: baseline, learning-by-doing, social learning 1. 

Firstly, a baseline agent type is defined, which takes decisions without any learning (extension-r-

only, E-RO). This type of agent essentially follows the routines of the maximising strategy from the 

original model (MAX), but the main difference is that an r-parameter is included as attribute and 

consequently E-RO agents are heterogeneous in their actions. This design choice was necessary to 

enable comparability of outcomes with the learning-by-doing and social learning agents.   

The behaviour of baseline agents is represented in Figure 3, where t represents the current time step, 

L(t-1) is the number of livestock placed in the previous round, Ld(t-1) is the number of livestock that 

were observed to be hungry in the previous round (i.e. overshooting the carrying capacity of the 

pasture), and LR  is the “rationalised” number of livestock to be placed, i.e. the value to be placed 

when r=0. Ld is a variable that the agents can sense directly and its value from the previous round is 

stored in their memory. LR is calculated based on the routine from the original model of simply 

destocking livestock exceeding the capacity of the pasture, i.e.:  

 𝐿𝑅 = 𝐿(𝑡 − 1) − 𝐿𝑑(𝑡 − 1) (1) 
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Figure 3. Schematic representation of E-RO agent behaviour, i.e. baseline / no learning agents 

When r≠0, the number of livestock to be placed on the pasture, L, is a deviation by r from LR: 

 𝐿 = 𝐿𝑅 × (1 + 𝑟) (2) 

Secondly, we define learning-by-doing agents (E-LBD), i.e. agents with behavioural strategy 1 as 

shown in Table 1. Learning-by-doing agents employ a more sophisticated algorithm for deciding how 

much livestock to place on the pasture which is based on observing the differential changes in the 

amount of reserve biomass available on the pasture and responding to those with a proportional change 

in their herd size. Thus, if based on their observations they calculate that the amount of reserve biomass 

has declined between the previous and the current round by 6%, they will decide to also reduce their 

herd size by 6% (by selling 6%), with certain further specifications to account for the previously 

observed hungry livestock. If, however, the observation is that the amount of reserve biomass has 

increased, then the herd size will also increase proportionally. Figure 4 illustrates the details of the E-

LBD behaviour.  

The first thing that a learning-by-doing agent is doing is to calculate how many livestock have to be 

bought or sold as a response to the observed change in reserve biomass, according to the following 

formula: 

 𝐿𝑠𝑏 =
𝑅(𝑡) − 𝑅(𝑡 − 1)

𝑅(𝑡 − 1)
× 𝐿(𝑡 − 1), (3) 

where R(t) is the reserve biomass observed at the beginning of the current time step, R(t-1) is the 

reserve biomass observed at the beginning of the previous time step, and L(t-1) is the decision taken 

in the previous time step. Then, if no overshoot of the carrying capacity has been observed (i.e. 

Ld=0, no livestock went hungry in the last round), the “rationalized” decision for the new size of the 

herd LR is to increase or decrease the previous herd size by Lsb. However, if an overshoot of the 

carrying capacity has been observed (Ld≠0), then the “rationalized” decision will be to reduce the 

herd size at least by the observed Ld value. This is represented as following: 

 𝐿𝑅 = {
 𝐿(𝑡 − 1) + 𝐿𝑠𝑏 ,                                            𝐿𝑑(𝑡 − 1) = 0  

𝐿(𝑡 − 1) + min[𝐿𝑠𝑏 , −𝐿𝑑(𝑡 − 1)] , 𝐿𝑑(𝑡 − 1) ≠ 0
 (4) 
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Figure 4. Schematic representation of E-LBD agent behaviour 

For instance, even if the change in the state of the pasture might correspond to a decrease of 

livestock, Lsb, of 5 headcounts, but 6 headcounts were observed to be hungry (Ld), then the new 

“rationalised” decision will be to reduce the previous herd size by 6 and not by 5 headcounts. This 

accounting of the destock value that we introduce aims to reconcile a rather mechanistic cognitive 

algorithm of responding to observations in the environment with the conscious planning that might be 

realistically expected from a farmer.  

Further, just like with baseline agent types, the heterogeneity introduced by the r-parameter means 

that agents will deviate from LR. We explain how this is implemented, i.e. what happens when r≠0. 

First, a deviation from the “rationalized” number of livestock that should be sold or bought (Lsb) is 

calculated, in a way that the sign (the direction of change, buying vs. selling) is preserved, as following: 

 𝐿𝑠𝑏𝑟 = {
𝐿𝑠𝑏 × (1 + 𝑟), 𝐿𝑠𝑏 < 0

𝐿𝑠𝑏 × (1 − 𝑟), 𝐿𝑠𝑏 ≥ 0
 (5) 

Then, the final decision of how much livestock to place on the pasture, L, is a function of the 

“rationalized” value, LR, Lsb and Lsbr. When r=0, the final decision is the “rationalized” decision LR, as 

shown below: 

 𝐿 = {
𝐿𝑅 ,                                  𝑟 = 0
𝐿𝑅 + 𝐿𝑠𝑏𝑟 − 𝐿𝑠𝑏 , 𝑟 ≠ 0

 (6) 

Thirdly, we model social learning agents (E-SL1) to represent “Social Learning 1” from our 

conceptual framework (Table 1). These are agents who compare their own performance to the 

performance of their neighbours (from the neighbourhood defined by the knowledge radius k). If 

there are neighbours who are performing better, then the agents will imitate the r-parameter of the 

most successful neighbour, i.e. the one with the highest number of livestock. If there is no neighbour 

who performs better, then the agent behaves according to baseline behaviour E-RO. The algorithm is 

shown in Figure 5. 
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Figure 5. Schematic representation of E-SL1 agent behaviour 

The rationale for our design choice to let agents copy their neighbours’ r-parameter as opposed to, 

e.g. their decisions, is that the r-parameter is what drives differences in success. Consider what 

happens when following Figure 6 given that all agents are initialized in our model with the same 

pasture conditions and the same initial herd size. At time step 1, all agents will place their entire herd 

on the pasture (livestock-init). Then, at time step 2, all agents will have performed the same, so they 

will all continue with the baseline behaviour. It is only at time step 3 that social comparison will result 

in some differences providing scope for imitating others’ behaviour. But by then, the pasture 

conditions will also be different for each agent, so that simply copying others’ decision of how much 

livestock to place on the pasture would not provide the same results as for the agent that is being 

copied. In addition, as we are trying to model a social learning process, we assume that there would 

be some form of information exchange about the underlying mechanism of the decision and that it is 

that mechanism that would be copied, rather than the outcome of the decision itself (the exact 

number of the livestock to be placed). This is also consistent with the observation by Le et al. (2012) 

discussed previously that farmers more easily copy decision rules rather than specific activities.  

Strategy switching as “Social Learning 2” 

Implementing two types of learning agents and a baseline behaviour allows us to compare the 

social-ecological outcomes of one learning strategy over the other, so as to address our first research 

question. In relation to our second research question, we also implemented the possibility for a global 

behaviour for all agents: strategy switching. When this option is activated, all agents have the 

possibility to select a different learning algorithm, i.e. to change their agent behavioural types, by 

copying the more successful neighbours. This introduces the possibility to study a second-order type 

of social learning, which we previously called “Social Learning 2”, where the very cognitive rules 

underlying behaviour are changed. A representation of strategy switching is shown in Figure 6.  
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Figure 6. Schematic representation of Social Learning 2 behaviour: strategy switching 

The effects of strategy switching can be studied in terms of individual performance compared to 

performance of agents with no strategy switching, but the more interesting effect that we focus on in 

our analysis pertains the community level (as highlighted in Table 1), specifically the diffusion of 

learning strategies (agent types) in a mixed population of E-RO, E-LBD and E-SL1 agents. 

As it is now implemented, strategy switching happens whenever the agents observe a neighbour 

performing better in terms of livestock, using the same criteria as E-SL1 agents who copy the 

r-parameter. As an alternative for future models, social learning 1 and social learning 2 could also be 

modelled by adding a probability parameter and a logistic function to determine the frequency at 

which behaviour might change (see e.g. Nhim, 2018). For our purposes, we decided to start with the 

simplest possible behaviour.  

4.3. Experiments and Model Settings  

To answer our research questions we explore our model using a design-of-experiments (DOE) 

approach, as described by Lorscheid et al. (2012). DOE is a systematic process for planning and 

conducting model runs so that reliable conclusions can be drawn about the relationships between 

input parameters, model outputs and the processes behind. 

In a first step, we defined three sets of experimental objectives corresponding to our refined research 

questions and we classified our variables of interest ( 

 

Table 2 

 

Table 2). In Table 2, “homogeneous agent types” means that the model world is initialised with all 

agents of the same type, while “heterogeneous agent types” means that it is initialised with a mixed 

population of all three agent types. 
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Table 2. Variable classification for three main experiments and the corresponding refined research questions 

 Independent 

variables 

Control Dependent variables 

Experiment 1.  

(RQ1) 

Homogeneous 

agent types 

Type of learning  

(E-RO vs. E-LBD vs. E-SL1) 

 

Population size 
Initial herd size 
For SL: knowledge radius 
Model seed 
r-parameter 
Repetitions 
Time steps  

Economic outcomes: mean total 
livestock healthy  

Ecological outcomes: mean 
reserve biomass  

Social outcomes: inequality (Gini-
index) 

Experiment 2. 

(RQ2a) 

Homogeneous vs. 

heterogeneous 

agent types 

Degree of homogeneity of 
population 

(E-HET vs. E-HOM) 

Initial distribution of 
learning types (counts) 

Economic outcomes: total 
livestock healthy 

Ecological outcomes: mean 
reserve biomass  

Social outcomes: inequality (Gini-
index) 

Experiment 3. 

(RQ2b) 

Heterogeneous 

agent types 

Interaction of learning 
types 

(strategy switching, SL2) 

Initial distribution of 
learning types (counts) 

Population size 

Final distribution of learning types 
(agent type counts) 

Research Questions 

(RQ1): How are the outcomes of agents’ decisions affected by different learning types? 

(RQ2): How do different types of learning interact and to what effects? 

a) How do agents’ decision outcomes differ in a population with homogeneous learning types vs. a population 
with heterogeneous learning types 

b) How does learning-by-doing diffuse in a population of mixed learning strategies? 

 

Experiment 1 

For our first research question (RQ1), “How are the outcomes of agents’ decisions affected by 

different learning types?”, we are interested to compare the social-ecological outcomes of agents 

employing different types of learning.  

For each of three different experimental treatments, we look at three types of outcomes – economic, 

ecological and social – operationalised as following: total livestock healthy over the entire period of 

simulation, mean reserve biomass at the end of the simulation and the Gini-index over the entire 

population. The total livestock healthy of agent i (Ti) variable captures the total number of livestock 

that an agent managed to sustain on the pasture throughout all the time steps of the simulation. 

Thus, it is the sum of the livestock sustained at each time step, the latter given by the difference 

between the livestock placed (L) and the livestock that went hungry (destock, Ld): 

 𝑇𝑖 = ∑ 𝐿𝑖(𝑡) − 𝐿𝑑𝑖
(𝑡),

𝑛

𝑡=1

 (7) 
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where i is the agent and n is the total number of time steps. We quantify economic outcomes at the 

level of the entire population of agents. As such, our dependent variable of interest is the mean total 

livestock healthy, 𝜇𝑇𝑖
: 

 𝜇𝑇𝑖
=

∑ 𝑇𝑖
𝑁
𝑖=1

𝑁
, (8) 

where N is the total number of agents.  

The mean reserve biomass is the average of remaining reserve biomass on all occupied patches at 

the end of the simulation. The “occupied” condition is meant to exclude from the average the empty 

patches. The latter are not interesting as outcomes, because they all have the same vegetation 

dynamics and are in the same conditions, since they are not exploited (households only exploit 

patches that they occupy). 

The Gini-index is a standard measure of inequality that takes values between 0 and 1. In the case of 

our model, it measures how the total livestock at the end of the simulation is distributed across the 

entire population of agents. A higher Gini-index represents larger differences in livestock numbers 

between the most endowed farmers and the least endowed.   

The independent variable has three factorial levels and it represents whether the world is 

initialised with a homogeneous population of only E-RO agents, only E-LBD agents or only E-SL1 

agents. 

To control for the effects of other parameters of the model, we ran partial sensitivity analyses on the 

control variables indicated in Table 2, which in turn informed the final parameter values to be used as 

factorial levels in a full sensitivity analysis for assessing the robustness of the model results. In an 

iterative way, we started with very simple sub-DOEs for the behaviour of one agent and gradually 

added more complexity to explore the parameter space in a systematic manner and to ensure that 

our selection of final parameter values was robust.  

Population size refers to the total number of agents with which the model world is initialised before 

the run. Initial herd size is the total number of livestock that each agent is endowed with at the 

beginning of the simulation. All agents start with the same initial herd size. Model seed is a control for 

the stochastic processes in the model to make the different treatments comparable when we have 

only few repetitions for each treatment. In our extension model, there are two sources of 

stochasticity: the distribution of r-parameters in the population and the spatial placement of the 

agents on the 2D map. As such, depending on the effect that we want to observe we need either a 

fixed seed for the various treatments, or a very large number of repetitions of the model run. The 

number of repetitions refers to how many times the exact same experimental treatment is run. For 

obvious reasons, repetitions only make sense when the model seed is not fixed. For the r-parameter, 

because it is drawn from a discrete uniform distribution centred around 0, the combination of a large 

number of agents with a large number of model runs (repetitions) means that the average 

r-parameter value in the model will converge to 0, thus making it possibly to compare model outputs 

on the dependent variables under conditions of stochasticity. Lastly, time steps defines the number of 

decision-rounds after which the model stops and outcomes are compared.  

Based on our various sensitivity analyses, we settled in this experiment for the input parameters in 

Table 3. Parameters that were not specific to our extension module were set using the default values 

from RAGE (see Appendix).  
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Table 3. Input parameters for experiments with three different homogeneous populations of agent types (total 
runs: 3000) 

Parameter name Value Description 

Behavioural-type 3 factorial levels: 
E-RO, E-LBD, E-SL1 

Agent type / learning process 

Livestock-init 90 Initial herd size 

HH-init (number-households) 50 Population size / initial number of households 

Timesteps 100 Simulation length 

 Random Model Seed 

 1000 Repetitions 

 

Experiment 2 

The second experiment was designed as a verification of the model and of the results from 

Experiment 1. We wanted to check how a heterogeneous population with equal proportions of three 

types of agents will perform on the three indicators of interest in comparison to the three 

homogeneous populations from the first experiment. Treatments and input parameters are detailed in 

Table 4. We expected that the mixed population will produce social-ecological outcomes that are in 

the middle of the outcomes produced by the three separate homogeneous populations.  

Table 4. Treatments and input parameters for Experiment 2 

Treatment 

Initial 

herd 

size 

Total 

number of 

households 

Number 

of initial 

E-RO 

agents 

Number 

of initial 

E-LBD 

agents 

Number 

of initial 

E-SL1 

agents 

Model seed  

& 

Repetitions 

Heterogeneous 
population 90 60 20 20 20 

Fixed 
(1 run) 

Homogeneous 
population 

E-RO only 

90 60 60 - - Fixed 
(1 run) 

Homogeneous 
population 

E-LBD only 

90 60 - 60 - 
Fixed 
(1 run) 

Homogeneous 
population 

E-SL1 only 

90 60 - - 60 
Fixed 
(1 run) 
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Experiment 3 

In the final experiment we seek to find out how learning strategies interact within a mixed population 

and, in particular, we want to study the conditions under which learning-by-doing diffuses. Many 

research questions could be asked to characterise the effects of strategy switching, but we focus on 

learning-by-doing diffusion because, as we will show in the results, it has proven to be the more 

successful behavioural strategy in economic terms, and economic goals are the driver of strategy 

switching. As such, we ask: will learning-by-doing diffuse in a population even when it is difficult for 

others to find out about it? 

We design an experiment where, for each agent type, we track the evolution of agent counts over 

time. The relevant parameters and treatments are detailed in Table 5. We keep the same value for 

the initial herd size (90) and we control for the total population size because household density on 

the map matters to whether other agents might find out about the E-LBD behaviour or not. At low 

total household density, the E-LBD households might be isolated spatially, so that no other agent can 

copy their learning type. The knowledge radius k is 1 for all treatments, meaning that the agents can 

observe other agents within their Moore neighbourhood only. We choose three levels for the total 

number of households (15, 45, 85) which correspond to low, middle and high household density in 

the world (10x10 patches). We then pick three very low initial numbers of E-LBD households, 1, 3 

and 5, respectively, while the rest of the households are assigned equally to the E-RO and E-SL1 

behaviour. Note that the same initial numbers of E-LBD households correspond to different 

proportions in the populations, depending on the total number of households. We run the model 100 

times for each treatment.  

Table 5. Treatments and parameter inputs for Experiment 3 (900 runs) 

Treatment 

Initial 

herd 

size 

Total 

number of 

households 

Number 

of initial 

E-LBD 

agents 

Number 

of initial 

E-RO 

agents 

Number 

of initial 

E-SL1 

agents 

Repetiti

ons 

1. 90 15 1 12 12 100 

2. 90 15 3 6 6 100 

3. 90 15 5 5 5 100 

4. 90 45 1 22 22 100 

5. 90 45 3 21 21 100 

6. 90 45 5 20 20 100 

7. 90 85 1 42 42 100 

8. 90 85 3 41 41 100 

9. 90 85 5 40 40 100 
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5. Results  

5.1. Learning-by-doing vs. social learning farmers’ decisions 

outcomes 

We evaluate model outputs for three types of outcomes – economic, ecological and social – as 

explained previously.  

Economically, our findings suggest that the learning-by-doing agents are more successful than 

other agent types at maintaining high numbers of livestock on their pastures without overshooting 

too often or too much the carrying capacity (Figure 7). The immediate adjustment of livestock 

numbers in response to observed decline in pasture state means that action is taken while the 

reserve biomass is still high, permitting a quick regeneration of the pasture condition and minimum 

economic losses (total number of livestock that are hungry).  

 

Figure 7. Economic outcomes for three homogeneous populations (Experiment 1) 

Social learning behaviour also leads to higher numbers of healthy livestock than the baseline no-

learning behaviour, but still much lower than learning-by-doing. Compared to no-learning agents, 

social learning agents make herd size decisions that are closer to the carrying capacity of the pasture, 

as indicated by a much lower number of hungry livestock (destock). That social learning has a 

relatively low economic success as a strategy appears to be consistent with Le et al. (2012) who also 

find that imitation does not improve incomes very much. The reason could be linked to the different 

conditions in which the successful farmers who are imitated are operating vs. those of the imitator. In 

the case of our model, by the time that a social learning agent starts imitating the attributes of a 

neighbour with more livestock, their pasture is already in a different condition, so they can no longer 

make up for lost economic opportunities if the final results are measured with a cumulative variable 

such as the total healthy livestock, i.e. over the entire simulation. However, this explanation is not 

very solid, as illustrated by the alternative indicators shown on the second row of Figure 7, where 

livestock numbers are measured at the end of the simulation. It is clear that the social learning 

agents manage to stabilize their herd size decision at a higher value than no learning agents (high 

livestock-placed-end), which is also better matching the pasture condition (low destock-end). An 

alternative explanation could be that certain ranges of the r-parameter lead to higher livestock 

numbers and, so, they end up being selected more often by social learners. This is a plausible 
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explanation that warrants further study, but it is interesting to note that social learners’ economic 

outcomes still remain much behind those of the learning-by-doing agents. 

With respect to the ecological outcomes, social learning agents maintain a slightly higher level of 

reserve biomass than learning-by-doing agents Error! Reference source not found.. This is to be 

expected, given the economic outcomes discussed above, as smaller herd sizes translate into a lower 

grazing pressure on the pasture. A more interesting result is that the pastures occupied by no-

learning agents have the lowest reserve biomass from all agent types at the end of the simulation. 

Although they have not placed very large herd sizes on their pastures, they degraded the pastures 

the most and they also had most livestock hungry. This shows that it is not the absolute numbers 

that are most important in the decisions made, but what matters is the extent to which the herd size 

decisions approximate the carrying capacity of the pasture. As the theory would suggest, both 

learning processes appear to contribute to reducing structural uncertainty about the “optimal” level of 

resource use by allowing learning agents to better match their decisions to the pasture state than 

baseline agents. 

 

Figure 8. Ecological outcomes for three homogeneous populations (Experiment 1) 

Finally, from a social outcomes perspective, learning-by-doing behaviour results in the highest 

economic inequality at the end of the simulation, with some agents having stabilized their herd size at 

low values and others at much higher values. A world of social learning agents also results in higher 

economic inequality than a world of non-learners, but the Gini-index is much lower than in the case 

of the learning-by-doing population. An explanation for this result is not straightforward, and of 

course no generalizations can be made from our very simple model, but it is interesting to speculate 

about the cultural role that imitation might have in evening out differences.  
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Figure 9. Social outcomes for three homogeneous populations (Experiment 1) 

5.2. Learning interactions: Heterogeneous vs. homogeneous 

populations  

The results of our second experiment correspond to our expectations and their main role is that they 

verify the correct functioning of our model. Verification refers to ensuring that the model is doing 

what the modeller expects it to do (Jakeman et al., 2006). However, we also wanted to check for any 

surprising emergent patterns that we may have not anticipated.  

We here compare the economic, ecological and social outcomes of a mixed population of 20 E-RO, 20 

E-LBD and 20 E-SL1 agents with three homogeneous populations of each type (Figure 10 a-c). E-HET 

is the mixed population treatment. As we hypothesised, the mean total livestock healthy of the mixed 

population is in the middle of the range delimited by the homogeneous treatments. The same is true 

for the mean reserve biomass values.  

For the social outcomes, a heterogeneous population of learners leads to the highest economic 

inequality of all treatments, i.e. the highest differences in livestock herds among agents at the end of 

the simulation. This result is consistent with expectations, because the heterogeneous treatment 

introduces the herd values of the E-RO agents which are much lower than those of the “poorest” E-

LBD farmers, which means that overall inequality in the population will be higher. 
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Figure 10. Outcomes for heterogeneous vs. homogeneous populations of learning agents. a) Economic 
outcomes; b) Ecological outcomes; c) Social outcomes. 

 

 

a) 

 

b) 

 

c) 
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An unanticipated result is depicted in Figure 11 when we look not at the average performance of all 

agents in the heterogeneous treatment, but rather when we compare the performance of various 

agent types depending on whether this was realised in a homogeneous vs. heterogeneous 

environment. We notice that, while Experiment 1 has shown that learning-by-doing agents hold 

pastures with a higher reserve biomass at the end of the simulation, this only holds true as long as 

the agents perform in a homogeneous environment; in the heterogeneous setting, the relationship is 

reversed. Social learners will have their pastures in a better condition when they will have been 

surrounded only by other social learners rather than by diverse learning types. The explanation for 

this is that the r-parameter selection bias discussed before might be even stronger in a population 

with higher economic inequality (driven by the presence of learning-by-doing agents) because the 

chances increase to observe a neighbour with a bigger herd size than one’s own.  

 

Figure 11. Ecological outcomes for specific agent types when embedded in a heterogeneous vs. a homogeneous 
population. 

5.3. Learning interactions: Strategy switching 

The results of our third experiment on the diffusion of the learning-by-doing behaviour suggest that a 

strategy that is perceived as successful (E-LBD) will spread even if the chances of it to be 

encountered are very small. The first column of Figure 12 shows that even at high population 

densities, one agent will not be able to spread their behaviour very efficiently, and they will only 

reach very small corners of the network (on average 5 agents in a population of 85, from 1.2% to 

6%). More interestingly, in a low and medium-density environment, 3 agents succeed in spreading 

their behaviour to between 22% and 27% of all agents reaching an almost equal share of agents 

with the other behaviours. With 5 agents, the behaviour spreads very quickly and it dominates the 

world in a relatively low- or medium-density environment. In other words, there are tipping points in 

the diffusion dynamics and successful behaviours might require much less of an initial crowd to 

become dominant than one might assume. For instance, panel 6 of Figure 12 shows that having an 

initial share of 11% E-LBD agents is already enough for the behaviour to become dominant. While 

these numbers cannot be generalized beyond the limited context of this model, our results are 

consistent with studies of critical mass that have demonstrated that tipping points in social 

conventions might occur when as little as 10% of the population engages committedly in a specific 

behaviour (see e.g. Centola et al., 2018). 
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Figure 12. Evolution of agent counts over time, by agent type – means for 100 repetitions. Results are displayed 
for 9 different treatments. Each column corresponds to a different initial number of E-LBD agents, while each 
row corresponds to a different initial total number of households. 

6. Discussion and Conclusion  

Our work sought to contribute to the broader agenda of modelling and understanding adaptive 

decision-making by studying the role of learning processes in the specific context of smallholder 

farmers’ behaviour. In particular, we set to: a) make a conceptual and methodological contribution as 

to what learning-by-doing and social learning are and how these processes might be represented in 

social-ecological models; and b) advance our theoretical understanding of how learning-by-doing and 

social learning interact and affect smallholder farmers’ decision outcomes. 

Although there is a long tradition of modelling learning, especially within economics, the main 

concept used has been that of a learning curve, which is very limited in its ability to represent 

realistic, non-rational-choice human behaviour, as well as to capture the diversity of settings and 

levels at which learning happens. Learning processes, as discussed, for instance, within adaptive 

(co)-management, require other conceptualisations if they are to be used in models. Within 

sustainability science and social-ecological systems research, as well as in most agent-based 

agricultural models, learning processes are seldom represented. One possible reason for this is that 

there is little agreement and clarity of what terms such as “learning-by-doing” or “social learning” 

mean in these contexts, and there is very little theoretical ground to build upon. That is why, our first 

objective was to work towards clarifying the concepts, by explicating who learns what and to what 

effects. Preliminary ideas towards a conceptual framework for modelling learning-by-doing and social 

learning are presented in Section 3 and, in themselves, they amount to an original contribution of our 

work. 

For our second objective, we developed a module with learning agents which extends a pre-existing 

social-ecological rangeland grazing ABM, RAGE (Dressler et al., 2019). We implemented three types 

of agents, baseline, non-learning agents (E-RO), learning-by-doing agents (E-LBD) and social learning 

agents (E-SL1). We also implemented a meta-type of social learning as strategy switching, which 

allows all agents to change their agent type / learning process under certain conditions. We then ran 

three different experiments, following a DOE approach, to answer our research questions.  
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First, we analysed and compared the social-ecological performance of homogeneous populations of 

each of the three types of agents. Our results suggest that learning-by-doing behaviour maximises 

economic performance, while social learning (1) maximises environmental performance (understood 

here as minimum pressure on the pasture). Most importantly, in line with what theory would suggest, 

both learning processes appear to contribute to reducing structural uncertainty about the “optimal” 

level of resource use, by allowing learning agents to better match their decisions to the pasture state 

than baseline agents.  

Second, we compared outcomes in a heterogeneous world of learning agents with outcomes in 

homogeneous worlds. As expected, heterogeneous environments with equal shares of three types of 

agents led to global outcomes that are the average of the three homogeneous environments 

corresponding to each agent type. A surprising result, however, was that social learning behaviour 

resulted in better ecological outcomes when agents where deciding in a homogeneous rather than 

heterogeneous environment. This finding warrants further exploration. 

Third, we analysed strategy switching with a focus on the adoption of learning-by-doing. Agents 

decide whether to switch strategies based on economic considerations. Because learning-by-doing 

performs better economically (as shown in our first experiment), it is perceived by agents as the 

more successful strategy, hence our choice to focus on E-LBD’s diffusion dynamics. We were 

particularly interested to see how learning-by-doing behaviour spreads in worlds initialised with only 

few agents of this type, i.e. where the initial chances of others to encounter the learning-by-doing 

behaviour are very small. Our findings show that as few as 3 agents are enough to spread, over 100 

time steps, the behaviour to at least 20% of the population, regardless of the total size of the 

population. Moreover, an initial share of 11% E-LBD agents in the total population is enough for 

crossing tipping points so that the learning-by-doing behaviour will become dominant in the 

population at the end of the simulation. This result is consistent with other studies of critical mass 

that have also found tipping points in network contagions at values ranging between 10 and 40% 

(Centola et al., 2018).   

The main limitations of our model are those related to it being a stylised ABM, which means that it is 

not trying to reproduce an empirical situation in great detail. In addition, the theoretical gap in 

conceptualising and operationalising learning-by-doing and social learning for modelling means that 

we still had to make many micro-choices in our implementation, which could be debated. Our 

approach in dealing with this limitation has been to clearly define an operationalisation framework for 

our concepts, to explain the methodological choices we made and to suggest alternatives for 

implementation which could be used by future models trying to replicate our overall results. For 

instance, although our model tries to step away from classical rational choice models and to introduce 

behavioural heterogeneity and specific parameters for dealing with uncertainties (r-parameter), 

certain aspects of agent behaviour still relied on economic utility maximisation. Janssen (2016) wrote 

about implementing rational choice agents: “In doing this exercise one realizes that a pure rational 

actor approach is difficult to achieve in agent-based models” (p.1693). Similarly, we believe that 

implementing agents that completely step away from rational choice is difficult and perhaps 

unrealistic. What we think a useful further theoretical development would be is for learning processes 

to be clearly mapped and operationalised on those meta theories of human behaviour that match in 

terms of ontological and epistemological assumptions (see our discussion in Section 2.4).  

With our study we are only starting to scratch the surface of understanding the role of learning in 

farmers’ decision-making and much more conceptual and modelling work is needed to develop a 

“science of adaptive agents”, in the words of Miller et al. (2007). Future research could consider 

implementing alternative, but comparable, operationalisations of learning-by-doing and social learning 

to see, similarly to a sensitivity analysis, if our results can be reproduced. In addition, developing ABM 
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modules with a broader repertoire of learning processes, each with clearly specified assumptions and 

methodological choices, could be very useful for empirically-based models. A point to note is that, in 

our evaluation of learning outcomes, we use multiple indicators corresponding to three different areas 

of impact (economic, ecological and social) and that the learning processes in our model show mixed 

results across all three areas. Future research might try to combine these indicators into standardized 

units, so as to allow for multi-criteria optimisation if specific outcomes are desired. This would then 

open the avenue for such learning models to be used as policy tools in studying which type of 

learning should be encouraged by a social planner trying to achieve specific results as quickly as 

possible. Last, but not least, our model could, with minimum additional work, also be used to study 

institutional emergence / norm formation and collective action within social-ecological systems, an 

area which is also currently under-explored in AMBs, but very relevant from a policy perspective.  
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Appendix: Supplementary Information  

Parameter values 

Table S1. Default parameter values from RAGE that were used in all simulations 

Parameter name Value Description 

intake 640 Amount of fodder needed per livestock unit 

gr1 0.5 Support parameter vegetation submodel 

gr2 0.1 Support parameter vegetation submodel 

w 0.8 Support parameter vegetation submodel 

mg 0.1 Support parameter vegetation submodel 

mr 0.05 Support parameter vegetation submodel 

lambda 0.5 Support parameter vegetation submodel 

Rmax 150000 Support parameter vegetation submodel 

d 1/Rmax Support parameter vegetation submodel 

R0part 0.6 Support parameter vegetation submodel 
 

 
 
 
 

 

Error variance analysis 

Low values: HH-init 50, Livestock-init 90 

E-RO:       E-LBD: 
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Sensitivity analyses 

  

1. One household – sensitivity analysis for the effect of initial livestock numbers and 

different values of the r-parameter on economic outcomes 

 
 

2. One household – sensitivity analysis for the effect of initial livestock numbers and 

different values of the r-parameter on reserve biomass and green biomass 
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3. Multiple households, livestock-init=80 – sensitivity analysis of the effect of the 

initial number of households (HH-init) on economic and ecological outcomes by 

agent type 
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4. Sensitivity analysis for initial mean R parameter in the population and its effects 

on biomass 

 

 
5. Full sensitivity analysis with 100 repetitions (9000 runs): 

 

Factor levels were chosen based on sensitivity analyses 1-4 above: 

 

["behavioral-type" "E-LBD" "E-RO" "E-RO-SL1"] 

["number-households" 5 30 50 70 95] 

["livestock-init" 70 75 90 110 160 250] 

["timesteps" 100] 

["homog-behav-types?" true] 

["knowledge-radius" 1] 

["extension-model?" true] 
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Total livestock healthy: 

 
Total livestock healthy with splitting of social learning results between E-SL1 agents who did 

learn (SL1y) by the end of the simulation and those who did not (SL1n): 
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Mean-reserve-biomass-occupied-patches: 

 

Mean-reserve-biomass-occupied-patches with SL1 results split by learnt/didn’t learn: 
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Gini-coefficient 

 

6. Sensitivity analyses knowledge radius, 100 repetitions, HH-init: 5 50 95 

 

Economic variables: 

 
 

 

 

 

 

 



40 

 

 

 

 

Ecological variables: 

 
Gini-coefficient: 

 


