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ABSTRACT

Making informed estimates of future energy technology costs
is central to understanding the cost of the low-carbon tran-
sition. A number of methods have been used to make such
estimates: extrapolating empirically derived learning rates;
use of expert elicitations; and engineering assessments which
analyse future developments for technology components’ cost
and performance parameters. In addition, there is a rich
literature on different energy technology innovation systems
analysis frameworks, which identify and analyse the many
processes that drive technologies’ development, including
those that make them increasingly cost-competitive and
commercially ready. However, there is a surprising lack of
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linkage between the fields of technology cost projections and
technology innovation systems analysis. There is a clear
opportunity to better relate these two fields, such that the
detailed processes included in technology innovation systems
frameworks can be fully considered when estimating future
energy technology costs.

Here we demonstrate how this can be done. We identify that
learning curve, expert elicitation and engineering assessment
methods already either implicitly or explicitly incorporate
some elements of technology innovation systems frameworks,
most commonly those relating to R&D and deployment-
related drivers. Yet they could more explicitly encompass a
broader range of innovation processes. For example, future
cost developments could be considered in light of the extent
to which there is a well-functioning energy technological
innovation system (TIS), including support for the direction
of technology research, industry experimentation and devel-
opment, market formation including by demand-pull policies
and technology legitimation. We suggest that failure to fully
encompass such processes may have contributed to over-
estimates of nuclear cost reductions and under-estimates of
offshore wind cost reductions in the last decade.

Keywords: Energy technologies; technology innovation system frame-
works; technology cost reductions; technology innovation
policies

JEL Codes: O31, O33, Q55, Q58

1 Introduction

Energy technology cost projections are central to estimates of the
economy-wide costs of reducing greenhouse gas emissions. This is
almost tautological, given that the majority of integrated assessment and
energy systems models operate on a least-cost optimisation objective,
whereby future climate targets are met with the lowest cost mix of
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energy technologies (Clarke et al., 2014; Farmer et al., 2015; Pfenninger
et al., 2014). It stands to reason that changing energy technology cost
assumptions will change the mix of technologies chosen by these models,
as well as the overall costs of mitigation (Barron and McJeon, 2015;
Bosetti et al., 2015; Giannousakis et al., 2020; McJeon et al., 2011;
Muratori et al., 2017). This is an important consideration, given the
centrality of mitigation cost estimates in prominent analyses of climate
change action (e.g., IPCC, 2014; Stern, 2007).

Recent years have seen a growing body of literature on estimates
of future energy technology costs, using various methods such as (most
prominently) learning curves and expert elicitations. Learning curves
(Forster et al., 2013; Neij et al., 2003; Rubin et al., 2015) most com-
monly link cumulative technology deployment to technology cost or
price. Learning curve analysis is usually presented with the caveat that
deployment alone does not cause technology cost reductions, although
it may be closely correlated with it, but nevertheless its use can mask
the underlying complexity of the innovation processes at work. Under-
standing these processes is likely to be critically important to ensuring
that learning curves are used in an appropriate way. This includes a
consideration of different stages of technological maturity, which may
be associated with different rates of learning, as well as any potential
limits to future cost reductions, such as material supply bottlenecks or
fundamental efficiency and performance limits, that might prevent tech-
nologies from reducing in cost in the future as they have done in the past.

In addition to the widespread use of learning curves, there is a
growing use of expert elicitations in energy technology cost projections
(Verdolini et al., 2018; Wiser et al., 2016; Baker et al., 2015a). As
discussed in this paper, the majority of existing expert elicitations
explore the dependency of future technology costs on different levels of
research and development (R&D) funding, whereas — as is implicit in
most learning curve analysis — deployment also has a considerable role
to play. Reflecting on how expert elicitations might be better adapted
to capture a wider range of innovation processes is therefore worthwhile,
at a time when a raft of immature, pre-commercial and highly novel
technologies without a meaningful cost reduction history are being
considered for their future cost reduction and mitigation potential.

As well as this literature on future energy technology cost estimates,
there is a well-established literature on frameworks that encompass
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the different processes of innovation for energy technologies. Most
prominent is energy technology innovation systems (TIS) analysis, which
offers a systemic perspective encompassing technology development
stages, major innovation processes, actors, institutions and networks
(Gallagher et al., 2012). This lends insight on how and why particular
energy technologies have succeeded, or failed to succeed, in achieving
innovation, commercialisation and penetration into energy systems
in given geographical contexts. A central element of this and other
innovation system frameworks involves understanding how support for
technologies by policies, institutions, entrepreneurs and other actors
has allowed them to become commercially cost-competitive over time.

As demonstrated in this paper, prominent methods to estimate
future energy technology costs have in some cases (using the examples
of nuclear and offshore wind) performed rather poorly when compared
to actual technology cost developments. Furthermore, in these cases
there was relatively little explicit incorporation of the insights and
considerations of TIS frameworks, which may in retrospect have helped
improve the accuracy of these future cost estimates.

In fact somewhat surprisingly and as described in this paper, the
fields of energy technology future cost estimation and technology inno-
vation systems analysis are only weakly connected. The former tends to
focus on deriving quantified estimates of future technology costs, often
with implicit recourse to innovation processes, such as the learning-by-
doing processes represented by cumulative deployment, or the research
and development (R&D) processes represented by research funding or
patent counts, but without sufficient explicit discussion of the implica-
tions of different technology innovation systems and processes.

This paper explains how this important gap can be bridged, by
first discussing how future energy technology costs are most commonly
estimated, as well as the many limitations and criticisms associated with
each of the different methods employed. It next describes a variety of
commonly used technology innovation systems frameworks focused on
understanding the innovation journey and processes. By doing so, the
paper identifies the different ways in which these technology innovation
systems frameworks are able to assist in future energy technology cost
estimates.

A number of other recent studies have sought to shed light on how
different factors and innovation processes drive cost reductions in energy
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technologies. For example, Elia et al.’s (2020) review into how different
drivers of innovation relate to pre-eminent methods of cost estimation
(one-factor learning curves and bottom-up cost models) highlights how
several critical factors of technologies’ development stages are not cap-
tured in such methods. They show that market dynamics and learning
through interactions between different stakeholders are particularly
poorly captured, and explicitly call for a closer integration with inno-
vation studies to better develop the field of future cost estimation.
Thomassen et al. (2020), focusing on learning curves, make a number of
recommendations on better using this technique to estimate future costs,
including combining them with expert estimates, as well as a greater
focus on the sub-components of individual technologies. Grubb et al.
(2021) highlight the importance of institutional factors on innovation,
including regulatory regimes and networks between technology innova-
tors, users and finance. They suggest it may be fruitful to explore links
between quantitative techniques to measure innovation and cost reduc-
tion and the qualitative socio-technical literature on innovation. Wilson
et al. (2020) highlight the multiple benefits (including higher learning
rates and returns on innovation investment) of what they term “granular”
technologies, which are “small in size, low in cost, many in number, and
distributed in application” (Wilson et al., 2020). Sweerts et al. (2020)
also find that technologies’ learning rates are inversely proportional
to unit size. Malhotra and Schmidt (2020) identify faster learning in
less complex or more mass-customised technologies, providing a picture
of how technology typologies can relate to their learning rates and
cost reduction prospects. This paper’s additional contribution to the
studies described above is to detail the many opportunities for looking
widely across both future energy technology cost estimation methods
and technology innovation systems frameworks, so as to identify the
most fruitful links to enrich the former with the latter.

The rest of this paper is set out as follows. Section 2 analyses the
different methods commonly used to estimate the future costs of low-
carbon energy technologies, with a view to highlighting their strengths
and limitations. Section 3 analyses the different frameworks commonly
used to identify the processes and actors that drive energy technology
innovation and cost reduction. Section 4, building directly from the
previous two sections, describes the extent to which underlying drivers of
technology innovation — as gleaned from technology innovation systems
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frameworks — are currently incorporated (either implicitly or explicitly)
into different technology cost estimation methods. It highlights ways
in which they can be better incorporated, using two technologies in
particular (nuclear and offshore wind) to illustrate the opportunities
to do this. Section 5 concludes by discussing the policy-relevance of
making future technology cost estimates that are more closely informed
by technology innovation systems frameworks.

2 Methods for Estimating Future Technology Costs

There are a number of established methods for estimating future energy
technology costs, which have been categorised into two broad approaches:
the application of “learning curves” and “engineering assessments” (Gross
et al., 2013). The latter approach, which tends to consider technologies
in terms of their separate components, is often combined with expert
assessments of how the costs and performance of these components
could change over time. However, eliciting views from experts on whole
technology costs has become an increasingly common approach in its
own right, which is why in this section expert elicitations are presented
as a separate, third method, in addition to the learning curve and
engineering assessments.

Additional methods are used in technology cost and performance
forecasting, including productivity analysis techniques such as data
envelopment analysis (DEA) (Charnes et al., 1978). This allows the
determination of how production frontiers, which represent the most
efficient combination of product inputs into outputs, have shifted over
time, thereby determining changes in underlying unit costs of production
in firms, systems or technologies. Here we do not include an evaluation
of the performance of such techniques, rather focusing our attention
on the dominant methods that have been applied to the projection of
specific low-carbon technology costs in recent years.

2.1 Learning Curves

To date, the most prominent method for low-carbon technology cost
projections is the use of single-factor learning curves, which relate tech-
nology cost to cumulative technology deployment levels. Learning curves
most commonly demonstrate a fixed percentage fall in technology cost
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for each percentage increase in cumulative deployment, such that a dou-
bling of deployment leads to a fall in cost of (1 - the “progress ratio”). So
a progress ratio of 0.8 means that there is a 20% cost reduction for each
doubling of deployment. This 20% value is known as the learning rate.

Learning curve relationships have been witnessed for several decades.
The IEA (2020) describes how Wright’s (1936) discussion of aeroplane
manufacture, in which cost inputs (labour and materials) were observed
to fall exponentially with cumulative production, gave rise to the term
“learning curve”.1 This was followed by Arrow’s (1962) generalisation of
the learning effect and assertion that technical change can be ascribed
to experience, and Boston Consulting Group’s (1970) extension of cost
inputs to include all manufacturing inputs as well as any other costs
required to deliver the product to the end-user. This firm historical
basis (on the strength of empirical observations) for learning curves has
made their use widespread.

But learning curves have been subject to a range of criticisms, con-
cerns and cautions. These have been widely documented and include:
the lack of a firm theoretical basis (Ibenholt, 2002; IEA, 2000); depen-
dence of derived learning rates on the data series and time period con-
sidered (McDonald and Schrattenholzer, 2001; Parente et al., 2002; Yu
et al., 2011; Zheng and Kammen, 2014); lack of commercially sensitive
technology cost data which means that price is relied on as a (imperfect)
proxy, reflecting market dynamics rather than underlying innovation
(Boston Consulting Group, 1970); failure to account for changes in
technology quality (Nemet, 2006); the potential for variable learning
rates, with for example lower rates in early deployment of new designs
(Yeh and Rubin, 2012) and as cost floors are approached (Kouvaritakis
et al., 2000); an uncertain direction of (and possibly bi-directional)
causality between deployment and cost reduction (Kahouli-Brahmi,
2008); importance of other factors such as (hard-to-measure) R&D and
material input prices (Jamasb, 2007), as well as evidence that time and
economies of scale, rather than deployment, are equally good predictors
of cost (Nagy et al., 2013); and the possibility that technologies consist
of components with different learning rates (Ferioli et al., 2009; Staffell
and Green, 2013).

1In the literature, learning rates are based on production costs, whereas experi-
ence rates are based on product prices. However, these terms are sometimes used
interchangeably.
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There have been many attempts to address these criticisms, such as
the inclusion of R&D (Kittner et al., 2017; Kobos et al., 2006; Miketa
and Schrattenholzer, 2004; Zheng and Kammen, 2014), as well as other
factors including time (Papineau, 2006), scale (Isoard and Soria, 2001;
Miketa and Schrattenholzer, 2004; Yu et al., 2011) and material input
costs (De La Tour et al., 2013; Yu et al., 2011) in multi-factor learning
curves. But whilst these have in some cases better explained past cost
reductions, only in limited cases (De La Tour et al., 2013; Kittner et al.,
2017) have they been used to estimate future costs on the basis of a
wider range of factors.

Table 1 shows a number of estimates of learning rates for some
electricity supply technologies, based on models which include both
R&D and cumulative deployment as explanatory variables (Rubin et al.,
2015). There is a wide range of estimates of even one-factor learning
rates for most technologies (the exception being hydroelectric, for which
only one study was found). In general, learning-by-doing rates are very
different depending on whether they are part of a one- or two-factor
model. This derives from the difficulty in obtaining consistent and
reliable data on R&D, as well as differences between studies depending
on the regions and time periods included in the learning rate estimates
(Rubin et al., 2015). This can make it challenging to produce reliable
and meaningful insights from these empirically derived learning rate
estimates.

As mentioned above, it has long been a limitation of learning curves
that they have no good underlying theoretical underpinning (McNerney
et al., 2011). For example, although many still point to the fairly
persistent learning curve of solar photovoltaics across many decades,
the sheer range of values of learning rates (as shown in Table 1) hints at
its multiple phases of development, with multiple drivers of innovation
and cost reduction. These different phases and drivers are summarised
in Figure 1, which is derived from a detailed investigation into the
many different applications, policies, R&D and manufacturing advances
responsible for solar PV modules’ dramatic cost reduction over more
than 60 years of development (Gambhir et al., 2014; Nemet, 2019).
Such complexity cannot easily be theoretically captured in one-factor
(or even two-factor) learning curves.
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10 Gambhir et al.

Figure 1: Major policy drivers behind, and technical improvements in, solar PV
modules, 1950–2010.
Source: Reproduced from Gambhir et al. (2014).

Over the past decade, significant strides have been made towards
better understanding the theoretical potential of technologies to travel
down the learning curve, in terms of their design complexity (McNer-
ney et al., 2011), level of granularity (Wilson et al., 2020), unit size
(Sweerts et al., 2020) and the combination of design complexity and
customisation versus standardisation (Malhotra and Schmidt, 2020).
These taxonomies of technologies and their associated learning rates
open up promising avenues to better understand how such rates relate
to underlying technology properties.

Nevertheless, the key problem remains that learning curves based
on historical data may not be good predictors of the future, since the
processes governing future cost reductions could be different to those
governing past cost reductions. This is why greater insight into possible
future processes is needed in order to make better cost projections.
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In summary, learning curves are a widely used and (at least in their
single-factor form) simple method of approximating how technology
costs could fall with increased levels of future deployment, and less
commonly with a range of other factors including R&D, elapsed time and
economies of scale. The multi-factor learning curve models, in particular,
are more representative of the multiple factors involved in the process
of innovation as discussed in Section 3, since they ascribe separate
cost reduction impacts to deployment-related factors and R&D-related
factors. However, the complexity of the innovation process, which sees
ongoing feedbacks and synergies between R&D, deployment and a range
of other factors and policies, is not easy to capture in such learning curve
relationships, either from a theoretical or data availability perspective.
In addition to the other shortcomings highlighted above, this means that
learning curves should not be relied upon as the sole predictor of future
technology costs. Sections 2.2 and 2.3 discuss the two other prevalent
methods of future technology cost estimations: expert elicitations and
bottom-up engineering models.

2.2 Expert Elicitations

Eliciting experts’ views on future technology costs is becoming an
increasingly common method of cost projections. As well as the mul-
tiple shortcomings of learning curves outlined in Section 2.1, expert
elicitations have been asserted by several researchers to be a critical
tool for estimating a range for future developments in technology costs
and performance, given that past trends may not be a good guide
to future progress, particularly in light of the fact that such progress
may derive from unique breakthroughs (Bistline, 2014; Morgan, 2014).
The approach has been recommended by the US National Research
Council (NRC, 2007) for use by the US Department of Energy to help
make funding decisions for R&D programmes. It is also commonly
employed in other areas, notably analysis of the climate system, with
the IPCC’s fifth assessment report frequently marrying expert opinion
with scientific modelling results to arrive at likelihood ranges for key
climate parameters (Myhre et al., 2013).

Much thought and reflection has been applied to the process of
conducting elicitations, which has led to sets of principles for best
practice. These include first and foremost how to tackle the issue
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of experts potentially being biased in their estimates (Tversky and
Kahneman, 1974). The three most common biases considered are:

• “overconfidence bias”, whereby experts are potentially liable to dis-
play too much certainty in their estimates, resulting in estimated
parameter ranges that are narrower than is realistic;

• “availability bias”, whereby experts tend to rely on knowledge
and data that are most readily available to them, rather than
considering a complete range of data and knowledge relevant to
forming estimates. Such bias could lead to estimated parameter
ranges that are not only narrower than but also skewed relative
to the full realistic range;

• “anchoring bias”, whereby experts show a tendency to make only
limited changes in their initial views or estimates in light of new
or updated information. As with the above two biases, this could
again lead to overly narrow estimated ranges.

These biases can be minimised through providing background infor-
mation on the technical and cost characteristics of the technology, so
that experts have a broad and up to date summary of information
in front of them, thereby minimising overconfidence and availability
biases; undertaking elicitations face-to-face rather than remotely (e.g.,
by e-mail or post), so that the elicitation can be as interactive as pos-
sible, thereby allowing potential biases to be challenged and opinions
revised; requiring that experts provide ranges of values for costs and
other parameters of interest, explicitly stated with likelihoods (e.g., a
median, 10th percentile and 90th percentile estimate of the parameter
value) and challenging them to consider circumstances under which the
range might be exceeded and how realistic that is, which can help tackle
overconfidence bias in particular (Bistline, 2014; Morgan, 2014). It is
now common practice to apply such techniques in expert elicitation
exercises (Anadón et al., 2017, 2012; Bosetti et al., 2012; Catenacci
et al., 2013; Curtright et al., 2008; Verdolini et al., 2018).

In addition to these techniques, practitioners of elicitations also stress
the importance of interviewing a variety of stakeholder experts from
different backgrounds so that both technical and economic knowledge
can be brought to bear on future cost and performance estimates
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(Morgan, 2014). This is particularly important in the case of technology
costs, which can depend heavily on technological progress, but which
may be difficult to translate into cost data without a good knowledge
of production processes and product markets. As such, use of both
academic and industrial experts, as well as more generalist stakeholders
such as industry analysts and consultants, is of potential benefit in
ensuring a wide sampling of available knowledge. Further good practice,
in line with the methods to minimise biases as discussed above, includes
a clear explanation of the process to experts both before and during
the elicitation (including, crucially, making them fully aware of the
biases discussed above), a precise definition of metrics and contexts for
the parameters to be elicited, and the provision of visualisation tools,
such as scales for parameters which experts can mark in order to state
their estimates and if necessary revise following further consideration
(Bistline, 2014; Morgan, 2014).

Despite these best practice guidelines, practitioners of expert elicita-
tions readily acknowledge that limitations remain in using this method
(Morgan, 2014). As well as the recognition that biases cannot be elim-
inated, only minimised, a further limitation of this approach is that
the very enterprise of eliciting future values from experts assumes that
there are appropriately qualified people to give informed opinions about
parameters whose values may sensibly and rationally be estimated. The
more one moves away from questions whose answers involve matters of
fact based on established empirical science and well-validated models
and towards areas where individual and social behaviour determine
outcomes, the less likely it is that genuine predictive capability exists
(Morgan, 2014).

In addition, recent analysis into the process of forecasting suggests
that experts in a particular field may not actually be the best forecast-
ers, with certain techniques and practices more important than sub-
ject expertise (Tetlock and Gardner, 2015). These techniques include:
actively considering all possible factors and uncertainties; considering
counter-arguments to initial reasoning; breaking complex estimation
tasks into tractable sub-tasks; reacting rapidly to new evidence to an
appropriate degree and learning from past mistakes in making estimates
which turned out to be far from reality (Tetlock and Gardner, 2015).

In the area of low-carbon technology, the field of expert elicitation
is still somewhat nascent in terms of the number of studies undertaken,
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though with an increasing array of technologies included in elicitation
studies. Baker et al. (2015) collate a large number of expert elicitations
in recent years (stemming back to 2008) in order to attempt to assess
what implications they have for ranges of cost projections of key low-
carbon technologies including solar PV, wind, CCS, biofuels and storage.
Importantly, each of the 13 studies that are synthesised explores future
technology costs in different scenarios of R&D funding and all studies
share the (unsurprising) conclusion that increased R&D funding is
likely to drive down technology costs. What has not been discussed
in these studies is the potential role of increased deployment on future
technology costs, a somewhat surprising omission given the prevalence
in the energy technology future cost estimation literature of learning
curves relating costs to deployment levels. Two studies (Few et al.,
2018; Schmidt et al., 2017) have explicitly taken on the mantle of
including non-R&D-related factors into future technology costs, as well
as R&D funding scenarios, and in so doing lend important insights
into the relative efficacy of these different factors in driving future cost
reductions.

However, for the most part expert elicitations are arguably not
yet a fully formed and fully robust method of future technology cost
estimation. They allow experts to consider many different factors
that could lead to future technology cost reductions as highlighted by
different models of innovation presented and discussed later in Section
3.2. Thus, in principle, they can incorporate a wide range of innovation
processes in experts’ mental models of how costs might reduce in the
future. However, to date they have most commonly given an explicit
role to R&D, rather than other drivers of cost reduction.

2.3 Engineering Assessments of Technology Cost Components
and Manufacturing Processes

In addition to learning curves and expert elicitations, analysts also
employ detailed bottom-up models of technologies (often referred to
as engineering assessments), which split the technologies’ costs into
different components, including material costs, capital equipment costs,
utility and other processing costs and financing costs (Gross et al., 2003;
Lundquist et al., 2010; Nemet, 2006; Rao and Rubin, 2002). Their
utility for making cost projections stems from the principle that it may
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be more tractable to make estimates of the costs of separate technology
components than the total cost of a complete technology.

In addition and of critical importance, these assessments can help
identify how specific technical changes impact on overall technology cost
(which is referred to as “parametric modelling” (Gross et al., 2013)),
as well as identifying current technological limitations or bottlenecks
which might need to be overcome in order to achieve cost reductions
(Mukora et al., 2009). This allows engineering assessments to in theory
be linked to specific policy levers. For example, if they help demonstrate
that fundamental product technical performance improvements would
yield the greatest cost reductions, then this could reasonably signify the
need for increased fundamental R&D policy support. By contrast, if
production scale is the key driver of costs, then this could suggest that
market expansion or deployment support policies are required.

This in-depth consideration of technologies can provide detailed
insights on important drivers and barriers of cost reduction with associ-
ated policy implications. A notable example of such linking has been
undertaken in a study of how solar photovoltaics reduced in cost over
the period 1980–2012 (Kavlak et al., 2018). In this study the authors
identify two periods in which a range of factors (including module
efficiencies, material costs, plant sizes and material yields) influenced
cost reductions over two distinct periods (1980–2001, 2001–2012), and
how in both periods, R&D was highly influential as a driver, whilst in
the latter period economies of scale were of almost equal importance.
This allows a linkage to specific policies (R&D support, deployment
support to drive plant scale) to cost reductions, from which lessons
can be learned about further incentivising solar PV, as well as other
technologies, down their cost curves.

The potential limitations of the engineering-based approach are
that it cannot in itself provide estimates of how individual technology
components will change over time, without being combined with expert
assessments, learning curves or other projections for those components,
which (as discussed in Sections 2.1 and 2.2 above) are subject to their
own limitations and challenges. Engineering assessments may also risk
overly constraining the view of a particular technology, by considering
it in terms of the individual components of its current design, thereby
closing off the possibility of considering more fundamental, or radical,
design changes (Mukora et al., 2009). Moreover, there is space to
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improve the utility of engineering assessments through better represent-
ing the uncertainties around the input assumptions on the technology
components represented in these assessments (Gambhir et al., 2016).

In summary, engineering assessments are useful frameworks to
explore the differential impact of changes in technology components
and production processes on overall technology cost, thereby helping
identify specific policy drivers of cost reduction. But they need to be
informed by assessments of how these inputs into the overall technology
production cost change over time.

2.4 Combined Methods of Analysis

As highlighted when discussing engineering assessments’ need for cost
inputs from other methods, the three principal methods of cost estima-
tion outlined above are not necessarily alternatives, and in fact combined
approaches have considerable merit in producing more informed esti-
mates of technology costs. Such assessments often include expert input,
as in the Technology Innovation Needs Assessments (TINAs) under-
taken for the UK government to identify cost reduction possibilities and
drivers in a range of low-carbon technologies (LCICG, 2012a,b,c,d,e,f,
2013). For example, the offshore wind TINA (LCICG, 2012a) divides the
turbines and their installation into components as part of a bottom-up
engineering assessment model. It identifies significant potential savings
in all major areas of construction and operation (turbines, foundations,
collection and transmission, installation and O&M) based on discus-
sions with experts. Though these expert inputs do not follow a formal
elicitation approach, they nevertheless combine elements of different
approaches discussed above.

Another example of combined cost assessment methods is the New
Energy Externalities Developments for Sustainability (NEEDS) project,
which assesses the future cost development prospects of a range of
(predominantly low-carbon) energy technologies from the perspective of
learning curves, bottom-up engineering assessments and a third cate-
gory — what the study calls “long-term expert assessments” (NEEDS,
2006). The latter is a part commentary on the future applicability of
learning curves, and part long-term expert elicitation, using primary
research with technology experts. Junginger et al. (2010) present a
detailed review of technology cost evolution possibilities for a range of
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low-carbon energy technologies, taking into account not just past learn-
ing curve relationships (applied to different technology components) but
also future innovation possibilities. These combined insights can add
detail to the different drivers of future costs and build on the merits
of each separate cost estimation approach. Nonetheless, there is still
no firm basis on which to combine different methods of cost projection,
with the emphasis to date having been on comparing results derived
from different methods.

Having introduced and discussed each of the methods most com-
monly used to perform future technology cost estimates; the next
section presents an overview of technology innovation systems frame-
works, which more qualitatively explore the different dynamic processes
involved in driving technologies through their innovation (and in many
cases, cost-reduction) journey.

3 Frameworks to Describe Innovation Processes in Energy
and Other Technology Sectors

3.1 Innovation as a Linear, Sequential Process from
Invention to Commercialisation

Literature on technology innovation focuses on two central and highly
interrelated questions — how technology costs reduce over time, and how
new technologies become established in markets from the initial ideas
that invent them. It can be considered that there are four successive
stages of innovation: (1) basic research, (2) development to perfect a
new technology; piloting leading to (3) full demonstration, and finally
(4) commercial deployment of the technology through its adoption
by the private sector (Fri, 2003). This model of innovation, called
research, development, demonstration and deployment (RDD&D), has
set the form for virtually all discussions on energy innovation (Fri, 2003).
Furthermore, it has been argued that barriers to (socially optimal)
innovation at any stage of this innovation chain could require policy
interventions (Foxon, 2003; Gallagher et al., 2006; Grubb, 2004; Jaffe
et al., 2005; Popp, 2010) as shown in Figure 2.

The 2007 Stern Review asserted that low-carbon energy technologies
need both supply-push policies (such as those which help to foster
research and development) and market-pull policies (such as those
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Figure 2: Illustration of the innovation chain.
Source: Reproduced from Grubb (2004).

which help create a market for these technologies, at a time when
they are more expensive than their high-carbon equivalents). This
requirement derives from market failures limiting private R&D (most
importantly the positive spillovers which could be captured by free-
riding firms) as well as missing markets for new, initially more expensive
low-carbon energy technologies which, unlike many other innovations,
tend to lack niche market opportunities, because energy is very often a
purely homogenous good (Stern, 2007). In the latter case, policies such
as feed-in-tariffs and tradeable renewables quotas (“green certificates”)
had helped foster such niche markets at times when renewable energy
was not cost-competitive (Ringel, 2006).

This qualitative conception of innovation does not identify the
different degrees of policy support required at different stages of the
innovation chain, and there is much disagreement over what the right
balance should be. For example, in 2011 Policy Exchange, a prominent
UK political think-tank, criticised the UK government’s drive to rapidly
install offshore wind turbines through deployment subsidies to meet its
2020 renewable energy target (Policy Exchange, 2011). This critique is
based on the claim that lessons that could reduce costs would not be
learned at this speed of deployment (an increase in installed capacity
from virtually zero in 2010 to almost 20 GW by 2020), and that in any
case it is R&D rather than deployment which has been responsible for
most of the cost reductions in offshore wind turbines to date given their
level of immaturity, as asserted by Jamasb (2007). The critique may
now look misguided, given the substantial reductions in offshore wind

Preprint



How Are Future Energy Technology Costs Estimated? Can We Do Better? 19

power costs that have resulted from competition and learning, project
finance and economies of scale that have arguably been made possible
by such deployment subsidies (ORE Catapult, 2017). Indeed, offshore
wind has confounded expectations in its transition from one of the
most expensive to one of the cheapest low-carbon electricity generation
technologies in recent years (Jansen et al., 2020).

The high-profile announcements of the Global Apollo Programme ini-
tiative (King et al., 2015) and the Mission Innovation initiative (Mission
Innovation, 2015) during the 2015 Paris climate conference specifically
targeted increased R&D support towards clean energy technologies.
The Apollo programme drew criticism in light of its apparent refocus
of innovation support away from deployment subsidies and towards
R&D, with the assertion that technology innovation and cost reduction
requires a careful balance of both of these drivers, which are in any case
“symbiotic” (Radcliffe and Watson, 2015). Nevertheless, as an overall
framework for consideration of drivers of technological innovation and
cost reduction, the RDD&D framework is highly useful for conceiving
of the processes behind technology costs reductions, and indeed is by
far the most utilised system tool of those presented in this section for
relating technology cost reductions to different processes and policy
levers that incentivise or drive those processes.

Whereas the RDD&D framework says little about the process of —
and scope for — technological improvement (and technology cost reduc-
tion) at different stages of technology maturity, the technology life-cycle
model offers potentially important insights. Using this framework, Utter-
back (1996) assesses the forces governing the development of a range of
technologies throughout the late 19th and 20th centuries, identifying a
multi-phase evolution of both the products and the processes used to
make these products, as shown in Figure 3.

In the first, “fluid” phase, rapid innovations occur as a number of com-
peting products enter the market, testing the preferences of consumers
towards different manifestations of a new technology (such as light bulbs
with different types of filament, or typewriters with different types of
keyboard format and carriage design). This fluid phase eventually gives
way to a “transitional” phase in which a “dominant” design emerges, one
which satisfies users as embodying what the product should be, and
how it should perform. The transitional phase is dominated by major
manufacturing process changes, as firms producing the dominant design
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Figure 3: Different phases in the technology life-cycle model.
Source: Reproduced from Utterback (1996, p. 91).

compete on cost and quality. The final, “specific” phase, sees incremental
innovations in the product and the use of capital-intensive, very specific
manufacturing processes and firm structures, angled towards producing
fairly standardised products at scale (Utterback, 1996).

The technology life-cycle model highlights at least two important
factors relevant to innovation and cost reduction in low-carbon energy
technologies. The first is that innovation may occur rapidly in the fluid
phase but then become incremental in the transitional phase and less
rapid altogether in the specific phase. It is therefore worth considering
which phase a particular low-carbon energy technology is located in
now, where it could be in the future, and what that means for future
innovation potential, as well as whether this innovation will be radical
or incremental. For example, Nemet (2009) analyses the development of
the Californian wind industry, with a view to reconciling why the filing
of highly cited patents rapidly declined just as the demand for wind
power was taking off during the early 1980s. One explanation is that
the opportunity for more radical (i.e., non-incremental) improvements
to wind turbine technology declined as a dominant design (three-blade,
upwind, horizontal axis turbines) emerged, and subsequent learning
occurred through the deployment and use of the technology (Nemet,
2009).
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Second, the technology life-cycle model distinguishes between inno-
vation in products and processes, which suggests that these could be
thought of separately, and which emphasises the possibility of innovation
occurring in manufacturing rather than just in the design of the end
product itself. As has been highlighted in previous research (Gambhir
et al., 2014), innovations and automation of many manufacturing pro-
cesses played a key part in the cost reductions of crystalline silicon PV
modules, whose fluid phase can be considered to have finished in the
mid-1980s, followed by a long phase of manufacturing innovation and
automation.

The technology life-cycle model thus provides potentially valuable
insights into the different possibilities for innovation and cost reduction
at different stages of low-carbon energy technology maturity, as well as
the impact of specific policies (such as R&D and deployment support
policies) within these different stages. In the early, fluid stages, more
fundamental R&D support is likely to be more important in testing
new design concepts and establishing some form of dominant design.
Once this dominant design takes hold, innovation is more likely to occur
through improvements to (and/or scale-up of) manufacturing processes,
as well as more incremental product improvements resulting from lessons
learned through manufacturing, deployment and operation in the field.
During this transitional phase, there is, therefore, a potential benefit
of market expansion through deployment support policies. Empiri-
cally, Jamasb’s (2007) assessment of the relative impacts of R&D and
deployment subsidies supports these assertions, with newer, “evolving”
technology cost reductions more dependent on R&D than deployment
subsidies, and “mature” technologies seeing the obverse. More recently,
Elia et al.’s (2020) explicit assertion of the need to consider different
technology maturity stages invokes (though does not directly cite) the
lessons of the technology life-cycle model.

The RDD&D and technology life-cycle models both consider a some-
what linear, sequential nature of technology development, but in reality
there is an ongoing interaction between different stages of a technology’s
evolution (Fri, 2003). In addition, there is evidence that policies affect-
ing technology development and deployment interact with each other.
For example, Freeman and Soete (1997) compare pairs of successful
and unsuccessful innovations in each of the chemicals, scientific instru-
ments and mechanical engineering industries, identifying the interaction
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between R&D and sales and marketing as a key phenomenon across
the different successful innovations. The authors assert that “one-sided
emphasis on either R&D or sales does violence to the real complexity
of the [innovation] process” (Freeman and Soete, 1997, pp. 216–217) —
a notion reflected in Radcliffe and Watson’s (2015) criticism of the
Apollo programme, as discussed above. It is therefore insightful to
consider innovation not just in stages, but as part of a broader context
of actors and institutions affecting technology development, as discussed
in Section 3.2.

3.2 Innovation as a Nonlinear Process

One approach to more completely capturing the complex, nonlinear,
picture of innovation comes from Technological Innovation Systems (TIS)
analysis. Bergek et al. (2008) discuss the different features and functions
of the TIS, which they define (quoting Carlsson and Stankiewicz, 1991,
p. 111) as “network(s) of agents interacting in a specific technology area
under a particular institutional infrastructure to generate, diffuse and
utilize technology”. The TIS has three components (actors, networks and
institutions) and seven functions (knowledge development and diffusion;
influence on the direction of (re)search; entrepreneurial experimentation;
market formation; resource mobilisation; legitimation; and development
of positive externalities), each of which has a role in diffusing the
technology (Bergek et al., 2008). It has been argued that this more
systemic, as opposed to linear, framework to understand innovation is
an improvement on linear frameworks such as those discussed in Section
3.1, since they show innovation as a collective activity consisting of
many actors, with interactions between them (Gallagher et al., 2012).

The TIS has to perform well across each of these functions to
enable widespread penetration of a new technology, and there are
a number of blocking mechanisms that could hinder the functioning
of the TIS, such as poorly developed networks that limit knowledge
spillovers, improvements in the performance of incumbent technologies
in response to perceived threats from new technologies, and lobbying
from incumbent organisations that fear losing out from the success
of the new technology (Bergek et al., 2008). For example, Figure 4
shows an energy TIS characterization of an early, experimental phase
of German wind development in the late 1970s and early 1980s, with
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Figure 4: The TIS in the experimental phase of German wind development.
Source: Reproduced from Bergek and Jacobsson (2003).

the focus on public policy (federal R&D support) helping to guide the
direction of research, whilst at the same time demonstration projects,
allied with a small but significant existing “green demand” (e.g., from
environmentally aware farmers), helped to create an early market for
the technology. This demonstrates on the one hand, the primacy of
R&D policy in early technological development phases, but on the other,
the requirement to also consider market creation as a further driver
of knowledge creation and establishment of continuing and growing
legitimacy for further technological development (Bergek and Jacobsson,
2003). The TIS thus helps fit specific actors to specific policy and other
drivers of technological innovation and adoption.

It is arguably not difficult to fit these functions post hoc to the
successful development of a particular technology. Nevertheless, the
TIS is useful in identifying problematic areas which could hinder new
technology development, deployment and cost reductions. For low-
carbon technologies, the “legitimation” and “influence the direction of
search” functions have been particularly challenging in the past, the
former because new low-carbon technologies have provided an energy
service at a greater cost (though with less environmental impact), and
the latter because powerful interest lobbies such as centralised electricity
utilities have sought to hinder the emergence of influence towards low-
carbon technologies which are often decentralised (Bergek et al., 2008).
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Aside from the TIS framework, alternative contextual frameworks
have been constructed to describe the development and deployment
of new technologies. For example, the multi-level perspective (MLP)
model describes how technologies (“artefacts”) break into niches which,
if successful, begin to disrupt an existing technological regime, within
the broader context of a socio-technical landscape (Geels, 2005; Geels
and Schot, 2007). Such a model could be used to assess the prospects of
particular low-carbon energy technologies, developed in niche markets
within the context of a landscape increasingly reflective of environmental
externalities, and with significant disruptive impacts on the existing
regime, for example for electricity generation and transmission, whose
regulatory and market arrangements may need to change to respond to
increasing penetrations of intermittent or variable sources of generation
(such as solar PV, wind, marine and tidal technologies).

Additionally, Winskel et al. (2013) have proposed a framework
for setting out the factors that describe the technical evolution of
different electricity generation technologies (Winskel et al., 2013). This
framework comprises a “learning pathways matrix” (LPM), a 2 × 2
matrix which on one axis distinguishes between radical and incremental
periods of learning, and on another between the level of concentration or
distribution of organisations (firms, governments, institutions) involved
in the development of a design (or competing designs). For example, the
government-led, concentrated effort to achieve radical innovation in first
generation nuclear fission technology has given way to more incremental
changes towards later generations, even though the effort has remained
concentrated amongst relatively few organisations. By contrast, solar
PV began in a similar status of radical innovation (using crystalline
silicon) and concentration within national public programmes in the
1960s, then moved towards more incremental innovation in rooftop-
mounted modules (with a high distribution of actors involved in their
development and deployment) and utility-scale arrays (with the relative
concentration of utilities driving this application) (Winskel et al., 2013).

These frameworks (TIS, MLP, and Learning Pathways Matrix
(LPM)) provide methods for identifying factors and agents important
to the successful development and deployment of new technologies and
the barriers hindering less successful technologies. There is now a con-
siderable literature that uses the TIS (Gallagher et al., 2012; Hekkert
et al., 2007; Jacobsson and Bergek, 2011; Jacobsson and Lauber, 2006)
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and MLP (Cohen, 2010; Hodson and Marvin, 2010; Lauridsen and
Jørgensen, 2010; Smith et al., 2010; Späth and Rohracher, 2010) frame-
works in particular to examine the success, failure or prospects for
innovation in a range of energy technologies. It is important to note
that these frameworks, and indeed all of those identified in this section,
are NOT theories of technology cost reduction, but rather of innova-
tion and penetration into socio-technical systems. Nevertheless, they
are intimately connected to cost reduction, since this facet is a key
driver of the widespread adoption of new technologies. As such it is
essential to consider the extent to which they can inform methods of
future technology cost estimates. Drawing on the language of the TIS,
it is unlikely, for example, that deployment support policies will be
successful in driving down the costs of a technology that has not yet
become “legitimised” and to which there is widespread public opposition
(and the reverse is also true).

One challenge of using the multiple insights from the innovation
system frameworks remains how to link these to quantifiable rates of
technological progress, expressed either in terms of technology perfor-
mance improvements, technology cost reductions, or both. With a focus
here on technology costs, and having reviewed the major frameworks
of technology innovation, the next section aims to more explicitly link
these two fields, by setting out the extent to which future technology
cost estimates utilise insights from relevant technology innovation sys-
tems frameworks, the potential for improving their representation of
innovation processes, and where possible quantifying the impacts of
these processes. As argued below, this demonstrates that at this stage,
future technology cost estimation practices lose much of the nuance
gained around how technologies proceed along their innovation journeys,
including the drivers and processes, as well as actors, that push them
along these journeys. But they need not do so.

4 Links between Energy Technology Future Cost Estimation
Methods and Innovation System Frameworks

Table 2 shows the potential insights from the key technology innovation
systems frameworks discussed in the previous section, and specifically
the extent to which they are commonly incorporated into the three
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different energy technology future cost estimation methods. We focus
here on three technology-specific frameworks (the RDD&D, technology
life-cycle and TIS frameworks), at this stage setting aside less technology-
specific frameworks such as the MLP and LPM also alluded to in Section
3. In the former (MLP) case, we deem this to have a central unit of
analysis of whole technology systems, rather than specific technologies,
whilst in the case of the latter (LPM), this framework is still relatively
under-developed and conceptual.

It is important to note that there are exceptions to the general cases
noted. For example, as noted in Section 3.2, some studies (Few et al.,
2018; Schmidt et al., 2017) have explicitly taken into account non-R&D
related factors into future technology costs, thereby accounting for more
of the insights from the RDD&D framework. In addition, some analysis
(Frontier Economics, Grantham Institute Imperial College London, 2015;
Kittner et al., 2017) using learning curves has taken into account the
role of future R&D as well as deployment on future technology costs
and applied this to two-factor (i.e. deployment and R&D) empirically
derived learning curves, again thereby providing a fuller reflection of
the RDD&D framework.

Table 2 can be summarised by noting that, whilst there are implicit
links in future technology cost estimation methods to many of the factors
and insights in the different innovation system frameworks, there is
much more to be done to explicitly link future technology cost estimates
to all of the drivers of innovation and cost reduction as noted in the
RDD&D framework, to the specific life-cycle phases that the technology
may or may not be in, or to specific functions in the TIS framework.

There are many ways in which insights from innovation system
frameworks can be more readily brought to bear on the process of
future technology cost estimates. First, Table 2 highlights that there is
scope to include multiple variables and drivers of innovation and cost
reduction that are commonly omitted from each future cost estima-
tion method. For example, the TIS framework’s functions of market
formation; resource mobilisation; legitimation; and development of posi-
tive externalities may all fall into a deployment-related element of the
learning curve approach. Yet each of these functions could significantly
influence the success with which deployment results in cost reductions.
One only need consider solar PV’s nadir period of the mid-2000s, when
costs rose as a result of silicon production bottlenecks (a lack of the
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TIS’s “resource mobilisation”) to realise the extent to which historically
derived single- or multi-factor learning curves cannot reliably be used to
predict near-term cost developments. Alternatively, if there is currently
a significant scale-up of certain technologies and they are disrupting
existing markets, as has been the case with lithium-ion batteries and
their role in disrupting the internal combustion engine transport regime
(Wesoff, 2016), then future R&D funding scenarios may bear more fruit
in achieving cost reductions than without such scale-up, legitimation or
mobilisation of resources.

Secondly, implicit in this linking of commonly omitted variables
that are present in the TIS to future cost estimation methods is a more
in-depth and nuanced treatment of the different periods (and technology
life-cycle phases) in which different levels of technology maturity are
reached, and different forces that are critical in driving further devel-
opment and cost reduction in each phase. This understanding is now
more commonly being used to better understand the different phases
of historical technology learning rates (as in, e.g., Smith et al., 2016).
Yet, it is still most commonly average learning rates that are projected
forward to estimate future technology costs. A more complete discussion
of the extent to which more mature technologies’ future costs may more
viably be estimated using more recent learning rates is likely to bear
fruit in providing better-contextualised cost projections.

Thirdly, intricately linked to many of the drivers of innovation and
cost reduction is the role of policy. As discussed in Section 2.3, the
methods commonly employed to estimate future costs can be linked
to specific policy drivers of cost reduction. Thus, learning curves
incorporating deployed capacity and R&D funding levels are reflective
of the potential efficacy of public policies to promote deployment and
R&D. Expert elicitations that explore costs given different R&D funding
scenarios can have explicit implications for required or desirable levels
of R&D support policies. Engineering assessments can highlight which
drivers of cost reduction (e.g.„ technical performance improvements,
production scale) are most important, lending insights into the policies
that could be most effective in achieving these cost reductions. Detailed
consideration of policy implications in this way helps to shed light on the
debate of the relative merits of R&D versus deployment support policies
which, as discussed in Section 2.1, continues to be a critical and much-
contested area of research, but which requires further consideration
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(Anadón et al., 2017; Grubb et al., 2021). Particularly if it leads to a
more nuanced discussion of public R&D versus the private R&D induced
by profitable deployment, this would help to build on the relatively
limited, though increasing, number of analyses explicitly exploring
the balance between these drivers on future energy technology cost
reductions (Few et al., 2018; Frontier Economics, Grantham Institute
Imperial College London, 2015; Gambhir et al., 2016; Kavlak et al.,
2018; Kittner et al., 2017; Nemet and Baker, 2009; Schmidt et al., 2017).

To demonstrate the potential benefits of more closely linking inno-
vation framework insights to energy technology cost projections, we
review the performance of a sample of past cost projections against
actual cost developments for two energy technologies (offshore wind and
nuclear) and observe how such projections accounted for energy TIS
functions, if at all.

For offshore wind, as shown in Figure 5, the actual cost reduced
faster since 2014 than foreseen by three different cost projection methods.
The offshore wind sector has seen a well-functioning TIS in many of
the Northern European countries deploying it at scale. In the UK, TIS
functions including market formation (through deployment support in
the form of guaranteed minimum or fixed price offtakes), knowledge
development and diffusion and entrepreneurial experimentation (through
the R&D and learning in successive vintages of turbine manufacture,
each with increasing size) have all been central to its cost reduction
journey (Jennings et al., 2020). Critically in the UK, another TIS
function, that of influencing the direction of search, has been prominent
since a decade ago, when the UK Department of Energy and Climate
Change’s 2011 Renewable Energy Roadmap made explicit a requirement
for costs to fall through developing a supply chain, innovating and
minimising investment risk (DECC, 2011) — each of which was achieved
in the ensuing decade.

Similar processes were at play in Germany and Denmark. In the
former, by the start of the 2010s, a generous Feed-in-Tariff for offshore
wind and the successful launch of a large test field project (Alpha
Ventus) constituted a tipping point in the industry, leading to substantial
sectoral growth and associated industry scale (Reichardt et al., 2016).
In Denmark’s case, the industry was supported by a consistent and
long-term innovation system, including a high degree of R&D linking
universities to turbine and windfarm developers, deployment support,
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Figure 5: Offshore wind levelized cost of electricity (LCOE) development from 2014
using three future cost estimation methods, and actual cost development since 2014.
Notes: Expert elicitation median (green line) and low-to-high range (green plume) for global
values, from Wiser et al. (2016); Engineering + Expert assessment mean (brown line) and
low-to-high range (brown plume) for UK values, from LCICG (2012a); learning rate mean
(blue line) and low-to-high range (blue plume) from Rubin et al. (2015), combined with
global actual deployment data from Froese (2019) and IEA (2021); Actual cost (grey line)
refers to global unsubsidised cost from Lazard data as cited in Wiser et al. (2021). Full
calculations and source details in Supplementary Data.

as well as public support for the technology (Wieczorek et al., 2015).
Indeed, reflecting on the pervasive underestimates of both onshore and
offshore wind cost reductions in their 2015 expert elicitation, Wiser
et al. (2021) suggest that experts may have under-predicted downward
cost pressures from auctions and competitive procurement, themselves
driving increasing demand and leading to further industrialisation and
industry maturation, with rapidly increasing turbine sizes. Each of
these processes speaks to an intensive and virtuous cycle of market
formation and entrepreneurial experimentation (two core TIS functions)
that was underestimated by the experts.

As a contrast to offshore wind, nuclear power costs actually increased
over the past decade, and at a faster rate than foreseen by any of the cost
projection methods shown (Figure 6). Reasons include their tendency
to be “megaprojects” subject to cost overruns (Sovacool et al., 2014),
lack of design standardisation, along with increases in reactor scale and
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Figure 6: Nuclear overnight capital cost development from 2012 using three future
cost estimation methods, and actual cost development since 2014.
Notes: Expert elicitation median (green line) and low-to-high range (green plume) for US
values, from Abdulla et al. (2013); Engineering + Expert assessment mean (brown line) and
low-to-high range (brown plume) for UK values, from LCICG (2013); Learning rate mean
(blue line) and low-to-high range (blue plume) from Rubin et al. (2015) and Grubler (2010),
combined with actual global deployment data from IEA (2020); Actual cost (grey line)
refers to global unsubsidised costs from Lazard (2020) and previous Lazard cost estimates.
Full calculations and source details in Supplementary Data.

complexity and fragmentation in industry structure and plant ownership
(Eash-Gates et al., 2020). Markard et al. (2020) explicitly use the TIS
framework to identify a number of failures, including an eroding actor
base, shrinking opportunities in liberalized electricity markets, the break-
up of existing networks, loss of legitimacy, increasing cost and time
overruns and abandoned projects. They assert that recent and future
investments in new nuclear might suffer from the diseconomies of a
declining industry, in which industrial competencies become increasingly
scarce and concentrated.

Tables 3 and 4 set out the factors used in each of the cost projection
methods shown in Figures 5 and 6 respectively, highlighting the extent
to which the insights from energy TIS analysis were brought to bear
on these cost projections. In both technology cases, there was little
recourse to the detailed elements of the TIS in either the expert elicita-
tions or combined assessments, whilst the (single factor) learning curve
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Table 3: TIS factors accounted for in offshore wind future cost estimation methods.

Method TIS factors accounted for
Learning curve extrapolation
(using learning rates from
Rubin et al., 2015)

None explicitly, though a single factor learning
curve accounts for deployment-related factors
(e.g. learning-by-doing, industry scale)
implicitly

Expert elicitation (Wiser
et al., 2016)

Focus on technical parameters only (CapEx,
OpEx, Capacity Factor, Project Life, Cost of
Capital). Explicitly avoids asking for
projections conditional on R&D, policy,
deployment, or other factors. However,
analysed cost estimates by expert type and
noted that those claiming expertise in wind
energy markets and/or cost analysis were
more optimistic than those who claimed
expertise in systems or sub-systems

Combined (Engineering +
Expert assessment)
(LCICG, 2012a)

Explicitly discusses the role of public sector
intervention to address demand uncertainty,
shared testing and infrastructure, positive
externalities of Private R&D and
data-sharing. Also notes limited competition
in some areas. However, cost reduction
focused primarily on R&D-based innovation
in individual system components, with only
limited discussion of and role for market size
expansion and learning by doing in
deployment. Explicitly excludes consideration
of planning, supply chain, related
infrastructure and finance

extrapolations by definition only account for the cumulative deployment
of each technology.

In essence, different technologies’ cost-reduction prospects will be
highly influenced by the technological innovation system surrounding
them. Each of the innovation system frameworks discussed can offer
insights into the causality between research, market, regulatory, or other
conditions which are likely to prove highly influential in determining
future technology costs.

There is preliminary evidence that such consideration of a broader
range of evidence around innovation could bear fruit: Savage et al.
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Table 4: TIS factors accounted for in nuclear future cost estimation methods.

Method TIS factors accounted for
Learning curve extrapolation
(using learning rates from
Rubin et al. (2015) and
Grubler, 2010)

None explicitly, though a single factor learning
curve accounts for deployment-related factors
(e.g., learning-by-doing, industry scale)
implicitly

Expert elicitation (Abdulla
et al., 2013)

Specified to experts that the plants were built
under a “favorable” regulatory environment.
Acknowledges that future costs of newer
nuclear technologies (Small Modular
Reactors) are dependent on a range of factors
including national and international markets.
However, results reported in Figure 6 are for
then-current generation Gigawatt scale
nuclear reactors

Combined (Engineering +
Expert assessment)
(LCICG, 2013)

Accounts for learning by doing and learning by
R&D. Case for public intervention identified
on the basis of the high barriers to entry, the
lack of competition and the stringency of
regulatory requirements. Explicitly notes the
importance of public acceptance, potential
cost increases and the importance of
international partnerships

(2021) recently tested 133 participants’ responses on a range of questions
regarding current and future aspects of electric and autonomous vehicles.
A treatment group that was explicitly asked to consider policy, economic
and social factors of potential relevance provided a wider range of
forecast values, and also demonstrated less overconfidence in assessments
of current values than a group who did not receive this treatment.
This suggests that including a consideration of many more factors into
expert elicitations could help reduce overconfidence in technology cost
projections derived from them. It stands to reason that structuring
the presentation and discussion of these factors within an established
innovation systems framework such as the TIS could further improve
this practice. The same should be true of engineering assessments
informed by experts, and wider use of innovation systems frameworks
could also help in contextualising learning curve extrapolation-based
projections. The challenge is to quantitatively incorporate these insights
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so that we can understand, if not necessarily how much technologies
will cost in the future, then as a minimum what different policy, market
and investment scenarios will mean for their cost reduction trajectories.

5 Conclusions and Policy Implications

Energy technology future cost estimates are central to determining how
expensive it will be to address the climate change challenge. There are
a number of established methods to produce such estimates: extrap-
olating learning curves based on past experience; asking experts; and
analysing detailed, component and manufacturing process models of
the technologies, as well as combinations of these methods. At the same
time, there are a number of detailed technology innovation systems
frameworks which describe the processes and actors behind innovation
and market penetration for low-carbon energy technologies, which are
key to helping understand the degree to which their cost can reduce.
These include experimentation and the arrival at design dominance,
standardisation and repeated manufacture of designs once markets are
formed, the legitimation of those designs as they break into and disrupt
existing technological regimes, and the development of positive exter-
nalities as technologies become embedded in energy systems, realising
complementarities with other technologies and networks. These inno-
vation systems frameworks also give a central role to policies, whether
supply-push in the form of R&D support, or demand-pull in the form
of subsidies, procurement, or contracts and tariffs to guarantee future
revenues, to support market formation and expansion. Yet — whilst
there are several examples of links between energy technology cost
estimation methods and technology innovation systems frameworks —
much more could be done to make these links more explicit.

As discussed in this paper, there are numerous ways in which this
could be done. For example, rather than pure extrapolation of empiri-
cally established learning curves, future learning rates might not only
be calculated on the basis of future deployment levels and future R&D
funding levels, but might also account for the level of maturity of the
technology, its stage in the technology life cycle, the degree of legitima-
tion of the technology or the degree to which it has begun to disrupt an
existing market. Similarly, expert elicitations should be conducted with
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a view to fully discussing not only the technology, but its surrounding
innovation system, and the extent to which the different actors and
functions driving innovation, cost-reduction and commercialisation are
operating effectively or otherwise. Engineering assessments and com-
bined methods should include a more explicit understanding of whether
component cost reductions and performance improvements are likely
within the existing and possible future contexts of the TIS. And those
making projections should frequently compare them to actual data as
it becomes available, to learn how their projections are performing and
why.

This paper acknowledges that such efforts have begun. It gives
a number of examples of how the boundaries of future technology
cost estimation are being pushed in order to more explicitly link the
key factors which are likely to drive cost reductions to the actors
and processes of innovation, as highlighted by technology innovation
systems frameworks. More widespread incorporation of such factors,
with quantification where possible, would add insight and nuance to
future energy technology cost estimates, highlighting contingencies,
drivers and sources of uncertainty. Critically, it would also help to
more closely link specific policies to the factors that are most likely to
influence these future costs.
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