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PREFACE

Management of environmental quality very often has to deal
with the analysis of transport and diffusion of pollutants. 1In
most cases, the process is nonstationaryand its simulation re-
guires the numerical solution of the time dependent continuity
equation.

The fundamental problem of the error introduced by the
discretization on a computer of time dependent processes of
transport and diffusion of pollutants is addressed in this study
with specific reference to dispersion of air pollutants from an
elevated source.

This work is part of the activity of the Resources and
Environment Area (Task 2 Environmental Quality Control and Manage-
ment) on application and evaluation of air pollution models. It
was conducted jointly with the IBM Italy Scientific Center of
Rome and the Max Planck Institut flir Plasmaphysik of Garching bei
Miinchen.
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ABSTRACT

A finite difference and a Galerkin type scheme are compared
with reference to a very accurate solution describing time de-
pendent advection and diffusion of air pollutants from a line
source in an atmosphere vertically stratified and limited by an
inversion layer.

The accurate solution was achieved by applying the finite
difference scheme on a very refined grid with a very small time
step. Grid size and time step were defined according to stability
and accuracy criteria discussed in the text,.

It is found that for the problem considered, the two methods
can be considered equally accurate. However, the Galerkin method
gives larger areas of small errors close to the source. This was
assumed to be partly due to the different way the source term is
taken into account by the two methods. An improvement of the
accuracy of the finite difference scheme was achieved by approx-
imating, at every step, the contribution of the source term by
a Gaussian puff moving and diffusing with velocity and diffusivity
of the source location, instead of utilizing a stepwise function
for the numerical approximation of the § function representing
the source term.
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AN ANALYSIS OF FINITE DIFFERENCE AND
GALERKIN TECHNIQUES APPLIED TO THE

SIMULATION OF ADVECTION AND DIFFUSION
OF AIR POLLUTANTS FROM A LINE SOURCE

E. Runca, P. Melli, and F. Sardei

INTRODUCTION

Simulation of advection and diffusion of pollutants in envi-
ronmental media are required for the definition of both planning
and control strategies. In many situations, the problem is
the dispersion of pollutants from a point source in a turbulent
flow. A classical mathematical model of this process is provided
by the continuity equation which, neglecting removal processes,

takes the form:

aC

3T+ 70(UC) = F-(X-TC) + Q6(x - x_) (1)

In (1), C is the mean (ensemble average) concentration of the con-
sidered pollutant, U is the mean flow velocity vector, R is the
turbulent diffusivity tensor, Q is the emission rate of the point

source located at (xs, Y_ . zs) and §(e) is Dirac's function.

s
Equation (1) is based on the mixing length or gradient trans-
port hypothesis (see Leslie, 1973) which, by analogy with molecular

diffusion, assumes that the turbulent flux can be expressed as the
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product of an eddy diffusivity coefficient and the gradient of

the mean concentration. The gradient transfer hypothesis implies
that equation (1) can only resolve spatial and temporal variations
of the concentration on scales larger than the respective Lagrang-
ian scales of the turbulence.

Limitations of the gradient transfer hypotheses are discussed
by Corrsin (1974), Lamb and Seinfeld (1973), and other research-
ers. The present study is concerned with the problem of solving
(1) by numerical methods. Both a finite difference and a Galerkin
scheme have been used to simulate numerically the processes de-
scribed by (1). The schemes considered are compared with refer-
ence to their application to the classical two-dimensional prob-
lJem of dispersion of air pollutants from an elevated line source
in the atmospheric boundary layer. For this specific problem,
the finite difference scheme is used to compute a very accurate
solution by solving (1) on a highly refined grid and using an
extremely small integration time step. The finite difference and
the Galerkin schemes are then applied to solve the same problem
on much coarser grids with larger time steps; then the results
are compared with the refined solution. Finally, an improved
method of treating the source term of (1), when finite difference

schemes are applied, 1is discussed.

REFERENCE CASE

The numerical schemes in this studv have been applied to a
problem which can be considered a mathematical description of
the dispersionof an inert air pollutant from a crosswind line
source of infinite extent and uniform emission in an atmosphere

vertically limited by an inversion layer. For this problen,



if the x-axis is taken along the wind vector (assumed to have
components only in the horizontal plane), the y—-dependent terms
of (1) can be eliminated. Assuming also that the axes of the
chosen frame of reference are the principal axes of the dif-
fusivity tensor and that ground and inversion layers completely
reflect the diffusing material, the mathematical formulation of

the problem can be stated as:

3C 3C _ 3% ¢ 9 3C — -

3C _ -
KZ 37 - 0 z =0, H (2a)
C(x,z,t) =0 X = tdd (2b)
C(x,z,t) =0 t =20 (2c)

where H is the height of the inversion layer. Equation (2) is
derived from (1) with the additional assumptions of constant
horizontal diffusivity and wind and vertical diffusivity as func-
tions only of the vertical coordinate. In formulating the boundary
value problem (2)-(2c), the region is considered unpolluted at
time t = 0.

To generalize results given by the numerical solution to
equation (2) and related boundary and initial conditions (2a)-

(2c), the variables and parameters x, z, t, U, Kx, Kz’ C have

12U (1) 5
been expressed respectively in units of —=~, H, =—=, U(H),
2 2 K2(H) K2(H)
H"U™ (H) Q .
—ii;ﬁﬂ—, K, (H), o -g - s of these normalizing factors

leaves equations (2)-(2c) formally unchanged except for the
emission rate and the inversion layer height, which are both

normalized to unity.



An accurate solution to the problem described by (2)-(2c)
(with given wind and diffusivity) has been computed by means of

the finite difference scheme described below.

Finite Difference Scheme

The finite difference scheme used is based on the method
of fractional steps (see, e.g., Yanenko, 1971). According to this
procedure, (2) is split into the following sequence of one-dimen-

sional eguations:

oC _ - _ '

a—t' = 5(X Xs)(S(Z Zs) (33)

oCc _ _.. aC

3t - Y ax (3b)
2

9C 0_C (3¢)

5c _ 8 (, ac
3t az(Kz ) (34)

At each time step, the above equations are solved segquentially
by taking as initial concentration the one obtained by solving
the previous eguation. Each of the above equatiéns is numerically
integrated over the time step At. The concentration field obtained
after the integration of (3d) is the numerical solution to the
boundary value problem (2)-(2c) after the considered time step
and provides the initial condition to (3a) for the next time step.
In practice, the processes described by (3a)-(3d) are considered
separate occurrences at each time step. Reduction of the in-
tegration time step decreases the error introduced by this assump-

tion.



The fractional step procedure has been extensively applied
to a problem similar to that discussed here (Shir and Shieh (1974),
Runca and Sardei (1975), and Runca et al. (1979)). A geometric
interpretation of the procedure described above follows.

The trajectory of the pollutant particle (Fig. 1) starts
from a at time nAt and reaches the grid point b(i,k) at time

(n + 1)At. Its concentration at point b can be expressed as:
¢, =C_ + 0 (4)

where 0 is the contribution due to diffusion processes. (From
here on it is assumed to operate over points of the integration
grid which do not include the source term.)

By defining C* as the value of the concentration field that
would be found at time (t + At) if no diffusion occurs, C** as
the field obtained if no vertical diffusion occurs, and 2, Dx’
and DZ as the finite difference explicit operators for advection,
horizontal, and vertical diffusion respectively, (3b)-(3d) yield

at’'point b(i, k):

* -~ ach) = ¢

Cp = BIC ;1 = C (5a)

% Kk _ C* + D %*

Cb = Cy [Cb] (5b)
N+l _ _*% * ok

¢, = Chx =Cp +D,ICy] (5¢)

Equations (5a)-(5c) show that by virtue of the fractional
step procedure, the contribution 0 given by the diffusion processes
is evaluated with respect to point a, which belongs to the tra-
jectory of the pollutant particle. 2as pointed out by Sardei and

Runca (1975), this would not have occurred if (2) had not been
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Figure 1.

Geometric description of the finite difference scheme.

ab is the trajectory of the pollutant particle at
level Zy .



divided into (3a)-(3d). This property of the fractional step
procedure (that of evaluating the diffusion contribution © on
points belonging to the trajectory of the pollutant particle,
thus retaining the Lagrangian aspect of the processes described
by (1)) is better expressed if the Crank-Nicolson scheme is
adopted for the approximation of the diffusion terms. 1In this

case, (5a)-(5c) can be combined to produce the equation:

L LI N § S ol c b+ M (e N
Cpb = Cix =S 7{ xCp1 * Dl a]} 5{ Y Dz[ca]}

Vb b 1c®™ + poo_tct 6)
* E{ 2PxCp 2Px | a]} ’ (

* %
Ca:Cb
tion of the pollutant trajectory the numerical scheme operates.

A[C;L]haskxfm used to point out better at which loca-

Note that the terms DXDZ[OJ can be interpreted as representative
of the interaction between the horizontal and the vertical dif-
fusions.

Equation (6) is implemented in this study. In order to
program the scheme elucidated above, the operators U, Dx' and Dz
must be defined.

Much attentionwas paid to the development of a numerical
scheme which can avoid the amplitude and phase errors from the
approximation of the advective terms of (1) (equation (3b) in
the case considered here). A summary of the proposed methods
can be found in Berkowicz and Prahm (1979). 1In the present study,
the choice is made to approximate equation (3b) by the Lax-Wendroff
scheme (Richtmyer and Morton (1967)). By choosing the Lax-Wendroff
scheme, C; = C; is the value obtained in "a" through parabolic

interpolation over the points (i - 1, k), (i, k), and (1 + 1, k).




The adopted diffusion operators were the usual second-order
centered difference operators.

Under the stated conditions, the fractional step procedure
described by (3a)-(3d) is used to solve the boundary value prob-
lem (2)-(2c). However, in order to do that, appropriate boundary
conditions must be chosen for the single steps (3b)-(3d) and step
(3a) must be numerically approximated.

In the problem dealt with, the boundary conditions for
(3b)-(3d) are easily determined. For (3d), the boundary condi-
tions are given by (2a), while for (3b)-(3c), the extent of the
integration grid is assumed to be such that the concentration
can be considered equal to zero both at the downwind and at the
upwind lateral boundaries.

The numerical approximation of (3a) is obtained, as wusual,
by adding a contributioﬁ at each time step to the points close
to the source location so that the total matter in the region in-
creases by Q 4t (At in normalized units). This method introduces
large errors close to the source. An improved way of treating
the source term is therefore shown later. |

The scheme described above is used in order to compute an
accurate solution to the boundary value problem (2)-(2c) for
realistic wind and diffusivity profiles (explained in the section

"Refined Solution").

Accuracy Conditions

Here, accuracy conditions to be met in applying the discussed
finite difference scheme are reviewed. The application of Von
Neuman's stability analysis to the above fractional step procedure

shows that the amplification factor of a Fourier concentration



component 1is the product of the amplification factors orf the single
steps (Roache (1972)). The stability condition required by the

scheme is, therefore, only the Courant condition.

uldt
% <] (7)

This stems from the use of Lax-Wendroff's scheme for the advection
step.

No conditions are introduced by the diffusion steps since
Crank-Nicolson's scheme is unconditionally stable. However, 1in
order to avoid negative amplification factors of the high-order
Fourier components in the derivation of the accurate numerical

solution, the following conditions are also required:

K_At
X

1
< = (8)
AX2 - 2
KzAt \
< = (9)
A22 - 2

Another condition is also imposed on the grid geometry and
time steps to guarantee the derivation of an accurate numerical
solution. In order to illustrate this condition, let us consider

the one-dimensional equation:
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Application of the Lax-Wendroff and Crank-Nicolson schemes to

this equation give:

n+1 - _ ¢ n _ AN
Ci =€ =77 (449 7€)
az n n n
5 (Ciyq 7 2C F G )
1 n n n
+ 5 B[(Ci+1 - 2Ci + Ci—1)
n+1 n+1 n+1
+ (Ci4q 2cy + )]
where
o = uldt
Ax
and
KXAt
B = .
AX2

The above equation can be rearranged as follows:

2
n+l1 _ n _ _ n_ .n B _a a n - n n
Ci Cjp = -alCy =G (2 7t 2 >(Ci+1 2C; *+ C3q)
B, ~n+1 n+1 n+1
* 3G 726+ Gy

that is, as a linear combination of an upwind difference scheme
and a Crank-Nicolson type of scheme in which the coefficient of the

second order centered difference at time nAt is altered by the

factor - % + %T . On purely physical grounds, it seems reasonable
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to impose:
B > oy - (12 {10)

in order to avoid simulation of dispersion processes having nega-
tive diffusion coefficients. Condition (10), derived by reducing
Lax-Wendroff's scheme to the classical upwind difference scheme,
could also be obtained by von Neumann's analysis. By reducing
Lax-Wendroff's scheme to the upwind scheme in (6), the coefficient
of the centered difference at time nAt is altered as above, and
condition (10) is thereby considered in the definition of the

grid geometry and the time integration step adopted for the com-

putation of the accurate solution.

Refined Solution
The boundary value problem (2)-(2c) is solved with the above

defined scheme for (in normalized units):

k.= 10"
X
K_ = Ze-u(z-‘l)
z
U = 20'2
over the region 0 < x < 2.4 - 1072 and 0 < z < 1.

The chosen vertical eddy diffusivity is the same as that
adopted by Shir and Shieh (1974); it can be considered represen-
tative of diffusion in a neutral atmosphere (Shir (1973), Wyngard
et al. (1974), Robins (1978)).

The integration region has been described by 481 points in
the horizontal axis and 97 in the vertical axis, corresponding

to Ax = 0.00005 and Az = 0.0104 respectively. Using At = 0.0000125,
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the following values are obtained for conditions (7)-(10).
UmaXAt
T = (0.25
KxAt
= .5
sz
K, - At
= = 0.58
Az
KxAt UAt UAt
r— > 1T = — = 0.1875
Ax Ax Ax
max

Of conditions (7)-(10), only the condition on the vertical
diffusion is violated in a small region around the maximum of
KZ.

With the above parameters and grid geometry, the integration

is carried out for 3072 time steps for two different source heights

equal to 0.25 and 0.5 respectively. In both cases, the source

is located at X, = 38 - 10—4_

As mentioned above, the boundary conditions at both the up-
wind and downwind lateral extremes of the region assume that the
concentration is zero. To avoid the influence of errors intro-
duced by this approximation, the results discussed later refer
to the subdomain R of the integration region defined by:

32 - 107" < x < 220 - 107",



COMPARISON WITH REFINED SOLUTION

The boundary value problem (2)-(2c) 1is solved over the same
region with the same parameters as specified in the section
"Refined Solution", but on coarser grids with larger time steps.
The same finite difference scheme delineated above and a Galerkin
type of scheme are used. The Galerkin scheme is introduced pri-
marily because of the ease of aprlication when treating complex

geometries of the boundaries.

Galerkin Scheme

The Galerkin scheme employed in this study is programmed
on the same grid geometry used for the finite difference scheme.
A Galerkin scheme similar to the one discussed here has been
applied by Melli (1976).

The elements of the rectangular grid representing the region
specified in "Rectangular Solution" are divided into triangles by
means of diagonals. On the triangular elements thus obtained the
set of pyramidal functions ¢ is defined. The concentration is

expressed as a linear combination of this set of functions:

where N is the total number of grid points used and Cj is the

value of the concentration in the grid points.
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By applying the Galerkin principle (Mitchell and Wait (1977)),

the following system of ordinary differential equations is obtained:

N 36 .
“3
j§1UfQ¢i¢j dxdz T * E /ﬂz Uo; 5% d"dz] <5

+
a2z
—
| |
e
=
x
S
}-l
<] Q
ij}
-
o)
n
5
o}
Q,
11)]
| N |
i
©
(%
jo 3
n

i=1'2,-o-,N (1'2)

where @ is the region of integration, T is its boundary, s is

the curvilinear coordinate along I and n is the inward unit

vector normal to I'. It must be noted that boundary conditions
(2a) have already been used in deriving equation (12), leading

to cancellation of integrals along I containing vertical diffusion
terms. As far as the integrals

3¢ . .
JC Kx $ . - cos xXn ds

i o9x

are concerned, they are computed in accordance with the assumption
that concentration vanishes on lateral boundaries (the same as-
sumption as used for the finite difference scheme).

Discretization of the time derivative by means of the Crank-
Nicolson scheme leads to a system of linear algebraic equations
which is solved by means of the Seidel iterative technique
(Froberg, (1966)) . No stability condition is required by this

scheme.
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Results

In this section, the solutions computed by the Galerkin
and the finite difference schemes on coarser grids with larger
time steps are compared with the one discussed in the section
"Refined Solution"”. This comparison is carried out in terms of
root-mean-square deviations of the solutions given by the two
schemes from the refined éolution. Specifically, the following
normalized value of the root-mean-square of the deviations is

used:

%gr/];{[c(x,z,t) Crof (X,2,£)]17 dxdz

=1 : {13)

“mean (%) 1 -
Avly;.cref(x,z,t) dxdz

where A is the area of the considered subdomain of the integration

region. Note that the root-mean-square of the deviations is nor-
malized, at a given time, to the mean concentration of the refined
solution, in order to obtain error estimates accounting for the in-
creasing quantity of the total emitted pollutant in the region
considered. |

The same region over which the refined solution is ccmputed
is described successively by 61 x 13 points and 31 x 7 points.
Namely, the integration is performed with grid spacing respec-
tively 8 and 16 times larger than the one used in the refined
solution. The time steps are made as large as possible without
violating the Courant condition, which in the normalized system
used, implies At < Ax. Thus, the time steps are respectively

32 and 64 times larger than the one used for the refined solution.
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Considering only the subdomain R as defined in "Refined Solution"

(which corresponds to 49 x 13 and 25 x 7 points, fespectively),

Figure 2 depicts the normalized root-mean-square of the devia-

tions defined by equation (13) for the source located at z, = 0.5.
Figure 2 is constructed by extracting the matrices corres-

ponding to (25 x 7) points from both the refined solution and

the one obtained with 61 x 13 points. It shows the behavior with

increasing time of the normalized root-mean-square of the devia-

tions computed on (25 x 7) points for both the finite difference

{ s01id lines ) and the Galerkin schemes (dashed lines).

The Galerkin scheme results are slightly better than the

ones given by the finite difference method. However, if the

source height is changed to zg 0.25, the two schemes give approx-—-
imately the same result, as shown in Figure 3, which also indicates
a reverse situation with respect to Figure 2, i.e., the Galerkin
method is not quite as good as the finite difference method.

Both Figures 2 and 3 show that € mean decreases with time,
which indicates a decreasing level of errors in the downwind
direction. This is not surprising, since the gradients of the
concentration become smaller as the pollutant front moves away

from the source. The situation is clearly depicted in Figure 4,

which displays the isolines of the percent error

= |c-cCc | x 100/C
r r

Ep ef ef

for the source located at zg = 0.25 and a grid of 61 x 13 points.
In Figure 4, the left side refers to the Galerkin scheme and the

right side to the finite difference. Note that in accordance

with the above, only the subdomain of (48 x 13) points is utilized.
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Figure 2. Time evolution of :pezn for the finite difference
and the Galerkin scheme for grids of (31 x 7) points
and (61 x 13) points. 1In both cases, the time step
was taken equal to Ax. Source height = 0.5,
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Figure 3. As for Figure 2, except that z_ = 0,25.
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The isolines of Figure 4 indicate that the area of small
errors iancreases with increasing simulation time. The Calerkin
method shows areas of small errors wider than the ones given by
the finite difference scheme. However, it also presents wider
areas of larger errors close to the boundaries of the integration
region. This explains the results of Figure 3 and the reverse
situation with respect to Figure 2. Reducing the source height
increases the error induced by the boundaries of the region in the
Galerkin method.

The results of Figures 2, 3, and 4 show that a reasonable
approximation of the solution of the boundary value problem (2)-
(2c) can be achieved with a limited number of points and a large
time step for a sufficiently large simulation time. In order to
guarantee a sufficiently accurate solution for a small simulation
time, especially at points far from the source, the number of grid
points must be increased and the time step shortened. It appears
from the presented results that in order to avoid errors not much
larger than 10% at ground level, the number of grid points should
be of the order of (61 x 13) and the time step chosen accordingly.
In reality, this is the level of discretization used in applica-
tions reported in the literature (Shir and Shieh (1974}, Runca
et al. (1979)).

On the basis of the above results, the Galerkin method cannot
be considered superior to the finite difference scheme. It also
requires more computer time since the linear system derived from
equation (12) must be solved at every time step. This point is
not quantified in this study. By optimizing the solution of the
system, the geometry of the grid, and the time step, the computer

time required by the Galerkin method can be kept at an acceptable
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level. This method can be especially useful in those applications
where the boundaries have a complex geometry.

Analysis of Figure 4 also indicates that the Galerkin method
approximates, better than the finite difference scheme, the con-
centration field in the region close to the source, where the
maximum gradients of concentration occur. This is because the
discontinuity introduced by the source term is somewhat smoothed
by the Galerkin method through the integration process leading
to equation (12). In the finite difference scheme, the source term
is treated "empirically" by adding a contribution to the concen-
tration in the points of the grid close to the source in such a
way that at every time step, the quantity At is injected in the
region. This approach introduces large errors close to the source
which, by virtue of the diffusion operator, are smoothed out
downwind of the source. Therefore, an improved method of treating
the source term to reduce the errors close to the source is dis-

cussed next.

Source Term Approximation

Due to the linearity of equation (1), the diffusion process
from a point source can be seen at time nAt as the result of two
processes. One is the diffusion process of the concentration
field C, the other is the diffusion process of the amount of pol-
lutant.[(nAt Q{t')dt"' released by the source in the time in-

n-1)At
terval At.
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The above considerationsuggests treating the problem as fol-
lows. Let us examine, for the purpose of simplicity, the one-

dimensional case:

3C _ _,; oC _
T = U ~ L > + Q(t) cS(xs x) (14)
X
Then, given the equations
3C' |y 30, 3%t aenm1 _ one] (s
3t X X wl )
axX
and
BC" BC" azc"
3¢ - YUax YR (16)
X
with
=1 2 o2 e s(xg - x)
it is shown that
c'®oyocn® o e = o(atd (17)

where C'? and c"™ are the respective solutions to (15) and (16) at
time nAt. The sum of o'y C"n by virtue of (17) provides an ap-
proximation of c™.

Not combining (15) and (16) may appear artificial at this
point. But separation of these equations allows one to solve
(16) by a method different from that used for (15) and further-
more, enables one to experiment with the accuracy of approximation
to C” obtained through integrating (16) only up to a time different

by nAt. This will be presented later in greater detail.
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To prove relation (17), it is convenient to operate in the

* . . .
Pourier space . If C is the Fourier transform of C in x, relation

(17) takes the form:
|&'n 4+ & _ 0| = o(at?) (18)

Relation (18) can now be proved by considering the following

Taylor expansions.

“on - Sene ac! AtS 3°C 3
c'l = ¢C'n + At == +T°2+O(At) (19)
3t
- e ] 28" At 323 3
crn o= cnrn- + At — + — + 0(At7) (20)
9t 2 2
3t
~ 2 .2
e §—% + ot (21)
- “ 3t

By making use of eqg. (14-16), the time derivatives of (19)-

(21) can be replaced by space derivatives. Recalling that

aC . 3%¢C 2%

% ikC, — = -k"C etc., (19)=-(21) can be written as follows:
X i
G = ¢rn=1 4+ at(-ivk - kzxx)é'n-T

2
At
2

+ (-u%k2 + ZUKXk3 + k2" & -1 4 oatd)  (19a)

2
X

Eun = éun—1 + At (-iUk - k2Kx)E"n'1

"'2 ~u
+ “5 (-U2k2 + 2Uka3 + Kik“)c n-1 4 O(At3

) (20a)

*
In the Fourier space, the transform of Dirac's function and also
its derivatives are defined.
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et o= &1 L At (-ivk - kzxx)én'1 + at ™13
+ A28 Cu%x? + o2uk k3 + ke
Z X X
2 2 n-
ALS . 2 n-1 AE_[QQ] ~ 3
+ == (-iUk - ¥"K_)Q 8§+ 5% § + O(At™) (21a)
. ~'n_1 —_ ~n-1 -“" _1 —_ n_£ T
Recalling that C = C and C"n = Q Atd, the subtrac-

tion of equation (21a) from the sum of (19a) and (20a) gives:

~ -~ - - ~ - - n~1
C-n + C"n _ Cn = Qn 1/2At5 _ AtG(Qn 1 + ATt'[_g%] )

+ At (-ivk - kZKx)Q“'1/23

2
- A5 ciok k% Q™8 + o(at?) (22)
Since it is:
n-1 . at (397" n-1/2 2 (23)
Q -+—-L—] = Q - 0(At™)
2 ot
relation (18) and consequently (17) are proved.
Equations (22) and (23) also indicate that
lc'n + c*n=1/2 - | = o(at?d) (24)

However, expansion of the puff in (16) of just %} implies
that the barycenter of the puff is moved only halfway to its
real location. Equation (17) is therefore preferable to equation
{24). The numerical tests performed also prove that (17) leads
to more accurate results than equation (24).

Equations (15)-(16) and (17) provide an alternative way to

treat the source term of equation (1). In fact, assuming that
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an approximate solution to equation (16) can be obtained by re-
placing wind and diffusivity with their values at the source lo-

cation, C"P can be put in the form (for a general tri-dimensional

situation)
2
o Qn—1/2 At (x - UsAt - xs)
8(mAt) K_ K K 4K At
X'y 2 X
s ¥s “s s
2 2
) (y - VsAt - ys) ) (z - WSAt zs) (25)
4K At 4R At
Yy z
s s

if the additional assumption is that the boundaries have no effect
*

on the dispersion of the puff for the time interval At . (The

subscript s in (25) indicates values taken at the source location

(xs, Yoo zs).)

s
Equation (25) provides the contributions to be added to the
grid points at every time step. Values given by (25) must be

normalized to guarantee that at every time step the amount

nAt
(n-1)4At

Results from the application of the above algorithm are shown

Q(t') dt' is injected into the region.

in Figures 5 and 6, which compare the root mean square of the de-
viations given by the finite difference scheme as applied in Fig-
‘ures 2 and 3 with that obtained by treating the source term as
illustrated above. Figures 5 and 6 refer to a grid of (31 x 7)
points and to a source located at 2, = 0.5 and 0.25 respectively.
The reduction of €mean is greater for short simulation times and

becomes negligible for long simulation times, thus confirming

that errors in the treatment of. the source term are smoothed out

*
Equation (25) can easily be modified to account for reflective
boundaries.
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€ mean — -
Finite Difference:

—— Source term approximated by
a step function

--—= Sourceterm approximated by
a pseudo-analytical solution
to equation (16) (see text)

Source height = 0.5

0\; L.

% 72 144 716 288 360
Time (X 10~%)

—

Figure 5. Comparison of €peapn 9given by the finite difference
(solid line) for a grid of (31 x 7) points and source
height = 0.5 (same as in Figure 2) with the epgan
achieved by treating the source item as proposed in
the text (broken line).
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€ mean
Finite Difference:

Source term approximated by
2k a step function

~—= Source term approximated by
a pseudo-analytical solution
to equation (16) (see text)

|
\
‘\\ Source height = 0.25

24 72 144 216 288 360
Time (X 10~%)

Figure 6. Same as for Figure 5, except that z, = 0.25.
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by the diffusion operator downwind of the source.

The proposed method rationalizes the treatment of the source
term of (1). In other words, it describes the mathematically
correct procedure to be followed in order to account for the
source term in a finite difference algorithm. The errors intro-
duced by the approximation of the contribution given by the in-

stantaneous puff Qn-1/2

At G(xs - x) (see (16)) can be further
reduced by looking for a more accurate solution than the one
given by (25). However, improvement in the accuracy is primarily
to be expected close to the source. The method can therefore

substantially increase the accuracy of the solution in multiple

source situations.

CONCLUSION

A finite difference and a Galerkin scheme are used in order
to solve numerically a boundary value problem describing advection
and diffusion of air pollutants from an elevated line source in an
atmosphere vertically limited by an inversion layer.

Comparison of the results given by the two schemes with an
accurate solution indicate that for both methods the grid spacing
and integration time step cannot exceed the limits discussed in
the text, in order to obtain a sufficiently accurate numerical
solution, i.e., in order to avoid percent error much larger than
10% for significant values of the solution.

The Galerkin method describes better than the finite dif-
ference scheme the region close to the source for short simulation
times. However, larger deviations in accuracy result from the
Galerkin solution than from the finite difference scheme at points

far from the source, particularly at the boundaries. The two
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schemes prove equivalent for simulation time approaching the
steady-state.

The errors presented by the finite difference scheme in
points close to the source can be ascribed to the inaccurate
estimation of the contribution given at every time step by the
source term. By improving such an estimation deviation of the
finite difference solution from the accurate one could be re-
duced. The proposed treatment of the source term by increasing
the accuracy of the solution close to the source appears relevant
to multiple source situations.

Considering that the Galerkin method requires more computer
time, for cases similar to the one discussed in this study, the
finite difference scheme is preferable. The Galerkin method,
however, offers a valid alternative for those situations which

require a complex grid geometry.
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