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Abstract. Geostationary satellite measurements of aerosol
optical depth (AOD) over East Asia from the Geostationary
Ocean Color Imager (GOCI) and Advanced Himawari Im-
ager (AHI) instruments can augment surface monitoring of
fine particulate matter (PM2.5) air quality, but this requires
better understanding of the AOD–PM2.5 relationship. Here
we use the GEOS-Chem chemical transport model to ana-
lyze the critical variables determining the AOD–PM2.5 rela-
tionship over East Asia by simulation of observations from
satellite, aircraft, and ground-based datasets. This includes
the detailed vertical aerosol profiling over South Korea
from the KORUS-AQ aircraft campaign (May–June 2016)
with concurrent ground-based PM2.5 composition, PM10,
and AERONET AOD measurements. The KORUS-AQ data
show that 550 nm AOD is mainly contributed by sulfate–
nitrate–ammonium (SNA) and organic aerosols in the plane-
tary boundary layer (PBL), despite large dust concentrations
in the free troposphere, reflecting the optically effective size
and high hygroscopicity of the PBL aerosols. We updated
SNA and organic aerosol size distributions in GEOS-Chem
to represent aerosol optical properties over East Asia by us-
ing in situ measurements of particle size distributions from
KORUS-AQ. We find that SNA and organic aerosols over
East Asia have larger size (number median radius of 0.11 µm
with geometric standard deviation of 1.4) and 20 % larger
mass extinction efficiency as compared to aerosols over
North America (default setting in GEOS-Chem). Although
GEOS-Chem is successful in reproducing the KORUS-AQ
vertical profiles of aerosol mass, its ability to link AOD to
PM2.5 is limited by under-accounting of coarse PM and by a
large overestimate of nighttime PM2.5 nitrate. The GOCI–
AHI AOD data over East Asia in different seasons show
agreement with AERONET AODs and a spatial distribution
consistent with surface PM2.5 network data. The AOD ob-
servations over North China show a summer maximum and
winter minimum, opposite in phase to surface PM2.5. This
is due to low PBL depths compounded by high residential
coal emissions in winter and high relative humidity (RH) in
summer. Seasonality of AOD and PM2.5 over South Korea is
much weaker, reflecting weaker variation in PBL depth and
lack of residential coal emissions.

1 Introduction

PM2.5 (particulate matter with aerodynamic diameter less
than 2.5 µm) in surface air is a severe public health con-
cern in East Asia, but surface monitoring networks are too
sparse to thoroughly assess population exposure. Satellite
observations of aerosol optical depth (AOD) can provide a
valuable complement (van Donkelaar et al., 2015). Geosta-
tionary satellite sensors, including the Geostationary Ocean
Color Imager (GOCI) launched by the Korea Aerospace Re-
search Institute (KARI) in 2011 (M. Choi et al., 2016, 2018,

2019) and the Advanced Himawari Imager (AHI) launched
by the Japanese Meteorological Agency (JMA) in 2014 (Lim
et al., 2018, 2021), offer the potential for high-density map-
ping of PM2.5 over East Asia (Chen et al., 2019; Wei et
al., 2021a). However, more confidence is needed in relating
AOD to PM2.5. Here we evaluate the capability of the GEOS-
Chem chemical transport model (CTM) to simulate AOD–
PM2.5 relationships over East Asia, exploiting in situ aircraft
measurements of vertical aerosol profiles and optical prop-
erties from the joint NASA–NIER Korea–United States Air
Quality (KORUS-AQ) field study in May–June 2016 (Craw-
ford et al., 2021; Peterson et al., 2019; Jordan et al., 2020) to-
gether with GOCI–AHI geostationary satellite data and sur-
face measurement networks. This enables us to identify criti-
cal variables and uncertainties for inferring PM2.5 from satel-
lite AOD data.

A number of past studies have used satellite AOD data
to infer surface PM2.5 using physical and statistical models.
The standard geophysical approach has been to use a CTM,
such as GEOS-Chem, to compute the PM2.5 /AOD ratio (Liu
et al., 2004; van Donkelaar et al., 2006, 2015; Xu et al.,
2015; Geng et al., 2017), with recent applications correcting
for CTM biases using available PM2.5 surface network data
(Brauer et al., 2016; van Donkelaar et al., 2016, 2019; Ham-
mer et al., 2020). An alternative approach is to use artificial
intelligence algorithms to relate satellite AOD to PM2.5 by
training on the surface network data (Hu et al., 2017; Chen et
al., 2018; Xiao et al., 2018; Wei et al., 2021a; Wei et al.,
2021b; Pendergrass et al., 2021) and sometimes including
CTM values as predictors (Di et al., 2019; Xue et al., 2019).
Yet another approach is to assimilate the satellite-measured
AODs in a CTM and correct in this manner the PM2.5 simula-
tion, although this requires attribution of model AOD errors
to specific model parameters (Kumar et al., 2019; Saide et
al., 2014; Sekiyama et al., 2010; Cheng et al., 2019). In all
of these approaches, a better physical understanding of the
AOD–PM2.5 relationship as simulated by CTMs can greatly
enhance the capability to infer PM2.5 from AOD data.

AOD measures aerosol extinction (scattering and absorp-
tion) integrated over the atmospheric column so that its rela-
tionship to 24 h average surface PM2.5 (the standard air qual-
ity metric) depends on the aerosol vertical distribution and
optical properties, ambient relative humidity (RH), diurnal
variation in PM2.5, and contribution from coarse particulate
matter to AOD. Airborne measurements of aerosol vertical
profiles (without species information) in East Asia are lim-
ited (Zhang et al., 2006; Liu et al., 2009; Zhang et al., 2009;
Sun et al., 2013; Li et al., 2017), and speciated vertical pro-
files are rarer. AOD is highly sensitive to RH (Brock et al.,
2016; Latimer and Martin et al., 2019; Saide et al., 2020), but
the impact from RH uncertainty on AOD simulation lacks
evaluation. In addition, because the AOD is a daytime mea-
surement that needs to be related to 24 h average PM2.5, the
diurnal variation in PM2.5 needs to be understood (Guo et
al., 2017; Lennartson et al., 2018). Finally, although there
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Table 1. Surface site observations used in this work (2016).

Variable Number
of sites

PM2.5 in East Chinaa 598
PM2.5 in South Koreab 130
PM2.5 composition in South Korea (May–June 2016)c 7
AERONET total and fine-mode AOD in East Chinad 5
AERONET total and fine-mode AOD in South Koread 10–21e

a Hourly PM2.5 from the China National Environmental Monitoring Centre (CNEMC;
http://www.quotsoft.net/air/, last access: 12 March 2021) in East China, including only
sites with more than 90 % data coverage in each month of 2016. Quality control of the
CNEMC dataset is described in our previous study (Zhai et al., 2019). The PM2.5
measurements are made at reference RH≤ 35 %. b Hourly PM2.5 from the AirKorea
network (https://www.airkorea.or.kr, last access: 20 April 2021), with the same data
selection criteria as for East China. The PM2.5 measurements are made at reference
RH≤ 35 %. c Major PM2.5 components including sulfate, nitrate, ammonium, organic
carbon, and black carbon at seven supersites in South Korea during KORUS-AQ
(May–June 2016; J. Choi et al., 2019). The mass concentration of organic carbon is
converted to that of organic aerosol with a multiplicative factor of 1.8 based on
KORUS-AQ observations (Kim et al., 2018). d AODs are from the AERONET Version 3
Level 2.0 all-points database (https://aeronet.gsfc.nasa.gov/, last access: 23 July 2021),
except that AODs at the Xuzhou site in East China are from the Version 3 Level 1.5
database. AOD at 500 nm (AOD500 nm) is converted to 550 nm (AOD550 nm) using the
Ångström exponent at 500 nm (AE500 nm) following

AOD550 nm = AOD500 nm

(
550
500

)−AE500 nm . e AERONET AODs in South Korea are
from 10 sites for the full year of 2016 and 21 sites during KORUS-AQ.

are studies on the optical depth of coarse-mode desert dust
(Eck et al., 2010; Ridley et al., 2016), there has been to our
knowledge no study of how coarse anthropogenic PM may
contribute to the AOD measurements. Coarse anthropogenic
PM (distinct from desert dust) is known to be high over East
Asia (Chen et al., 2015; Dai et al., 2018).

2 Data and methods

2.1 Observations

We use observations over China and South Korea from mul-
tiple platforms including surface sites, aircraft, and satellites
(Tables 1 and 2). Surface data (Table 1) include PM2.5 from
national observation networks in China (Zhai et al., 2019)
and South Korea (Jordan et al., 2020), speciated PM2.5 at
seven supersites in South Korea during KORUS-AQ (J. Choi
et al., 2019), and ground-based AODs from the AERONET
network at 5 sites in East China and 10 sites in South Ko-
rea (21 sites during KORUS-AQ). We use total and fine-
mode AODs at 500 nm wavelength from the AERONET Ver-
sion 3 spectral deconvolution algorithm (SDA) Version 4.1
Retrieval Level 2.0 database (Giles et al., 2019; O’Neill et
al., 2003). The AERONET AODs at 500 nm are converted
to 550 nm using total and fine-mode Ångström exponents at
500 nm for consistency with the satellite AOD data.

The KORUS-AQ campaign (Table 2) includes 20 flights
over the Korean peninsula and the surrounding ocean from
2 May to 10 June 2016, with vertical profiling up to 8 km al-
titude. We use the aircraft observations of remote and in situ
aerosol extinction (scattering+ absorption) coefficients, dry

Table 2. KORUS-AQ aircraft observations used in this work (May–
June 2016).

Variable Instrument

Aerosol extinction profile at 532 nm HSRLa

Aerosol scattering coefficient at 550 nm TSI nephelometersb

Aerosol absorption coefficient at 532 nm PSAPsc

Aerosol dry size distribution TSI LASd

Bulk aerosol ionic composition SAGAe

Sub-micron non-refractory aerosol composition HR-ToF-AMSf

Black carbon concentration HDSP2g

Relative humidity DLHh

a NASA Langley airborne high-spectral-resolution lidar (HSRL) (Hair et al., 2008; Scarino et
al., 2014). b NASA Langley TSI-3563 nephelometers (Ziemba et al., 2013). c Radiance
Research three-wavelength particle soot absorption photometers (PSAPs; Ziemba et al., 2013).
d In situ particle size distributions over the 0.1–5.0 µm diameter range from the TSI laser
aerosol spectrometer (LAS) Model 3340. e University of New Hampshire (UNH) Soluble
Acidic Gases and Aerosol (SAGA) instrument (Dibb et al., 2003). The cutoff aerodynamic
diameter of the inlet is around 4 µm, corresponding to a geometric particle diameter of 2.5 µm
(McNaughton et al., 2007, 2009). f University of Colorado Boulder high-resolution
time-of-flight aerosol mass spectrometer (HR-ToF-AMS; DeCarlo et al., 2006; Nault et al.,
2018; Guo et al., 2021). g NOAA humidified dual single particle soot photometer (HDSP2;
Lamb et al., 2018). h NASA diode laser hygrometer (DLH; Podolske et al., 2003).

aerosol number size distributions, sub-micron non-refractory
aerosol composition, bulk aerosol ionic composition, black
carbon (BC), and relative humidity (RH).

Geostationary satellite AOD at 550 nm is retrieved by the
Yonsei aerosol retrieval (YAER) algorithm for the GOCI
(Choi et al., 2016, 2018) and AHI (Lim et al., 2018) instru-
ments, with GOCI covering East China and South Korea and
AHI covering the broad East Asia region. AOD from GOCI
and AHI has a 6 km× 6 km spatial resolution and 2.5 min
(AHI) to 1 h (GOCI) temporal resolution for 8 h per day
(09:30 to 16:30 local time). We use the fused AOD product
generated from the Yonsei GOCI–AHI AOD retrievals, each
using two different surface reflectance methods (Lim et al.,
2021). Fusion of this four-member ensemble is done by the
maximum likelihood estimate (MLE) method, with weight-
ing and averaging based on errors determined by compari-
son to AERONET AOD. The fused satellite AOD product is
shown by Lim et al. (2021) to have higher accuracy than its
member products in comparison with AERONET data dur-
ing the KORUS-AQ campaign. We refer to it as the “GEO
satellite AOD” product in what follows.

2.2 GEOS-Chem simulation

We use GEOS-Chem version 12.7.1
(https://doi.org/10.5281/zenodo.3676008) in a nested-
grid simulation at a horizontal resolution of 0.5◦× 0.625◦

over East Asia (100–145◦ E, 20–50◦ N). GEOS-Chem sim-
ulates detailed tropospheric oxidant–aerosol chemistry and
is driven here by GEOS-FP-assimilated meteorological data
from the NASA Global Modeling and Assimilation Office
(GMAO). Boundary layer mixing uses the non-local scheme
implemented by Lin and McElroy (2010). Dry deposition of
gases and particles follows a standard resistance-in-series
scheme (Zhang et al., 2001; Fairlie et al., 2007; Fisher et
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al., 2011; Jaeglé et al., 2018). Wet deposition of gases and
particles includes contributions from rainout, washout, and
scavenging in convective updrafts (Liu et al., 2001; Amos et
al., 2012; Q. Wang et al., 2011, 2014) with recent updates
by Luo et al. (2019, 2020). We use pre-archived initial
conditions from Zhai et al. (2021) and run the model from
1 December 2015 to 31 December 2016. The first month is
used for spin-up, and the year 2016 is used for analysis.

GEOS-Chem has been used extensively to simulate PM2.5
and its composition in East Asia (Geng et al., 2017; Li et
al., 2016; J. Choi et al., 2019; Jeong et al., 2008; Park et al.,
2021; Zhai et al., 2021). Here we use the bulk representation
of aerosols including sulfate (Park et al., 2004; Alexander et
al., 2009), nitrate (Jaeglé et al., 2018), primary and secondary
organic aerosols (Pai et al., 2020), BC (Q. Wang et al., 2014),
natural dust in four advected size ranges (Fairlie et al., 2007),
anthropogenic fine dust (Philip et al., 2017), and sea salt in
two size ranges (Jaeglé et al., 2011). Heterogeneous sulfate
formation on aqueous aerosols is represented by a simplified
parameterization scheme (Y. Wang et al., 2014), where the
SO2 uptake coefficient (γ ) linearly increases from 1× 10−5

at RH≤ 50 % to 2× 10−5 at RH= 100 %. The thermo-
dynamic equilibrium of sulfate–nitrate–ammonium (SNA)
aerosols with the gas phase is computed with ISORROPIA
II (Fountoukis and Nenes, 2007; Pye et al., 2009), assuming
an aqueous aerosol. We include reactive uptake on dust of
acid gases (HNO3, SO2, and H2SO4), limited by consump-
tion of dust alkalinity (Fairlie et al., 2010). The alkalinity of
emitted dust is estimated by assuming 7.1 % Ca2+ and 1.1 %
Mg2+ as alkaline cations by dust mass (Shah et al., 2020).

Monthly anthropogenic emissions are from the Multi-
resolution Emission Inventory in 2016 for China (MEIC;
Zheng et al., 2018; http://meicmodel.org, last access:
10 November 2021) and from the KORUSv5 emission in-
ventory in base year 2015 (Woo et al., 2020; http://aisl.
konkuk.ac.kr/#/emission_data/korus-aq_emissions, last ac-
cess: 10 November 2021) for other Asian countries and ship-
ping emissions. MEIC over China applies weekly and diur-
nal scaling factors for all anthropogenic emissions (Zheng
et al., 2018). The KORUSv5 agricultural NH3 emissions ap-
ply the diurnal scaling factors from MEIC. Natural emissions
include NOx from lightning (Murray et al., 2012) and soil
(Hudman et al., 2012), MEGANv2 biogenic volatile organic
compounds (VOCs) (Guenther et al., 2012), dust (Meng et
al., 2021), and sea salt (Jaeglé et al., 2011). Open-fire emis-
sions are from the Global Fire Emissions Database version 4
(GFED4; van der Werf et al., 2017).

2.3 AOD simulation

AOD in GEOS-Chem is diagnosed by integrating vertically
the aerosol scattering and absorption coefficients obtained
with a standard Mie calculation applied to assumed size
distributions, hygroscopicity, refractive indices, and densi-
ties for individual aerosol components and summing over

all components (Martin et al., 2003). Optical properties are
listed in Table 3. Sulfate, nitrate, and ammonium share
the same optical properties and are lumped as an SNA
aerosol component for the purpose of optical calculations.
All aerosol components except dust are assumed to follow
lognormal size distributions. Dust includes seven size bins
(centered at radii of 0.15, 0.25, 0.4, 0.8, 1.5, 2.5, and 4.0 µm)
for optical calculations, with the smallest four bins parti-
tioned by mass from the first advected dust bin following
Zhang et al. (2013). Dust particles follow a gamma size dis-
tribution within their optical size bins (Curci, 2012). The BC
absorption enhancement from coating is as given by X. Wang
et al. (2014).

Our initial simulations indicated that aerosol extinction
coefficients from the standard GEOS-Chem version 12.7.1
underestimated in-situ-measured extinction coefficients dur-
ing KORUS-AQ by 20 % on average (Fig. S1 in the Sup-
plement). We traced this problem to bias in the assumed
size distributions for SNA and organic aerosol, as shown in
Sect. 3. Therefore, we recomputed the diagnostic AOD us-
ing updated lognormal size distributions for SNA and or-
ganic aerosol with number median radius RN,med = 0.11 µm
and geometric standard deviation σ = 1.4 based on KORUS-
AQ observations instead of RN,med = 0.058 µm and σ = 1.6
in the standard model version 12.7.1, which is derived from
IMPROVE network measurements of aerosol mass scattering
efficiency over North America (Latimer and Martin, 2019).

3 Aerosol concentrations and optical properties during
KORUS-AQ

Here we use the KORUS-AQ aircraft observations and their
simulation with GEOS-Chem to better understand the verti-
cal distributions of different aerosol components contributing
to AOD over South Korea. We begin with the mean verti-
cal profile of aerosol mass and go on to examine the aerosol
optical properties. This provides the basis for analyzing the
observed vertical profile of aerosol extinction, its simulation
by GEOS-Chem, and the consistency with GEO satellite and
AERONET AOD measurements over South Korea during the
KORUS-AQ period.

3.1 Vertical profile of aerosol mass

Figure 1 shows the mean aircraft vertical profiles of aerosol
mass observed during KORUS-AQ and their simulation by
GEOS-Chem. The KORUS-AQ aircraft sampled during the
daytime, mainly between 08:00 and 16:00 local time. Here
and elsewhere, the model is sampled along the flight tracks
and at the flight times. The observed vertical distribution of
aerosol mass concentrations (Fig. 1a) shows that 58 % of col-
umn aerosol mass is below 2 km altitude, which we define as
the average planetary boundary layer (PBL) during KORUS-
AQ, and 34 % is at 2–5 km altitude, which we define as the
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Table 3. Aerosol optical propertiesa. Note that n/a stands for not applicable.

Aerosol component RN,med, µm σ Hygroscopicityb Refractive index ρ, g cm−3

SNA c 0.11 1.4 κ = 0.61 1.53− 6.0× 10−3i 1.7
Organicc 0.11 1.4 κ = 0.1 1.53− 6.0× 10−3i 1.3
BC 0.020 1.6 GADS 1.75− 4.4× 10−1i 1.8
Sea salt (fine) 0.085 1.5 GADS 1.5− 1.0× 10−8i 2.2
Sea salt (coarse) 0.40 1.8 GADS 1.5− 1.0× 10−8i 2.2
Dust Seven size bins n/a κ = 0d 1.558− 1.4× 10−3i 2.5–2.65e

a Aerosol optical properties used in this work for computing aerosol scattering and absorption coefficients. Values are from the standard
GEOS-Chem model version 12.7.1, except for the size distributions of SNA and organic aerosol, which are based on KORUS-AQ
observations (see text). All aerosol components except dust have lognormal dry size distributions, where RN,med is the number median
radius, and σ is the geometric standard deviation. Refractive indices are for 550 nm wavelength; ρ is the dry aerosol mass density.
b Hygroscopic growth for SNA and organic aerosol as a function of relative humidity (RH; %) is computed from κ-Kohler theory as a
diameter growth factor GF= (1+ κ ·RH/(100−RH))1/3 (Latimer and Martin, 2019). Hygroscopic growth factors for other aerosol
components are from the Global Aerosol Data Set (GADS) as tabulated in Chin et al. (2002) and Martin et al. (2003). c RN,med and σ
are fit to KORUS-AQ observations as described in the text. Standard GEOS-Chem v12.7.1 assumes RN,med = 0.058 µm and σ = 1.6
(Latimer and Martin, 2019). d Hygroscopic growth of dust particles is assumed negligible. e Sub-micron dust particles have a density of
2.5 g cm−3, while coarse-mode dust particles have a density of 2.65 g cm−3. Dust size distribution is described in the text.

lower free troposphere (FT). The model has a similar verti-
cal distribution (Fig. 1b), with 57 % of aerosol mass in the
PBL and 36 % in the lower FT. SNA, organic aerosol, and
dust each contribute about a third of aerosol mass in the PBL,
while dust dominates in the lower FT both in the observations
and in the model. The enhanced dust in the lower FT is driven
by a few dust events, which the model reproduces (Fig. S2).
Black carbon and sea salt (not shown) make only minor con-
tributions to aerosol mass. The model underestimates sulfate
by 28 % in the PBL, which leads to a 20 % overestimate of
nitrate, with a canceling effect on the SNA mass simulation.

The GEOS-Chem simulation of organic aerosol in this
work uses the simple scheme of Pai et al. (2020) and un-
derestimates aircraft observations by 16 % in the PBL. Over
90 % of GEOS-Chem organic aerosol is secondary, consis-
tent with observations (Fig. S4; Nault et al., 2018; Pai et al.,
2020). GEOS-Chem simulation of the KORUS-AQ aerosol
component profiles for different meteorological regimes is
presented in Park et al. (2021).

3.2 Aerosol size distributions

Figure 2a shows the normalized dry aerosol number size
distributions on each of the 20 flights and in 3 altitude
bands: < 1.5, 3–5, and 6–7 km (60 lines). The spread in the
size distributions above 1 µm in diameter reflects dust influ-
ence. We select measurements below 1.5 km altitude when
SNA+ organic aerosol mass concentrations are more than 4
times that of dust as defining the SNA+ organic aerosol size
distributions (green lines in Fig. 2a). Conditions dominated
by SNA+ organic aerosols define the lower envelopes of the
ensemble of size distributions at diameter> 1 µm. SNA and
organic aerosols were observed to have similar size distribu-
tions during KORUS-AQ (Kim et al., 2018).

Figure 2b converts the SNA+ organic-aerosol-dominated
number size distributions to volume size distributions. The

Figure 1. Vertical profiles of aerosol mass during KORUS-AQ.
Panel (a) shows the mean vertical distributions of observed mass
concentrations of major aerosol components at ambient tempera-
ture and pressure. Panel (b) is the same as (a) but from the GEOS-
Chem model sampled along the flight tracks (inset). We derive
dust concentration from SAGA Ca2+ and Na+ following Shah et
al. (2020) by assuming that non-sea-salt Ca2+ accounts for 7.1 %
of dust mass: [dust] = ([Ca2+]− 0.0439 [Na+]/2)/0.071, where
the brackets denote mass concentration. Modeled dust is shown for
particles with geometric diameter< 2.5 µm, to be consistent with
SAGA measurements (Table 2, footnote e). Measured sulfate, ni-
trate, ammonium, and organic aerosol concentrations are from the
AMS instrument (values from the SAGA instrument are shown in
Fig. S4). All data are averaged over 500 m vertical bins. Here and
elsewhere, we excluded pollution plumes diagnosed by either NO2
or SO2> 10 ppbv (3.4 % of all the data).

observed SNA+ organic-aerosol-dominated size distribution
is shifted toward larger sizes relative to the standard GEOS-
Chem. The secondary maximum in the coarse mode could be
due to dust. We fitted the observed SNA+ organic aerosol
size distributions to a lognormal distribution with volume
median radius RV,med = 0.15 µm and geometric standard

https://doi.org/10.5194/acp-21-16775-2021 Atmos. Chem. Phys., 21, 16775–16791, 2021
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deviation σ = 1.4. The number median radius is derived
from the volume median radius following Seinfeld and Pan-
dis (2016):

lnRN,med = lnRV,med− 3ln2σ, (1)

which yields RN,med = 0.11 µm. In comparison, the stan-
dard GEOS-Chem size distribution from Latimer and Mar-
tin (2019) has RN,med = 0.058 µm and σ = 1.6. We adopt the
observed lognormal size distribution parameters in what fol-
lows (Table 3).

3.3 Aerosol extinction and relation to AOD

Figure 3 shows the vertical profiles of ambient aerosol ex-
tinction coefficients and RH during KORUS-AQ. Vertical
profiles of aerosol extinction were measured on the aircraft
both remotely with the HSRL instrument (above and below
the aircraft) and in situ with TSI-3563 nephelometers (for
scattering) and PSAPs (for absorption). The two agree well,
as shown in Fig. 3a. They indicate that 76 %–90 % of column
aerosol extinction is in the PBL at 0–2 km altitude, and 9 %–
19 % is in the lower FT at 2–5 km. Both measurements show
that aerosol extinction is much more strongly weighted to the
PBL than aerosol mass (Fig. 1).

Also shown in Fig. 3a are the contributions of individ-
ual aerosol components to the extinction profile, as com-
puted from the GEOS-Chem optical properties (Table 3) ap-
plied to the observed mass concentrations. The sum shows
a good match to the measured extinction coefficient profiles.
The much larger contribution of the PBL to column aerosol
extinction than to column mass is because aerosol mass in
the lower FT is mainly composed of dust, whose mass ex-
tinction efficiency is much smaller than SNA and organic
aerosols due to its coarse size and lack of hygroscopic growth
(Fig. S5). The mean AOD inferred from the aircraft data
is 0.36, and 59 % is contributed by SNA, 27 % by organic
aerosol, 12 % by dust, and 2 % by BC. It is consistent with
the mean AODs measured at AERONET stations in South
Korea during KORUS-AQ (Fig. S6).

Figure 3b shows the GEOS-Chem simulation of aerosol
extinction profiles for comparison to the observations in
Fig. 3a. The model underestimates extinction coefficients by
20 % below 1 km altitude, leading to a 10 % underestimate
of aircraft-inferred AOD, although there is no such underes-
timate in aerosol mass. This is caused by a negative RH bias
in the GEOS-FP meteorological data used to drive GEOS-
Chem, particularly under high-RH conditions (Fig. 3c), and
is corrected if we apply the observed RH rather than the
GEOS-FP RH to the GEOS-Chem aerosol mass concentra-
tions (Fig. 3d).

4 AOD and surface particulate matter over South
Korea during KORUS-AQ

Our analysis of Sect. 3 used the KORUS-AQ aircraft data to-
gether with GEOS-Chem to attribute AOD over South Korea
to individual aerosol components and altitudes. We now take
the next step of evaluating the capability of GEOS-Chem to
independently simulate observed AODs and surface particu-
late matter concentrations.

Figure 4a shows the spatial distribution of the fused geo-
stationary satellite (GOCI–AHI) AOD (GEO satellite AOD)
during the KORUS-AQ period with AERONET total AOD
added as circles. The GEO satellite AOD shows high val-
ues (0.5–0.6) along the west coast of South Korea, signifi-
cantly correlated with AERONET total AOD with a spatial
correlation coefficient (R) of 0.7. GEO satellite AOD is bi-
ased low at sites in the Seoul metropolitan area (SMA) and is
biased high on the Yellow Sea islands, resulting in an over-
all −10 % bias. The low biases in the SMA could be due
to high-concentration aerosol pixels misidentified as clouds
and/or possible issues with the aerosol type assumption in
the aerosol retrieval, while the high biases on the Yellow Sea
islands could result from uncertainties in the assumption of
ocean surface reflectance, as has been discussed by Choi et
al. (2016, 2018) and Lim et al. (2018, 2021). Sampling the
AODs at or near the seven PM2.5 supersites operating dur-
ing KORUS-AQ shows no significant bias (inset values in
Fig. 4a).

Figure 4b–e show the spatial distributions of GEOS-Chem
AOD, surface PM10 (particulate matter with aerodynamic di-
ameter less than 10 µm), surface PM2.5, and surface coarse
PM (PM10 minus PM2.5; particulate matter with aerody-
namic diameter less than 10 µm and larger than 2.5 µm), with
surface observations shown as circles and median values at
the measurement sites inset. GEOS-Chem reproduces the
satellite AOD enhancements along the west coast of South
Korea, but the values are lower than observed, which we at-
tribute to unaccounted coarse PM and negative RH bias as
discussed below. Comparison of AERONET total and fine-
mode AOD shows a 13 % contribution of coarse particles
to total AOD. Comparison of GEOS-Chem to the fine-mode
AERONET AOD, as shown in Fig. 4b, finds a 15 % under-
estimate that could be attributed to the negative bias in RH
(Fig. 3c). Concurrent measurements of PM10 and PM2.5 at
AirKorea sites show that coarse PM (median 21 µg m−3) ac-
counts for 41 % of total PM10 (50 µg m−3), while coarse PM
in GEOS-Chem is much lower (3.5 µg m−3; Fig. 4e). There-
fore, about half of the GEOS-Chem underestimate of total
AOD can be attributed to missing coarse PM, with the other
half coming from negative RH bias. Coarse PM has a concen-
tration larger than 10 µg m−3 across South Korea, with higher
concentration in the SMA (∼ 30 µg m−3) than in rural areas
(∼ 15 µg m−3), implying an origin from both anthropogenic
and natural sources (Fig. 4e).

Atmos. Chem. Phys., 21, 16775–16791, 2021 https://doi.org/10.5194/acp-21-16775-2021



S. Zhai et al.: Relating geostationary satellite measurements of aerosol optical depth 16781

Figure 2. Aerosol dry size distributions measured in the KORUS-AQ aircraft campaign. Panel (a) shows mean normalized number size
distributions measured on each of the 20 flights and for 3 altitude bins: < 1.5, 3–5, and 6–7 km (60 lines total). The SNA+ organic-aerosol-
dominated size distribution profiles are highlighted in color. Panel (b) shows normalized volume size distributions for conditions dominated
by SNA+ organic aerosols (green lines), along with a least-square fit to a lognormal distribution (black line) and the standard GEOS-Chem
v12.7.1 size distribution from Latimer and Martin (2019) (dashed blue line). Normalization imposes an arbitrary value of unit area below each
line. Lognormal distribution parameters are inset in panel (b), including volume median radius (RV,med), number median radius (RN,med),
and geometric standard deviation (σ ).

GEOS-Chem overestimates surface PM2.5 by 43 % over
South Korea (Fig. 4d), in contrast to the simulation of
AERONET fine-mode AOD (Fig. 4b). Figure 4f–j show
the spatial distributions of major PM2.5 components in
GEOS-Chem (background) and measurements (filled cir-
cles). GEOS-Chem is not significantly biased relative to the
observations for organic aerosol and BC and underestimates
sulfate by 22 %. We find that the model bias for PM2.5 is
largely driven by nitrate, which is overestimated by a factor
of 3 and leads to a 56 % overestimate of ammonium. By con-
trast, comparison to the KORUS-AQ data below 1 km alti-
tude showed only a 20 % overestimate of nitrate (Fig. 1). This
is because the model bias is mainly driven by nighttime con-
ditions (Fig. 5), while aircraft samples in the daytime during
KORUS-AQ. The cause of this large model bias is analyzed
by Travis et al. (2021) and is attributed to nighttime nitrate
chemistry and deposition in the stratified boundary layer.

5 AOD and its relationship to PM2.5 over East Asia

We build on our analysis of the KORUS-AQ period for a
broader interpretation of the distribution of AOD over Korea
and China and its relationship to surface PM2.5, acknowl-
edging that the conditions sampled in KORUS-AQ may not
be representative of other seasons or of China. Figure 6
shows the spatial distributions of 2016 annual and seasonal
mean geostationary (GEO) satellite AODs, the correspond-
ing GEOS-Chem clear-sky AODs, and GEOS-Chem surface
PM2.5. The figure gives normalized mean biases (NMBs) rel-
ative to ground-based measurements from AERONET and
from the PM2.5 surface networks (shown as circles) over the
North China region (34.5–40.5◦ N, 115.5–122◦ E) and South
Korea. The North China region is defined to overlap with the

domain of the geostationary satellite AOD and to ensure con-
sistent seasonal variations within its narrow latitude.

On an annual mean basis, AOD over North China (∼ 0.5–
0.6) is about 50 % larger than over South Korea (∼ 0.3–
0.4). AOD over South Korea shows higher values (> 0.4)
in the Seoul metropolitan area, consistent with that during
the KORUS-AQ period (Fig. 4a). Transport from the Asian
continent is strongest in spring, when the frequency of cold
front passages is highest (Liu et al., 2003). AERONET total
AOD in spring (0.4–0.6) is twice as large as fine-mode AOD
(0.2–0.3), reflecting a large contribution of dust. In seasons
other than spring, 80 %–90 % of AERONET total AOD is
contributed by the fine mode. There is large seasonality in
AODs over North China and weaker seasonality over South
Korea, which is discussed below.

The GEOS-Chem clear-sky AODs show the same spatial
and seasonal patterns as GEO satellite AODs but tend to
be low in spring and summer. Comparison of the model to
AERONET AODs confirms this bias and shows better agree-
ment with fine-mode AOD in spring (NMB of−1 %), imply-
ing an underestimate of coarse dust that is consistent with our
comparisons to the AirKorea network data during KORUS-
AQ (Fig. 4e). Comparison of clear-sky and all-sky AODs in
GEOS-Chem shows no significant difference on an annual
and seasonal mean basis, except for winter (Fig. S7). Winter
has larger all-sky AOD than clear-sky AOD and the lowest
rate of successful satellite retrievals (Fig. S7), which may be
due in part to misclassification of heavy wintertime PM2.5
pollution as clouds (Zhang et al., 2020).

The spatial distributions of PM2.5 in GEOS-Chem in dif-
ferent seasons match closely the observations (Fig. 6, bottom
row). We see also a close coincidence between the spatial dis-
tributions of PM2.5 and AODs, in both the observations and
the model. On an annual mean basis, GEOS-Chem overesti-
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Figure 3. Vertical profiles of aerosol extinction coefficients and
relative humidity (RH) during KORUS-AQ. Panel (a) shows the
mean observed vertical distributions of 550 nm extinction coeffi-
cients measured in situ (nephelometer+PSAPs; at ambient RH)
and remotely (HSRL), along with an independent calculation (col-
ored horizontal bars) from the measured mass concentrations of
major aerosol components, measured RH, and GEOS-Chem opti-
cal properties as given in Table 3. Panel (b) shows the mean aerosol
extinction profile in GEOS-Chem and the contributions from the
different model components. Panel (c) is the median vertical profile
of RH (horizontal bars are 25th–75th percentiles) from aircraft mea-
surements and the GEOS-FP assimilated meteorological data used
to drive GEOS-Chem. Panel (d) is the same as (b) but calculated
using measured RH.

mates PM2.5 by 16 % in North China and by 14 % in South
Korea, even though it underestimates AERONET fine-mode
AODs by 15 %. The overestimate of PM2.5 in South Korea is
worst in spring (27 %), consistent with KORUS-AQ results,
which we previously attributed to excessive nighttime nitrate
build-up in the model. Over North China, the overestimate of
PM2.5 is worst in summer (33 %), consistent with the nitrate
overestimate in summer shown in our previous study (Zhai
et al., 2021), which could also be due to model overestimate
of nighttime nitrate (Miao et al., 2020).

Figure 7 shows daily correlations of the regional aver-
age series between AERONET total AOD and GEO satel-
lite AOD, between AERONET fine-mode AOD and GEOS-
Chem AOD, and between measured PM2.5 and GEOS-Chem
PM2.5. Correlations in Fig. 7 are all statistically significant,
with correlation coefficients (R) ranging from around 0.7 to

more than 0.9 and normalized mean biases (NMB) within
±30 %. The correlations of these three pairs are similar over
South Korea and North China, except that GEOS-Chem over-
estimates springtime PM2.5 in South Korea but not over
North China, possibly due to a model overestimate of the
long-range transport of PM2.5 from China to South Korea in
spring.

Figure 8 compares the seasonalities of AOD and PM2.5
over the North China and South Korea regions. The GEO
satellite AOD over North China peaks in July and is min-
imum in winter. Most of the AOD is attributed by GEOS-
Chem to SNA aerosol, same as in South Korea. AOD over
South Korea also has a summer maximum and winter mini-
mum but with weaker amplitude than over North China. The
GEOS-Chem AOD is biased low by ∼ 20 % in summer, and
this is largely due to a low RH bias (Fig. S8), as seen previ-
ously in the KORUS-AQ comparisons, but amplified by the
high RH in summer that drives hygroscopic growth (Latimer
and Martin, 2019).

Surface PM2.5 in the observations over North China and
South Korea shows opposite seasonality to AOD, with min-
imum values in summer and maximum values in winter–
spring. GEOS-Chem reproduces the strong seasonality of
PM2.5 in North China and the much weaker seasonality in
South Korea. The high PM2.5 values over North China in
winter in the model are mostly driven by organic aerosol,
reflecting the large residential coal burning source (Fig. S9;
Zheng et al., 2018). In South Korea, by contrast, house-
hold energy is mainly from natural gas and electricity
(Lee et al., 2020; Woo et al., 2020). GEOS-FP daytime
PBL height also shows a stronger seasonality over North
China than over South Korea (Fig. S8), generally consistent
with the CALIPSO daytime PBL height (Su et al., 2018).
Previous studies have shown opposite seasonality between
MODIS AOD and surface PM2.5 over North China and at-
tributed this to the seasonality in PBL height and RH (Qu
et al., 2016; Xu et al., 2019). The mean PM2.5 /AOD ra-
tio over North China in winter (236 µg m−3) is 8 times
that in summer (29 µg m−3), with autumn (94 µg m−3) and
spring (89 µg m−3) in between, while over South Korea, the
PM2.5 /AOD ratio in winter (62 µg m−3) is only 70 % larger
than in summer (36 µg m−3).

6 Conclusions

Geostationary satellite observations of aerosol optical depth
(AOD) over East Asia may usefully complement PM2.5 air
quality networks if the local relationship between AOD and
PM2.5 can be inferred from a physical and/or statistical
model. Here we analyzed the ability of the GEOS-Chem
chemical transport model to provide this relationship by us-
ing a new fused GOCI–AHI geostationary satellite product
together with AERONET ground-based AOD measurements,
aerosol vertical profiles over South Korea from the KORUS-

Atmos. Chem. Phys., 21, 16775–16791, 2021 https://doi.org/10.5194/acp-21-16775-2021



S. Zhai et al.: Relating geostationary satellite measurements of aerosol optical depth 16783

Figure 4. Spatial distributions of AOD and surface PM10, PM2.5, coarse PM (PM10 minus PM2.5), and major PM2.5 components over
South Korea averaged during KORUS-AQ (9 May–10 June 2016). Panel (a) shows the fused geostationary (GEO) 550 nm AOD from the
GOCI and AHI satellites (background) and AERONET 550 nm total AOD (filled circles). Panel (b) shows GEOS-Chem 550 nm AOD
sampled at hourly GEO satellite AOD (GEOS-Chem clear-sky AOD; background) and AERONET 550 nm fine-mode AOD (filled circles).
Panel (c) shows surface PM10 modeled by GEOS-Chem (background) and measured at ground sites (filled circles). Panels (d)–(j) are the
same as panel (c) but respectively for PM2.5; coarse PM (PM10 minus PM2.5); and sulfate, nitrate, ammonium, organic aerosol, and BC
PM2.5 components. Values inset are median values from ground-based measurements (black) and sampled from GEO satellite (magenta)
and GEOS-Chem (blue). Measured PM10, PM2.5, and coarse PM in panels (c)–(e) are shown for a random selection of 50 % of AirKorea
sites to visualize spatial distribution, and inset values are for the seven supersites where PM2.5 composition was measured. Median AOD
values inset are sampled at or near the seven supersites to avoid biassing by the large number of sites in the Seoul metropolitan area. Modeled
total PM2.5 concentrations are calculated at 35 % RH (Table 3). Modeled PM10 is the sum of PM2.5, coarse dust, and coarse sea salt.

Figure 5. Median diurnal variations in PM2.5 nitrate concentrations at the seven supersites (top left panel) operated in South Korea during
KORUS-AQ (9 May–10 June 2016). Values are medians binned by hour. GEOS-Chem model values are sampled to coincide with the
measurements.
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Figure 6. Spatial distributions of 2016 annual and seasonal mean AOD (550 nm) and surface PM2.5. The top row shows the observed GOCI–
AHI geostationary satellite AOD (GEO satellite AOD) on the GEOS-Chem 0.5◦× 0.625◦ grid with superimposed 925 hPa GEOS-FP wind
fields and AERONET total AODs (circles). The middle row shows clear-sky GEOS-Chem AOD, with AERONET fine-mode AOD added as
circles. The bottom row shows GEOS-Chem surface PM2.5 (background) with surface network measurements (circles). AERONET AODs
are shown only when more than 10 months of data are available for the annual mean, and all 3 months of data are available for each season.
The PM2.5 observations shown are for a random selection of 7 % of network sites for visual clarity. GEOS-Chem PM2.5 is calculated at 35 %
RH (Table 3). Normalized mean biases (NMBs) inset are for the comparisons of GEO satellite and GEOS-Chem values to the corresponding
ground measurements.

Figure 7. Scatterplots of regional mean daily (a, d) GEO satellite AOD vs. AERONET total AOD, (b, e) GEOS-Chem AOD vs. AERONET
fine-model AOD, and (c, f) GEOS-Chem PM2.5 vs. measured PM2.5 over South Korea (a–c) and North China (d–f). Different colors represent
different seasons. Values inset are correlation coefficients (R) and normalized mean biases (NMBs) between surface measurements and GEO
satellite or GEOS-Chem values.
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Figure 8. Seasonality of AOD and PM2.5 over North China and
South Korea and contributions from individual aerosol components.
Lines show regional medians (error bars: 25th and 75th percentiles)
for the ensemble of monthly averaged observations in the regions
(Fig. 6) in 2016. GEOS-Chem values are shown as stacked contours
for individual components and are sampled in the same way as the
observations.

AQ aircraft campaign (May–June 2016), and surface network
observations. This allowed us to identify the critical features
and limitations of the model for successfully representing the
AOD–PM2.5 relationship.

The KORUS-AQ observations show that total aerosol ex-
tinction (550 nm) in the vertical column is dominated by
sulfate–nitrate–ammonium (SNA) and organic aerosol in the
planetary boundary layer (PBL), despite large concentrations
of dust in the free troposphere. This reflects the optically ef-
fective size and high hygroscopicity of the PBL aerosols. We
find that GEOS-Chem aerosol optical properties based on
measurements over the North America (default model set-
ting) underestimate KORUS-AQ aerosol mass extinction ef-
ficiency by around 20 %. In addition, a low bias in GEOS-FP
RH below 1 km leads to a 10 % underestimate of AOD in-
ferred from the aircraft profile. Adjustments of GEOS-Chem
aerosol optical properties and RH enable a successful simula-
tion of the aerosol extinction profile. SNA aerosol contributes
59 % of column aerosol extinction in the KORUS-AQ data,
while organic aerosol contributes 27 %, and dust contributes
12 %.

Comparison of GOCI–AHI geostationary (GEO) satellite
AOD to AERONET AODs over South Korea shows good
agreement, with high values along the west coast. GEOS-
Chem is more consistent with the fine-mode AERONET
AOD because of its insufficient accounting of coarse parti-
cles, which account for 13 % of AERONET AOD. The re-
maining 15 % underestimate of AERONET fine-mode AOD
by GEOS-Chem can be attributed to the RH low bias. GEOS-
Chem overestimates 24 h surface PM2.5 over South Korea
by 43 % during the KORUS-AQ period, despite its success-

ful simulation of the aircraft data and fine-mode AERONET
AOD, and we find that this is due to a large overestimate of
nighttime nitrate.

Broader examination of the GOCI–AHI AOD satellite data
over East Asia shows spatial distributions and magnitudes
consistent with AERONET and featuring in particular strong
Asian outflow in spring that includes a large dust component.
We find that AODs and PM2.5 have similar large-scale spatial
distributions but opposite seasonality. PM2.5 in North China
has a strong winter maximum and summer minimum, while
AOD shows the opposite. GEOS-Chem simulates success-
fully the seasonality of measured PM2.5 but is biased low
by ∼ 20 % in summer for AOD, due again to low RH bias
like that during KORUS-AQ, amplified by the high RH in
summer that drives hygroscopic growth (Latimer and Martin,
2019). We find that the opposite AOD and PM2.5 seasonality
is mainly driven by residential coal heating sources and low
PBL depths in winter and high RH in summer. Observations
of PM2.5 and AOD in South Korea show the same seasonal
phases as in North China but with much weaker amplitude,
reflecting the lack of residential coal burning in winter and a
weaker seasonal amplitude of PBL depth.

In summary, we find that the geostationary GOCI–AHI
satellite AOD data provide high-quality information for mon-
itoring of PM2.5 over East Asia but that physical interpreta-
tion requires accurate information on aerosol size distribu-
tions, PBL depths, RH, the role of coarse particles, and diur-
nal variation in PM2.5, all of which are subject to large uncer-
tainties in chemical transport models. Addressing these un-
certainties should be a target of future work. We have used re-
sults from our study in a recent machine-learning reconstruc-
tion of daily 2011–present PM2.5 over East Asia from GOCI
AOD data by identifying critical variables for the machine-
learning algorithm and providing blended gap-filling data for
cloudy scenes (Pendergrass et al., 2021). Besides the factors
discussed in this study, topography might be another impor-
tant factor influencing surface PM2.5 and its vertical mixing
(Su et al., 2018), and this also requires future investigation.

Data availability. Aircraft data during KORUS-AQ are available
at https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01 (Aknan
and Chen, 2019). PM2.5 data over China are from http://www.
quotsoft.net/air/ (CNEMC, 2021). PM2.5 data over South Ko-
rea are from https://www.airkorea.or.kr/web/last_amb_hour_data?
pMENU_NO=123 (KEC, 2021). AERONET data can be found
at https://aeronet.gsfc.nasa.gov/ (Giles and Holben, 2014). The
MEIC emission inventory is at http://www.meicmodel.org/ (Ts-
inghua University, 2021). The KORUSv5 emission inventory is de-
veloped by Konkuk University, available at http://aisl.konkuk.ac.kr/
#/emission_data/korus-aq_emissions (CAIS, 2021).

Supplement. The supplement related to this article is available on-
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