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PREFACE

Research into optimization methods has long been an internationally recognized
strength of System and Decision Sciences at IIASA. The research reported in this paper
continues the tradition in studying the application of current numerical optimization tech-
niques to the development of a computer-based tool for the stability analysis of general
nonlinear dynamical systems.

The authors first describe mathematical models for an important aerospace engineer-
ing problem concerning the global stability of large-angle-slew attitude manoeuvres for
rigid spacecraft. (Currently flying control systems perform large angle manoeuvres stably
only in one plane of rotation at a time — a method that is particularly time- and energy-
consuming for spacecraft on astronomical and communications missions.) The paper goes
on to apply nested optimization to the Lyapunov stability analysis of the resulting systems
and describes a computer-based stability analyzer currently under test.

From the methodological point of view, the nonlinear nondifferentiable controlled
dynamical systems studied represent a challenge to the current level of optimization tech-
nology in spite of being posed in only six dimensions. The methods and software described
are currently under development and aim in the long run to replace costly and logically
inconclusive simulation studies with an exact and computationally effective designer’s tool.
Success in this endeavor would have significant implications for engineering and policy
analysis involving dynamical systems.
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Abstract.

Some theoretical investigations of large angle attitude manoeuvres
have been based on the application of Lyapunov's stability theory.

With this

method Mortensen derived stable control laws for performing attitude manoeu-

vres with either thrusters or reaction wheels.

Previous results were ideal-

ized in that they ignored the nonlinearities inherent in the operation of both

types of actuators.

The present paper extends the scope of this work by
acknowledging the actuator nonlinearities.

The approach selected is to

estimate the domain of attraction (DOA) of the target equilibrium for the
system corresponding to the idealized control laws constrained by the actu-

ator nonlinearities.

The DOA is estimated by searching for the largest

region of asymptotic stability over a set of quadratic Lyapunov functions.
This approach results from the apolication of a theorem of Lasalle and gives
rise to two nested nonlinear optimization problems, the internal one of which

is a constrained global problem with several local minima.

The paper gives

an overview of the progress made in solving problems of this complexity.
Emphasis has been placed on the parametrization of quadratic Lyapunov func-
tions and a detailed comparison of several candidate nonlinear optimization
techniques has been made for both the constrained and the unconstrained

optimization problem.

Keywords.

Areas requiring further research are identified.

Large angle attitude manoeuvres, Lyapunov stability theory,

control actuator nonlinearities, nonlinear global optimization, nested

optimization procedures.

INTRODUCTION

Large angle attitude manoeuvres of three axis
stabilized spacecraft are currently usually
performed by means of a sequence of single
axis rotations. Such manoeuvres may take a
relatively long time and their duration can
often be considerably reduced by performing
simultaneous three axis Or slew manoeuvres.
These manoeuvres are necessarily more com-
plex but can be effected with moderate
on-board computer power.

The stability of three axis attitude manoeu-
vres has been investigated quite some time
ago by Mortensen (1963, 1968) and Hrastar
(1970), and more recently by Crouch et al
(1980), using Lyapurov stability theory.
These investigations have taken into account
the cross-coupling of spacecraft axes during
slew manoeuvres, but they have ignored the
nonlinear constraints imposed on the con-
trolled dynamical system by available atti-
tude control actuators such as gas jets and
reaction wheels.

The present paper extends the above results
by taking into account the "hard" nonlinear
characteristics of attitude control actuators.
Numerical simulations Zndicate the alobal
(asymptotic) stability of the resultina more
realistic system and numerical exreriments
are described with a domain of attraction
(DOA) estimation procedure based on nested
nonlinear optimization routines which could
potentially prove the required system
stability. Further research is needed to
establish the DOA estimation nrocedure and
the problems which must be solved are pre-
cisely identified. In this reaard, it should
be noted that numerical DOA estimation to
date provides the best hone of proof of
global stability of satellite large angle
slew attitude control systems. Indeed, cas-
caded nonlinearities in several dimensions
-- as incorporated in the realistic reaction
wheel control system defined below -- are
currently beyond the reach of freauency
domain stability analysis techniques. More-
over, simulation studies can never establish
stability properties beyond doubt -- even at
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immense computational cost.

MATHEMATICAL REPRESENTATION OF
SLEW MANOEUVRES

The control systems obtained by Mortensen
(1963) and Hrastar (1970) for three axis
manoeuvres have been reformulated by Dempster
et al (1979) and Coupé (1980) in order to
have a manageable mathematical representation
for their extension to include actuator non-
linearities. Two cases have been distin-
guished: gas jet controlled manoeuvres and
reaction wheel controlled manoeuvres.

Gas jet control. When the spacecraft attitude
is controlled by means of external torques
the governing system equations are

Jo = u + S{w)dw (dynamics) (1)
-3

u=-Ko-krgr (control Taw) (2)

- _ 1 1

q=5swq+5aqp (3)

. (kinematics)

4p = -7 w'q (4)

r = foa-q,f+s(q)f ) (5)

(attitude error)

ro = fodp * T'a 6)

where:

J - spacecraft <nertia matrix

S(+) - matrix representation of vector
product

w - spacecraft inertial angular velocity
vector in body coordinates

u - external control torgue vector

K - diagonal matrix of rate gains

k - scalar position gain

(q,qo) - body quaternion
(f,fo) - target quaternion

(r,ro) - error quaternion
(a1l in inertial space)

prime denotes transpose and dot denotes time
derivative.

In this case the feedback control law (2)
with nonlinearly adaptive position gain k/r
guarantees that the spacecraft may be con-
trolled from any initial conditions for w
and r to a umique final state w =0,
r=0, ro = 1 provided that the control is

0

unconstrained by actuator nonlinearities.
This implies that the dynamical system
(1)-(6) is globally asymptotically stable or
asymptotically stable in the large.

Reaction wheel control. The equations for
the gas jet case are still valid with the
exception of the dynamics which must be
modified for momentum exchange devices as

Ju = u + S(m)AbShs (7)

where:

hg = the constant inertial spacecraft
angular momentum vector

Ab - the transformation matriz from
inertial space to body coordinates
- 2 1l
Aps = (205-1)15+299" +2q,5(q) (8)

13 - 3x3 identity matrix .

For the gas jet case Mortensen (1968) also
analyzed the stability of a feedback control
law with rate gains the same as (2) but with
simple proportional position gain k . It
has been shown by Dempster et aZ (1979) and
Coupé (1980) that in the absence of actuator
nonlinearities both control laws proposed by
Mortensen can be stably implemented by
either gas jets or reaction wheels. For
this purpose it suffices to take the iner-
tial coordinate frame as the target frame,
so that current error and body quaternions
coincide. (For simplicity we identify atti-
tude error and body attitude below.) The
Lyapunov function V aiven by

V(w,q,90) :=]§m'dm * kq'q/q(z, (9)

is used to prove the global asymptotic
stability of the present systems, but it
should be noted that this Lvapunov function
is easily modified to establish the stabil-
ity of other control laws, cf. Mortensen
(1968) .

Gibbs vector representation. In the previous
subsections the spacecraft kinematics has
been represented by means of quaternions
because they provide the simplest attitude
representation. However in view of the non-
linear optimization procedures envisaged,
the extra dimension and algebraic constraint
of the quaternions is cumbersome. In order
to avoid these somewhat artificial diffi-
culties, the quaternion attitude represen-
tation can be replaced by the Gibbs vector
representation defined in terms of the
quaternion as

p :=a/q, - (10)
One finds

p = 1? [13-S(p)+pp" Ju ()
and

Aps (P) = (149'p) " [(1-p"0) 1 3+20p" +25(p) ] (12)

instead of the kinematic equations (3), (4)
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and (8) in terms of quaternion, and the con-
trol law becomes

us=-Ke - k(1+p'p)p . (13)

Expression (12) obviates the need to explic-
2tly consider differential equations for
wheel momenta -- thereby enlarging the
dimension of the state space from 6 to 9 --
as was done by Hrastar (1970).

Control actuator modelling. The control law
proposed above is Zdealized and as such does
not take into account the constraints on
control torques imposed by real control
actuators. In order to model real actuators
the control law (13) must be modified to
agree with the actual torque characteristics
of the envisaged actuator. To this end, the
control actuator Znput signal is defined to
be

s := Ko+ k(1+p'p)p . (14)

For gas jets the control law must take into
account that a set of thrusters can in gen-
eral produce torques of constant magnitude
and varying sign. Thus (ignoring thrust
rise time) the control torque u is modi-
fied for thrusters to be

u:= -Tmaxsgn(s) (gas jets) (15)
with:
TmaX - maxtmum torque level

sgn(+) - 3-vector of simple sign functions.

Each of the three sign functions (defined to
be 0 at 0) operates on the appropriate
coordinate of the controller input signal to
produce the gas jet torque = Tmax for the

corresponding thruster pairs.

For momentum exchange control it should be
noted that reaction wheels can ideally pro-
duce torques continuously between zero and
a maximum level Tmax , but to prevent

breakup they must cease to produce control
torque by free spinning when the wheel

speeds reach some operational limit Wiax *

Therefore, the reaction wheel control Taw
can be represented as the following cascade
of "hard" nonlinear functions

g &= —sat(s)h(ww,s) (reaction wheels) (16)
where:
sat(+) - 3x3 diagonal matrix of saturation

functions proportional to their

m between + T
arguments between —

h(+,+) - 3-vector of 0-1 valued functions
hi representing wheel motor shut-

down and restart.

Each of the coordinate saturation functions

operates on the appropriate coordinate of the
controller input signal to produce the
idealized reaction wheel torque. Each
coordinate of the h function is of the
form

W o LW W
hi(wi’si) r=max{win(wg) ,1-H(s 07)} ,
i=1,2,3 (17)

with:

win(+) - window function equalling 1 for

w] oW o M
max i max

a - ith wheel speed , 1=1,2,3

and 0 elsewhere

H(+) - Heaviside function equalling 1 for
nonnegative arguments and 0
elsewhere.

The window function in (17) serves to limit
idealized wheel speed to within *uw

)

max
while one minus the Heaviside function calls
for restart of a free spinning wheel in the
opposite direction of rotation. The effect
of the maximum is to allow wheel torque out-
put when either (or both) of these condi-

tions hold. The wheel speeds o are
obtained from

W = hy - 3+ M (18)

where:

J - inertia matrix of the spacecraft with
Locked wheels

W

J" - 3x3 matrix of wheel inertias

and the angular momentum vector hb in body

coordinates is related to the constant iner-
tial angular momentum vector hS as before
by

hb = Abs(p)hS : (19)

If a slew manoeuvre is begun from rest, the
vehicle angular momentum is intially zero
and the system angular momentum represented
by hg must be stored in the spinning reac-
tion wheels. (In practice, auxilliary
thrusters are typically used to dump system
momentum from time to time in the course of
a mission.)

For reaction wheel control, the newly
defined control law is necessarily asymp-
totically stable for states where the non-
linear actuator constraints do not onerate,
i.e. in a sufficiently small neighbourhood
of the target equilibrium point. For both
types of control however there may be
states from which the above control laws
will not transfer the system to the target
equilibrium point. In this case, the new
slew control laws could not be imnlemented
with real gas jets or reaction wheel actu-
ators to stably perform aZ? large angle
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attitude manoeuvres.

Two related problems must therefore now be
addressed. The first one is to estimate the
set of initial conditions from which the new
controllers transfer the system asymptoti-
cally to the equilibrium point, i.e. the
systems' domain of attraction. Secondly, to
show that these domains of attraction are
the whole state space, i.e. to demonstrate
global asymptotic stability of the new
systems.

For all numerical experiments (and in the
sequel) the attitude control systems des-
cribed above were represented in their most
simple general form as a nonlinear 6-vector
differential equation

x = f(x) (20)

where x' := (w',p') and f(x) includes
the nonlinear control Taws incorporating the
actuator constraints. The equilibrium point
x = 0 corresponds to the spacecraft at rest
at the target attitude and f(0) = 0 . The
corresponding control system diagrams are
depicted in Figs. 1 and 2.

ATTITUDE CONTROL SYSTEM SIMULATION

As noted above, the objective of the simu-
lations performed was to investigate -- in

a preliminary way -- the stability boundar-
ies of the proposed controllers of a hypo-
thetical spacecraft executing 3-axis slew
manoeuvres. For detailed numerical para-
meter values used in the mathematical models
see Dempster et ol (1979), §1.5. It is
sufficient here to note that all numerical
experiments were conducted with system para-
meters corresponding to a large vehicle of
the NASA Orbiting Astronomical Observatory
(0OA0) type. The control systems considered
were:

1. the gas jet system

2. the reaction wheel system with zero
initial spacecraft momenta

3. the reaction wheel system with Zarge
initial spacecraft momenta.

It was assumed in all cases that the initial
angular velocities of the vehicle were zero,
and that the desired rotation angle was as
close to 180° (reverse-point manoeuvre) as
possible. A unit eigenaxis and an angle of
179° were arbitrarily chosen to define the
initial Gibb's vector representation p(0)
of the inertial attitude error of the body
relative to the target inertial body
attitude. Simulations of all the 8 combin-
ations of sign of the components of p(0)
were made to verify the stability of the
proposed controllers. A1l simulations were
run on a PDP 11/45 computer with floating-
point hardware running under the IAS oper-
ating system. The simulation program used
was Oxford Systems Associates' Extended
System Modelling Program (ESMP) which is a
general-purpose block-oriented simulator

allowing for extensive user interaction.

Gas jet control. For the gas jet system,
all 8 simulations of 179° slew manoeuvres --
from each orthant of the attitude state
space -- were accomplished stably with
appropriate controller parameters. A typi-
cal screen output is shown in Fig. 3.

Reaction wheel control. A similar statement
applies to the reaction wheel system, for
which periods of coasting with one or more
speed 1limited reaction wheels spinning
freely were noted. However, for the reac-
tion wheel system with high initial system
momentum (24 Nms), instability was encoun-
tered from one of the 8 initial attitudes.
Even with drastically reduced rate gains
(35 to 7) in the control input signal,
stability for only 168° slew manoeuvres
appeared possible from this position and
even then attitude error tended to decay
rather slowly, with dying oscillations still
visible after 5000 seconds of manoeuvre
time. A1l the reaction wheel system simu-
lations described were with parameters
corresponding to wet Tubricated reaction
wheels with maximum speeds of 40m rad/s .
The final simulations were for a reaction
wheel system equipped with magnetic bearing
wheels with maximum speeds of 3007 rad/s ,
very high initial system momentum (100 vs.
24 Nms) and adjusted controller parameters.
Stable 179° slew manoeuvres were possible
for this system from the attitude error
previously inducing instability -- with only
a single wheel reaching its speed limit
once, see Fig. 4. Controller parameter
tuning could however clearly be improved.

In summary, the simulation experiments <ndi-
cated that -- with suitable parametrization
-- both new large angle attitude control
systems are globally stable. (A more
detailed discussion may be found in Dempster
(1980a) and Dempster et al (1979).)

ESTIMATION OF THE DOMAIN OF
ATTRACTION

The thrust of the present research is never-
theless to ultimately replace computation-
ally expensive and scientifically inconclu-
stve stability analysis of dynamical systems
by simulation with a computationally effi-
cient and decisive procedure. Hence there
is a need to estimate the domain of attrac-
tion of the equilibrium point x = 0 of the
system (20) by maximizing the region of
asymptotic stability corresponding to a
particular type of Lyapunov function over
the parameters defining the function (and
possibly the control law).

Consider the autonomous nonlinear dynamical
system given by the vector differential
equation

x = f(x) (21)

where x is an n-vector in the (Euclidean)
state space R" of the system, f is a



The Stability of Satellite Large Angle Attitude Manoeuvres

continuously differentiable n-vector valued
function of an n-vector argument (f: R">R",

fecl)with £(0) =0 . The origin 0 of
the state space is an asymptotically stable
equilibrium point of the system (21) with
respect to a domain Q in state space if,
and only if, for all initial points

%(0) = Xq in Q@ the corresponding solution

trajectories of (21) tend to 0 as t tends
to infinity. That is, the system eventually
returns to equilibrium from any initial
point in the domain @ , which is a region
of asymptotic stability (RAS) of 0 for the
system. The maximal RAS of 0 1is the domain
of attraction (DOA) of 0 for the system.
The distinction between the two concepts is
that an RAS may be defined in terms of a
Lyapunov function by means of a theorem of
Lasalle, while the DOA is rather an absolute
system property.

Lasalle's theorem. In order to apply
Lyapunov's second or direct method to the
identification of an RAS for the system (21)
an appropriate definition of an "energy-
1ike" function is needed. A real valued
function V defined on a domain @ of
state space (V: Q@ »R) is positive definite
on @ if, and only if, V(x? >0 for all
nonzero state vectors x in Q and

V(0) = 0 . Such a function V is negative
definite if, and only if, -V is positive
definite. The following theorem, due to
Lasalle, gives a method for using a more
closely specified "energy-like" Lyapunov
function to identify regions of asymptotic
stability, see Lasalle & Lefschetz (1961),
Chapter 2, §9 and Rouche et aZ (1977).

THEOREM: Let 9 be an open domain in R"
and let V be a real valued function of an
n-vector argument which is continuously
differentiable and positive definite. Con-
sider the open region

Q* = {weQ: Viz) < v} (22)

inside the contour of V at level v > 0 .
If Q* is a bounded set -- i.e. V has
closed curve contours -- and the time
derivative V , given by

Vix) := W(x)f(z) , (23)

of 'V 1is negative definite on Q* , then
0 is an asymptotically stable equilibrium
point of the dynamical system (21) and Q*
is an RAS of 0 .

In expression (23) VV(x) denotes the
gradient of the Lyapunov function V , i.e.,
the n-row vector of partial derivatives of
V given by

V(x) := (aV(x)/ax]...SV(x)/an) s (24)

If the dynamical system (21) is not globally
(asymptotically) stable Lasalle's theorem
implies that there exists a state vector x
at which V(x) = VV(x)f(x) > 0 -- that is,

the time rate of change of "energy" is
increasing. Since the Lyapunov function V
is assumed continuously differentiable, it
follows that there must exist a nonlinear
manifold

M= {x e R": V(x) =0, x # 0} (25)

on which V vanishes. This manifold is in
general multibranched and it is a practi-
cally important open mathematical problem
to completely characterize the manifold M
for suitable classes of Lyapunov functions
and dynamical systems relevant to aerospace
and other applications, ef. Shields(1973).

It follows from the above that a maximal
RAS Q* corresnonding to a specific
Lyapunov function V may be generated by
isolating the abpropriate Zocal solution(s)
x* of the nonlinear programming problem

minXV(x) subject to V(x) =0 . (26)

Note that since V and V vanish at 0 "
0 is a trivial solution of (26). Thus we
actually seek a solution x* of the non-
linear programming problem

min V(x) subject to V(x) =0, x#£0 (27)

or, using (25), minXEMV(x)

the discrete solution set of the programme
(27) contains one or more radially symmetric
pairs, see Shields & Storey (1975), and the
problem has Zocal (up to first order) solu-
tions which are not global. In this paper,
methods are devised for both eliminating

the trivial solution of nroblem (26) at the
origin and for locating a global, rather
than a Tocal, solution of the programme (27).
For different Lyabunov functions the RAS's
defined by solving the ontimization problem
(27) will in general differ.

In general

Maximizing the RAS. 1In order to obtain a
maxzimal estimate of the DOA of the dynamical
system (21) using Lasalle's theorem, we may
consider a parametric class of Lyapunov
functions, solve the problem (27) for each
of them, and choose the "largest" with
respect to a suitable measure of the size
of the candidate regions of asymptotic
stability corresponding to the Lyapunov
functions chosen at each step. Consider a
parametric class of Lyapunov functions

U 2= {Vz}zeZ (28)

depending on a parameter vector z in a set
Z and denote the optimal value of the pro-
gramme (27) for the Lyapunov function para-
metrized by z by

Vo= V(%) (29)
To obtain the best estimate of the DOA using
Lyapunov functions from the class UV we
must solve the nonlinear (unconstrained)
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programming problem

*
maxZQZF(VZ,z) s (30)

where F 1is a suitable measure of the size

of the maximal RAS corresponding to a specific
Lyapunov function given by the solution to
(27).

Thus, combining the problems (27) and (30),
we see that in order to obtain a maximal
estimate for the DOA of the dynamical system
(21) using a given class of Lyapunov func-
tions, we must solve the difficult nested
nonlinear optimization problem

F(max. V_(x),z) , (31)

max xeM'z

Zel

being careful to isolate the global solution
of the Zmner loop (RAS) optimization pro-
blem (27).

QUADRATIC LYAPUNOV FUNCTIONS AND
THEIR PARAMETRIZATION

0f the three types of computable Lyapunov
function classes treated in the literature:-

1. Quadratic (Rodden, 1965; Weissenberger,
1969; Geiss et al, 1971; Davison & Kurak,
1971; Shields & Storey, 1975)

2. Polynomial (Zubov, 1955)
3. Piecewise Linear (Rosenbrock, 1962)

quadratic Lyapunov functions have proven the
most reliable to date. Members of this
class have been used to obtain the stability
of the control laws in Mortensen (1963,
1968). The practical advantages of employ-
ing quadratic Lyapunov functions in numeri-
cal stability studies are twofold.

RAS size. The first is that a constant
value of the Lyapunov function VP(x) given

by the quadratic form x'Px -- and in par-
ticular its maximal RAS boundary -- repre-
sents a hyperellipse in state space. Hence
it is easy to visualize and its "size", i.e.
a monotone function of its hypervolume,
given at a (global) optimum of the inner
loop program (27) by

h(P) :=n log v; - Tog detP (32)

where V; denotes the corresponding optimal
value, is easy to compute.

Lyapunov's matrix equation. Secondly, qua-
dratic forms are easily generated. The
method employed in this paper is to select
an arbitrary negative definite matrix -Q
and then solve the Lyapunov matrix equation

A'P + PA = -Q (34)
for the kernel P of the quadratic form.

To see how this equation arises, consider
the dynamical system (21) written in first

order Taylor series expansion as
x = Ax + g(x) (35)

where the nxn matrix A := Vf(0) and g
contains second and higher order terms.
Neglecting g in (35) and computing V
directly yields

V(x) = x'(A'P+PA)x := -x'Ox . (36)

Hence it follows from Lasalle's theorem that
the linearization about the origin of the
nonlinear system (21) is globally asymptoti-
cally stable if, and only if, Q in (36) is
positive definite. To generate by solving
(34) a positive definite matrix P(Q) ,
given a positive definite matrix Q , an

O(n3) iterative algorithm due to Smith
(1971) is available. For a brief discussion
of alternatives see Dempster ez al (1979),
Appendix I.2.

Parametrization of positive definite
matrices. The best technique for generating
positive definite matrices Q was utilized
in an earlier (small angle attitude control)
study by Geiss et aZ (1971) based on
Murnaghan (1962). It is well known that all
real symmetric matrices are orthogonally
similar to a diagonal matrix, whose entries
are its eigenvalues, and thus that all posi-
tive definite matrices are orthogonally
similar to a diagonal matrix with positive
diagonal elements. Hence the parametriz-
ation of all nxn positive definite matrices
may be effected in the required n(n+1)/2
parameters by combining a parametrization of
the group of orthogonal matrices with the

n diagonal elements of a diagonal matrix in
the form

Q(z) := G'(8,P)AG(8,P) (37)

where the row vector z' := (A',8',0') ,

A #= diag(x],...,kn) and G is an orthog-
onal matrix defined by an (n-1)(n-2)/2 -
vector 8 and an (n-1) - vector P (see

Dempster et al, 1979, Appendix I.1, for
details). The advantage of this parametriz-
ation over other possible, but badly behaved,
parametrizations in the same number of para-
meters is that with it separate adjustment
of the lengths and orientations of the
principal axes of the hyperellipsoidal
Lyapunov function contours is possible.

We are now in a position to define precisely
the objective function f : Rm >R,

z+> F(z) of the unconstrained problem (30)
as
F(z) := hoPoQ(z) . (38)

THE DOMATT SYSTEM

Fig. 5 outlines the structure of an algor-
ithm to estimate the domain of attraction of
an equilibrium point of a general dynamical
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system based on the above theory. There are
two parts to this algorithm. For any given
quadratic Lyapunov function we wish to find
the maximum region of asymptotic stability
(RAS). A measure of the size of this region
estimates the size of the domain of attrac-
tion of the equilibrium point relative to
the given Lyapunov function. The RAS prob-
lem is formulated as a nonlinear programm-
ing problem which forms the Zmner Zoop of
the algorithm. The second part, or outer
loop, of the algorithm seeks the quadratic
Lyapunov function which yields the largest
RAS, and hence the optimal estimate of the
domain of attraction. Again this is formu-
lated as a nonlinear programming problem.

A third optimization could be considered,
but is not dealt with in this paper, namely
the further maximization of the domain of
attraction of the system (20) with respect
to the gain parameters K and k wused to
define the new attitude control laws.

The (closed loop) dynamical systems gener-
ated by both new controllers are of the form

x = f(x) +g(x) , (39)

where f is an analytic function of the
state vector x and g is a discontinuous,
piecewise continuously differentiable func-
tion. The theory of the previous two sec-
tions on the other, hand applies only to
dynamical systems whose right hand sides are
continuously differentiable. Unfortunately,
an analytical theory of piecewise quadratic
Lyapunov functions for discontinuous systems
is well developed only for the case of a
unidimensional discontinuity, see Weissen-
berger (1965, 1969) and Dempster et al
(1979). For both attitude control systems
however the discontinuous or nondifferen-
tiable points of g are explicitly known
and few in number. It is therefore possible
to provide continuously differentiable arc-
tangent approximations to the discontinuous/
nondifferentiable functions, although these
are extremely complicated, see Dempster et al
(1979), Appendix IV, for details.

The key to a successful procedure for estim-
ating the domain of attraction lies in the
choice of algorithms for performing the two
nonlinear optimizations described above. It
was decided that the latest proven con-
strained and unconstrained techniques of
classical type afforded the best chance of
efficient optimization calculations. In
particular, for the relatively few non-
differentiable points in the system dynamics
due to sign (gas jet) and to saturation,
window and Heaviside (reaction wheel) func-
tion modelling of control actuators, infant
(and Targely inefficient first order) non-
differentiable optimization techniques were
not deemed worth the computational overheads.
(In this regard see Lemarechal (1979b) who
shows that classical methods can be effective
in such situations.) Instead smooth (and
other suitable) approximations to the base-
line system control actuator nonlinearities
have been utilized. The selection, specifi-

cation, implementation and testing of the
optimization routines used in the method was
carefully addressed in Dempster et al (1979)
where basic requirements for numerical
optimization algorithms in this context
were set out. Two alternative algorithms
were proposed for the outer loop -- the
Powell (1964) conjugate divection method,
and the BFGS quasi-Newton (or variable
metric) method (see, e.g. Adby & Dempster,
1974) and one for the inner loop -- the
Powell-Han projected Lagrangian algorithm,
Powell (1977, 1978). The performance of
these algorithms was evaluated on a number
of carefully specified test problems
(details of which are to be found in
Appendix II to Dempster et ai, 1979).

For computation using the Powell-Han algor-
ithm, the inner loop programme (27) is
replaced by the analytically equivalent
problem

V*(P) := min, x'Px (40)

s.t. f(x)'Px p(x) >0

where p 1is a nonnegative radially decreas-
ing function with a single pole at the
origin of at least the same order as the
zero at the origin of f(x)'Px . Multipli-
cation of the equation constraint of (27)

by p removes the trivial solution of (26)
at 0, while use of the inequality appears
to result in improved performance of the
Powell-Han algorithm.

0f course the Powell-Han routine is only
capable of finding Zocal optima of (40)
corresponding to solutions on various
branches of the manifold

M=1{x eR" : f(x)'Px = 0} In general
several local minima exist (in radially
symmetric pairs) and the global solution
must be selected from these as yielding the
smallest value of V . As the outer Toop
algorithm varies the positive definite
matrix Q , the Lyapunov function kernel P
is deformed via the Lyapunov matrix equation
and the branches of the manifold M move in
a manner which makes it impossible to pre-
dict on which branch the global solution
lies. While a small change in Q may move
the manifold M by only a small amount, the
global solution may, as a result, jump to a
different branch of M . This difficulty
may be overcome by keeping track of all
candidate local optima as Q varies, and by
choosing at each outer loop function evalu-
ation the global inner Toop optimum from
this set.

In the computer implementation of the DOA
estimation algorithm an initial set X0 of

state space starting points for the Powell-
Han algorithm is supplied by the user. At
each outer loop function evaluation & , the
result of every successful inner loop estim-
ization is added to the current set X2 s

while all other elements of Xl in a
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neighbourhood of this local optimum are
deleted in order to prevent unlimited growth
of the set X . In numerical experiments,
it has been observed that when the manifold
M moves slowly with changes in Q , each
Tocal solution of (40) replaces the starting
point which led the Powell-Han algorithm to
it. (In the code, the number of starting
points may be limited by the user.)

Since at the outer Toop optimum there are
usually multiple global solutions to the
inner loop problem (27), the outer Toop
optimum is often located when two or more
inner loop solutions of (40) (other than
radially symmetric pairs) yield the same
value of V .

The algorithm outlined in Fig. 5 and incor-
porating the optimization routines discussed
above is implemented as the structured
FORTRAN code DOMATT. The general design
principles and skeletal outline of the
DOMATT system as a piece of applications
software, together with the module structure
of DOMATT's FORTRAN code -- including the
Atomic Energy Research Establishment,
Harwell, U.K. optimization routines VAO4A,
VA13AD, VFO2AD and POWHAN -- may be found in
Dempster (1980a,b) with more details in
Dempster et al (1979). A software manual

is also available from the authors.

NUMERICAL EXPERIMENTS

Dynamical system test problems. The DOMATT
code has been tested in a preliminary way on
8 specially chosen test problems (see
Dempster et aZ, 1979, Appendix III, for
their specification). The criteria used in
selecting these test problems were as
follows:-

1. To include at least one system to which
the solutions of the RAS problem and
the DOA are known analytically.

2. To include a Tow order system of gas jet
type as a simple test of the performance
of the DOMATT system in the presence of
"hard" nonlinearities.

3. To grade the state space dimensions
of the test problems (2 through 5) in
such a way as to give some indication
of the increase in computation time with
increase in problem complexity.

The computations were performed to an
accuracy of 1073 by an ICL2980 computer
running under the VME/B operating system.

In the experiments to date the DOMATT code
solved all 2-dimensional problems to the
required accuracy except the jet-type problem

involving a "hard" sign function nonlinearity.

The outside bound error termination diffi-
culties encountered with the Powell-Han
algorithm on this problem were exacerbated
on the higher dimensional "high curvature
problem" -- a 3-dimensional cubic model of a
servo-mechanism. The remaining 3-dimensional

problems and the 4-dimensional problem have
so far not been solved to termination. It
is not clear to what extent further algor-
ithmic tuning could reduce computation
times, although there was some indication
on the largest test problem that the inner
looo Powell-Han algorithm was taking pre-
maturely small steps. More importantly,
relatively slow progress was experienced
at the outer Toon by the Powell '64 conju-
gate direction method. If (approximate)
gradient information from perturbation
analysis of the inner loop problem (27)
were available, faster outer Toop progress
could be expected with the BFGS quasi-Newton
method on the basis of comparative tests

of the two methods performed in the study
and general exnerience, see e.g. Adby &
Dempster (1974). However, it is not clear
what difficulties would be caused by non-
differentiability of the outer loop RAS
measure due to multiple global solutions of
the inner loop problem. This remains a
topic for future research to be discussed
further below. An analysis of the average
time per outer loop -- i.e. candidate
quadratic Lyapunov -- function evaluation,
showed this average inner Toop run time to
a global optimum to increase very reasonably
with state space dimension.

Attitude control systems. In the prelimin-
ary numerical experiments with the DOMATT
code a gradient evaluation in a specified
neighbourhood of a control actuator non-
differentiability was replaced by a median
sub- or supergradient value, while in such

a neighbourhood of a discontinuity a grad-
ient evaluation was replaced by a specified
large number of appropriate sign. Given

the difficulties uncovered in the appli-
cation of the DOMATT code to the eight test
continuously differentiable problems, it

was not expected that the application to

the nondifferentiable attitude control
systems would prove very successful without
a deeper understanding of the problems
experienced by the inner loop optimization
routine. Thus, while both systems have been
coded, the DOMATT code has so far been
applied in a preliminary way only to the

gas jet system. The gas jet system was
presented to DOMATT with the intention of
finding at least a crude DOA estimate. The
first such run processed 66 inner loop
optimizations -- i.e. 66 candidate Lyapunov
functions -- in 30s. This is a suspiciously
rapid average rate when compared to such
rates for the Tower dimensional test
problems. In fact, in every case the inner
loop global solution was found to lie in
state space within the specified tolerance
of the origin. When similar near zero inner
loop solutions were found with the test
problems, a clear contrast emerged between
inner loop optimizations finding a genuine
solution and those finding the trivial
solution at the origin. Since the comple-
tion of the preliminary experiments, the
theoretically effective nonlinear constraint
rescaling technique which removes the
trivial solution to the inner Toop constraint
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equation at the origin -- described above in
connection with the numerical inner loop
problem (40) -- has been developed. The
application of this technique to the gas

jet system is a first priority of research
currently in progress.

CONCLUSIONS

Swmmary. Two large angle attitude controll-
ers, a gas jet mass expulsion system (exter-
nal torque) and a reaction wheel momentum
exchange system (internal torque), were
modelled with respect to a new minimal
dimension representation of satellite body
rate dynamics, using Gibb's vector kinema-
tics and the Mortensen '63 slew control law.
The models account for the most important
nonlinearities in the control actuators and
are known to be globally asymptotically
stable when these constraints are not
imposed. Both systems were extensively
simulated and the simulation studies indi-
cate their globally stability in spite of
the realistic nonlinearities in the control
actuator modelling. Moreover, these

studies have demonstrated that notwith-
standing their mathematical singularity at
180° Gibb's vectors can be used to study
180° reverse points to within the accuracy
of a fine pointing control system.

Lasalle's theorem has been interpreted for
quadratic Lyapunov functions as a basis for
an inner loop optimization procedure for
estimating the region of asymptotic stability
(RAS) of dynamical systems of the form

X = f(x) A well behaved parametrization
of quadratic Lyapunov functions has been
taken so that the optimal Lyapunov function
(that producing the largest RAS) can be
found by an outer loop optimization. Thus

a procedure for estimating the domain of
attraction (DOA) of an equilibrium point of
a (controlled) dynamical system has been
devised which implements the latest optimiz-
ation techniques in the quadratic Lyapunov
function approach to DOA estimation. The
procedure has been incorporated in a modular
FORTRAN computer code DOMATT written to
advanced modern software standards.

In order to test the DOMATT code, tune
algorithm parameters and gain computational
experience with the method, a carefully
designed set of dynamical system test prob-
lems were run. Although the procedure both
reproduced results of previous researchers
on Tow order test problems and produced
plausible results where the DOA is not known
a priori, difficulties with the performance
of the inner loop optimization procedure
were encountered on test problems, and the
higher order gas jet system, which incor-
porate "hard" nonlinearities. As a result
it was decided to postpone computational
experience with the reaction wheel system
-- which involves several "hard" nonlinear-
ities -- until a deeper understanding of
these problems has been obtained.

The outstanding research thus remains the

refinement of the DOA estimation procedure
-- in particular the inner Toop Powell-Han
constrained optimization method or a suit-
able alternative.

Directions for further research. Difficul-
ties with the Powell-Han algorithm similar
to those encountered at the inner optimiz-
ation loop of DOMATT have been experienced
by other researchers, Lemarechal (1979%a),
Madsen (1979). Two identified sources of
deficiency with the best current implemen-
tation of the algorithm (Harwell VAO2AD as
used in DOMATT) are relevant in the present
context. The first deficiency is a tendency
to singularity in the Lagrangian inverse
Hessian update when steen-walled functions
such as "hard" nonlinearities are
encountered. The practical result is an
attempt at a Zarge algorithm step outside
prescribed bounds for the state variables.
The second shortcoming involves prematurely
small algorithm steps on problems -- such as
those posed by the attitude control systems--
having highly curved constraint surfaces.
The difficulties result from using Han's
theoretical results on Lagrangian augmen-
tation and quadratic approximation Tine
search. These suggestions are directed at
improvement of the present inner Toop local
optimization technique, but it is possible
that other procedures for the local numer-
ical solution of difficult nonlinear pro-
gramming problems will have to be tried.

The DOMATT code includes inner loop starting
point selection procedures designed to over-
come the problem of selecting a local

rather than the global optimum by the inner
loop algorithm, and also for preventing the
slow convergence at the outer loop caused

by multiple global optima -- a problem
identified by Shields and Storey (1975).
These procedures can be refined by further
application of combinatorial techniques.

The precise nature of the starting point
procedures selected depends on how closely
the candidate inner loop solutions need to
be tracked in successive iterations of the
outer loop. This is Tikely to be fairly
problem specific, so that detajled mathe-
matical investigation of the V=0 manifold
could improve the efficiency of the DOMATT
code. An important part of the future study
is thus an investigation of how tangency
points (local optima) found in the inner
loop move as the P matrix (quadratic
Lyapunov function kernel) is altered at the
outer loop. This is a form of parametric
information about the solution of nonlinear
programming problems under perturbations --
an area of considerable research activity

at the moment. Unfortunately, current
perturbation analyses of nonlinear pro-
grammes, see e.g. Fiacco (1982), are not
immediately applicable in that they assume
too much smoothness in the problem functions
and perturbation parameter dependencies. It
would be useful to extend such general
analyses to the case of programmes with only
directionally differentiable problem
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functions, cf. Dempster & Wets (1976), which
arise frequently in aerospace engineering
applications.

An investigation must also be made of step-
length tuning and outer loop gradient pro-
vision for the alternative BFGS quasi-
Newton algorithm utilized in DOMATT.
provisions are designed to enhance the
efficiency of the outer Toop algorithm.
Regarding the second point, due to the com-
plex nonlinear, but analytic, formulae
represented by (38), see Dempster et al
(1979), Appendix I, the development of
gradient information should be investigated
through the use of automatic differentiation
software which has recently become avail-
able, Robinson (1979). Gradient information
would also require of course the results of
the perturbation analysis of the inner Toop
problem called for above.

These

The above refinements of the DOMATT code are
currently under development using the test
problems. While their difficulty should

not be minimized, it is our belief that
problems of the complexity described above
are close to the edge of solvability with
current optimization theory and methods.

More generally, it would be fruitful to
study the extension of Weissenberger's
piecewise quadratic Lyapunov function tech-
niques for single actuators to the 3-dimen-
sional actuators used on spacecraft. This
would allow study of the gas jet chattering
phenomenon. The use of piecewise linear
Lyapunov functions (generated by Tinear
programming techniques) might also be inves-
tigated, ef. Rosenbrock (1962). Such a
method would give more careful mapping of
DOA boundaries than is possible with
quadratic techniques and would allow the
extension of the DOMATT code to nondifferen-
tiable systems more general than the present
aerospace engineering application.
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INNER LOOP OPTIMIZATION
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