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PREFACE 

Generalizations of the classical models of mathematical demography to include mul­
tiple states of existence in the course of the life cycle have appeared with increasing fre­
quency during the past decade. The new methods for manipulating data, constructing life 
tables, and generating population projections have fostered innovative empirical studies 
of, for example, interregional migration, marriage and divorce, and labor force participa­
tion. And they have established a need for a systematic assessment of this growing body 
of research. Responding to this need, the authors of this essay convened a conference on 
multidimensional mathematical demography at the University of Maryland at College 
Park, Maryland, USA in March 1981. Supported financially by the US National Science 
Foundation, the meeting brought together demographers, mathematicians, sociologists, 
and statisticians to report on and evaluate the current state of the art of the newly estab­
lished field. The essay reproduced in this reprint, written by the organizers of the confer­
ence, presents an overview of multidimensional demography and outlines the results of 
the conference. It appears as the introductory chapter of the conference proceedings vol­
ume just published by Academic Press. 

A list of related publications issued by IIASA is included at the back of this report. 

ANDREI ROGERS 
Chairman 

Human Settlements and Services Area 
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Multidimensional Mathematical 
Demography: An Overview 

Kenneth C. Land and Andrei Rogers 

1. INTRODUCTION 

A large and significant body of theory, methods, and 

applications in demography is concerned with the transitions 

that individuals experience during their lifetime, as they 

pass from one state of existence to another: for example, 

transitions from being single to being married, from being 

alive to being dead, from being in school to having 

graduated, from being out of the labor force to being in the 
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labor force, from living in one region to being a resident 

of another. A unifying analytic thread that runs throughout 

these substantively diverse problems is their description 

by a set of two or more "living" states (marital statuses, 

schooling statuses, labor force statuses, geographic regions), 

among which the members of a population make transitions, 

plus the absorbing state of death into which all individuals 

eventually enter. The analysis considers the evolution that 

arises as a consequence of the transitions that occur over 

successive periods of time and age. 

Not only are these and similar problems of intrinsic 

substantive interest to demographers, but they often relate 

to 

(a) other fundamental demographic phenomena (e.g., 

fertility); 

(b) patterns of social and economic change (e.g., in 

family and household structures or in regional employment and 

economic growth); 

(c) legal questions (e.g., estimating the expected num­

ber of remaining years of working life for a worker who is 

disabled on the job); and 

(d) assorted social policy issues (e.g., ascertaining 

the impacts of employment and retirement trends on social 

security and pension systems). 

The large numbers of uses and users of disaggregated 

multidimensional population projections have led national 

statistical agencies all over the world to expand their pro­

vision of such detailed totals. The U.S. Federal Government, 
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for example, regularly issues a number of projections that 

are based on the Census Bureau's national population projec­

tions. These deal with fertility, mortality, immigration, 

school enrollment, educational attainment, family and house­

hold totals and composition, and the income distribution of 

households (Fig. 1). The only link between these different 

projection series is that in practice the exogenously pro­

jected rates are all applied to the same age-sex-race­

specific population. No attempt has as yet been made to en­

sure that the rates used in projecting each series are con­

sistent with those used in other series or with the level of 

the projected population. Thus, fertility rates may not be 

consistent with the proportion of ever-married women, and 

the size and composition of households may not be consistent 

with the level of educational attainment of household mem­

bers. Yet the need for such consistencies is becoming ever 

more apparent as these projections are increasingly used to 

s upport planning and policy making. 

Until relatively recently, demographers and agencies, 

such as the U.S. Bureau of the Census, have sought to 

introduce multidimensionality into their numerical projec: 

tions by applying, more or l ess directly, the basic single ­

decrement life table and the associated single-dimensional 

population projection model of conventional demographic 

theory, as described, for example, in Keyfitz (1977) and in 

Shryock and Siegel (1973). But these single-state (living 

at age x) models exhibit one or both of the following de­

ficiencies (Rogers, 1980, p. 497). First, single-state models 
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Fig. 1. Demographic characteristic projections based on the Census Bureau's national population projections 

(Long, 1980). *Projections done by or in cooperation with other federal agencies. 
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cannot incorporate interstate transfers differentiated by 

origins and destinations, and must therefore analyze changes 

in population stocks (i .e., the number of persons occupying 

various states at distinct points in time) by reference to 

net flows among the states, for example, net migration. 

Second, single-state models cannot follow individuals across 

several changes of state and therefore cannot disaggregate 

current or fu ture stocks and flows by initially or previously 

occupied states . 

Early efforts by actuarial scientists and demographers 

to generalize the single-state life table model led to the 

development of multiple-decrement life tables. They incor-

porate two or more forms of decrement from an initial status, 

such as mortality by cause of death, or attrition from the 

sta tus of being single by mortality and nuptiality (Jordan, 

1967, pp. 271-290; Preston et al., 1972, pp. 13-20). More 

complex tables with secondary decrements (Jordan, 1967, pp. 

29 1 -304) or hierarchical increment-decrement models (Hoem, 

1970a,b; Oechsli, 1975) were defined by chaining together a 

series of multiple-decrement tables in such a way as to allow 

successive transitions among living states, and hence incre-

ments into subsequently occupied states, but no reentries 

(with a given age interval) into a state previously occupied 

(e.g., from single to married to divorced back to married). 

Until about a decade ago, these hierchical increment-

decrement models were the primary tools, other than single -

decrement life tables, used by demographers for the construc­

tion of nuptiality tables, tables of working life, and tables 

J 

/ \.J./J 
( J 

\.... ./ ._,...___......~---
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of educational life (for a survey of this literature, see 

Shryock and Siegel, 1973, pp. 455-459). All such tables, 

however, suffer from the limited ability of these models to 

accommodate reentrants into states as well a s decrements. 1 

The earliest extensions of the single- s tate population 

projection model focused on multiple states of residence and 

therefore were called multiregional pr o jection models 

(Rogers, 1966, 1968; Feeney, 1970; Le Bras, 1971). Similar 

generalizations concerned with other classifications such as 

parity and occupational mobility appeared shortly thereafter 

(Goodman, 1969; Coleman, 1972). It then became clear that 

projections of populations classified by multiple states of 

existence could be carried out using a common methodology or----' 

multistate projection in which the core model of population 

dynamics was a multidimensional generalization either of the 

continuous age-time model of Lotka (Le Bras, 1971) or the 

discrete-age-time Leslie Model (Rogers, 1966; Goodman, 

1969). 

During the early 1970s, work on multistate life tables 

and on multistate projection models progressed rapidly, and 

the two streams of research were fused together to produce a 

consistent generalization of classical demographic techniques 

that unified many of the methods for dealing with transitions 

between multiple states of existence. This generalization ,----...,, 
of conventional analytical demography has produce? __ __ , 

1 
For thorough discussions of limitations in the "old" tables of 

working life constructed on the basis of hierarchical models and 

estimated from prevalence rates, see Hoem and Fong (1976), Schoen and 

Woodrow (1980), and Willekens (1980). 
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(1) the specification of a general nonhierarchical incre-

ment-decrement life table (IDLT) model and an associated multi-

state population projection model capable of differentiating 

interstate transfers by both origin and destination states and 

that can accommodate reentrants into states; n, 
(2) the development of estimation and computational al- v-t~ 

gorithms to allow such models to be applied to the rather 

sketchy information demographers often confront; and 

(3) the empirical application of these models to a growing 

range of substantive topics. 

Because multistate models can be viewed as superimposing 

a set of two or more life (e.g., social, economic, health) 

statuses on the natality (birth)--alive at age x--mortality 

(death) continuum of the classic single-decrement life table 

model, thus combining the age dimension with one or more status 

dimensions, they also are called multidimensional models. 2 

We (and the authors of chapters in the volume) use these terms 

interchangeably. In order to aid the reader in understanding 

the contributions of the chapters in the present volume to the 

state of the art in this field, we now turn to a brief account 

of the more recent historical development of multistate demo-

graphic models and their connections to other fields, such as 

mathematical statistics and biometrics. 

2
since they also combine the age dimension with one or more status 

dimensions, simple and hierarchical multiple-decrement life table models 

are multistate models, according to this definition. But the critical 

members of this class of models are the nonhierarchical models. The 

structure of the latter subclass is more complex, and it is in their 

specification, estimation, and use in projection that the critical ad­

vances of the past decade have been made. 
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2. RECENT DEVELOPMENTS IN MULTI STATE DEMOGRAPHIC MODELS 

2 .1. INCREMENT-DECREMENT LIFE TABLE MODELS 

The simplest pos s ible mathematical framework suitable for 

specifying the stochastic process underlying a nonhierarchical 

multistate IDLT model is the classic discrete-state, continuous­

time Markov chain (Doob, 1953, pp. 235-255). A formal model of 

this type was studied in the context of disability insurance as 

long ago as Du Pasquier (1912, 1913). A similar Markov chain 

model was specified and applied to the study of recovery, re­

lapse, death, and loss of patients by Fix and Neyman (1951). 

Sverdrup (1965) specified a three-state version of this model 

(two intercommunicating living s tate s plus the absorbing state 

of death) and made a more systematic study of its statistical 

estimation and test procedures. While these are not the only 

analysts who developed s tatistical estimators applicable to 

this model, most other works (e.g., Meier, 1955; Zahl, 1955; 

Billingsley, 1961; Albert, 1962; Chiang, 1964) are based on an 

observation plan that assumes that all individuals can be ob­

se rved over a fixed period [O,T]. Haem (1971) noted that this 

assumption often is violated in demographic data (e.g., by 

censored or incomplete observations), extended Sverdrup's 

theory to a countably-infinite state-space, and suggested the 

application of the three-state model to the study of labor­

force participation. But such an application was not published 

until Hoem and Fong (1976) constructed tables of working life 

for Denmark. 

Given the existence of a model with long-standing founda­

tions in actuarial science, mathematical statistics, and bio-
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medical research, it might be assumed that mathematical demo-

graphers would regard the problem of specifying a model for 

multidimensional life tables as essentially resolved. For 

several reasons, however, this is not the case. First, because 

a nontrivial empirical application of the classic model did not 

appear until a few years ago, there was no common agreement that 

this model could be applied to the sketchy transition informa-

tion typically available to demographers. Second, applications 

of multistate models especially in interregional migration 

studies often must deal with state spaces wherein the number of 

living states k is greater than two. However, the simple 

closed-form expressions for the transition probabilities and 

forces used by Hoem and Fong (1976) are based on a model with 
_,.,.,...---......_ 

only two living ( states (e.g., in the labor force, not in the 

labor force) anJ' no.nctif,ferential mortality into the absorbing 

state of death, and no explicit expressions are feasible when 

a model contains more than four intercommunicating living 

states. 3 Third, empirical applications of this classic model 

usually are based on the simplest possible time(age)-inhomo-

geneous Markov chain, namely, a chain that postulates constant 

instantaneous transition forces (intensities) within the age 

intervals over which the model is estimated. While this may 

be a tenable assumption for most demographic processes when the 

3 
By "explicit," we mean expressions that involve only a finite num-

ber of algebraic operations. Thus, according to this convention, the 

matrix exponential (infinite series) solution of the classic homogeneous 

model for k > 4 intercommunicating states (applied, for example, to com­

peting risks of illness and death by Chiang, 1964 and the marital status 

by Krishnamoorthy, 1979) does not produce explicit expressions for the 

transition probabilities and forces. 
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estimation-age-intervals are relatively short (e.g., single 

years), many mathematical demographers would not regard it as 

a sound basis for producing a sufficiently accurate IDLT when 

the age intervals are longer (e.g., 5 or 10 yr). In other 

words, while the piecewise-constant transition-forces multistate 

ife table model may be a reasonable specification for estimating 

an unabridged IDLT, it is less satisfactory for estimating an 

abridged IDLT. 

These considerations help explain why demographers working 

on empirical multidimensional problems proceeded, in the early 

1970s, to forge alternative multistate IDLT models and methods. 

For example, in the process of conducting research on inter­

regional population growth and distribution, Andrei Rogers 

(1973a,b, 1975) developed and applied multiregional generaliza­

tions of the classic single-decrement life table. At about the 

same time, Robert Schoen performed a life table analysis of 

marriage, divorce, and mortality data (Schoen and Nelson, 1974) 

and investigated generalizations of the corresponding methods 

for constructing IDLTs (Schoen, 1975). 

Both of these analysts replaced the piecewise-constant 

transition forces assumption of the classic model with a speci­

fication on the survivorship functions, namely, that they change 

(increase or decrease) linearly with distance into an age inter­

val. 4 The resulting model has since become known as "the 

linear model" (for a brief review of this model, see Ledent, 

1978 and Section 3.2 of the chapter by Land and Schoen in this 

4
schoen ' s (1975) algorithm actually is more general and potentially 

allows for other forms of the survivorship functions. But it is the 

linear model that he develops most fully. 
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volume). But, because the form of data typically available to 

demographers for the study of migration in the United States 

(survivorship proportions from decennial censuses) differs from 

that typically available for the study of nuptiality (occur-

rence/exposure rates from vital event registers), the estimation 

methods of Rogers are somewhat different from those of Schoen. 5 

Further, both Rogers, in his Option 1 method, and Schoen de-

veloped their estimation techniques initially in scalar form 

(Roger's Option 2 method, which focuses on the use of survivor­

ship proportions, was expressed initially in matrix form) . 6 

However, after seeing Schoen's (1975) scalar expressions for the 

estimators of the "linear" version of this algorithm, Rogers and 

Ledent (197~) were able to derive a matrix estimator of inter-

state transition probabilities analogous to the scalar formula 

for survival probabilities in single-decrement theory when the 

survival function is assumed to be linear. 7 Nonetheless, be-

5
Even though Roger's Option 1 method deals with data in the form of 

occurrence/ exposure rates, his assumption that individuals made only one 

state transition per estimation-age-interval (Rogers 1975, p. 59) makes 

his estimators differ from those of Schoen (1975). 
6
All life table functions originate from a set of transition proba­

bilities, defined for all ages. In c onstructing such tables from the nor­

mal data on vital events and survivorship proportions, demographers fre­

quently adopt one of two approaches: one that focuses on observed rates 

or one that considers observed proportions surviving. In Rogers (1975, 

p. 81) these two approaches are called the Option 1 and the Option 2 

methods , respectively. 

7
Recall that this single-decrement formula for, say, 5-yr age inter­

vals is 

(cf., Keyfitz, 1977, p. 20). The analogous formula for the linear IDLT 

is given, for example, as Eq. (3.13c) in the chapter by Land and Schoen 

in this volume. 
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cause neither Rogers nor Schoen had fully specified an under-

lying instantaneous process for their estimation algorithms, 

it was not clear exactly what was the underlying parametric 

counterpart of this matrix estimator. This question was ad-

dressed by Schoen and Land (1979), who specified a general 

continuous-time (age)-inhomogeneous Markov chain model for 

IDLTs and correspondingly modified the estima ti on algorithm 

of Schoen (1975). 

Although a focus on transition probabilities and their 

underlying intensity functions has characterized the contribu-

tions of probabilists and statis ticians to the construction of 

IDLTs, mathematical demographers have also directed their at-

tention to other life table functions, such as expec tation s of ,...,...----_ __ 
life at various exac t ages and age-group-specific survivorship 

proportions for u se in population projection exercises. In 

Roger s (1973a,b, 1975), multistate generalizations for these 

functions were compactly expressed in matrix form, showing the 

resemblance to their corresponding conventional single-state 

counterparts. Further work on the use of survivorship propor-

tions to calculate multistate life tables (the Option 2 method) 

was carried forward by Rees and Wilson (1977) and Ledent (1978, 

1980). The latter author also contrasts the survivorship pro-

portion approach with the more s tandard occurrence-exposure 

rate methods. 

2 . 2. MULTISTATE POPULATION PROJECTION MODELS 

An important and fundamental application of the survivor-

ship probabilities and proportions provided by a multistate 

life table is to population projection. With the development 
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of IDLTs, it became possible to generalize the demographer's 

conventional methods for estimating the elements of a popula-

tion projection matrix to the multistate case in a consistent 

manner (Rogers, 1973a,b, 1975). The ~iag.::.__~~_!1.1_:;}_!.i~!.~_te 

life tables with multistate projection models and their expres-

sion in matrix form to show transparently their natural corres-

pondence with widely accepted conventional single-state methods 

established multidimensional mathematical demography as a seri­

ous branch of analytical demography (Keyfitz, 1979; Rogers, 

1980). 

The distribution of a multistate population across its 

constituent states and the age compositions of its state-

specific subpopulations are determined by the interactions of 

fertility, mortality, and propensities of interstate transfer. 

Individuals are born, age with the passage of time, reproduce, 

move between different states of existence, and ultimately die. 

Such a general perspective of the population projection pro­

cess suggests a wide range of substantive applications. Region-

1#5. 

f 
! 

l&r 
al population projections, generated simultaneously for a sys-

tern of several interacting r egional populations, instead of 

region-by-region, illustrated the first serious application of 

the new metltodotogy (Rogers, 1975; Willekens and Rogers, 1978). 

More recently, multistate projection models of labor force to­

tals have been proposed (Willekens, 1980), and multistate pro- I 
i 

jections of the U.S. population by age and marital status are \ 

currently being developed (Espenshade, 1980). Thus, it appears \ 

that many of the categories of projections listed in Fig. 1, \ 

which generally have been calculated by appl y ing extrapolated \ 

proportions 

be produced using the models of multidimensional demography . 

\ 
and ratios to a projected population base, n:Jocan \ 

~-------------~----------
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Such models seem to offer a fruitful direction of research for 

the internal consistency in projection exercises sought by 

government statistical agencies such as the U.S. Bureau of the 

Census: 

Perhaps the most striking results of this 

overview of project i ons methodologies are the 

lack of a mechanism for assuring consistency be­

tween projected variables and the apparent arbi­

trariness of many of the assumptions used to pro­

ject (or more appropriately, to extrapolate) the 

proportions and ratios applied to the projected 

population base. Our interest at this point is 

to identify the most fruitful areas of research 

that may lead to specifying linkages between 

variables in the system, to estimating the para­

meters specified, and to devising a system or 

model for projecting these parameters (Long, 1980, 

pp. 14-15). 

Studies of the asymptotic dynamics of the multistate pro­

jection model have shown that its ergodic properties can ~e 

analyzed by means of straightforward generalizations of the 

stable growth theory of conventional single-dimensional demo­

graphy. It has been established, for example, that a multi­

state population s ystem that is closed to external migration 

and subjected to an unchanging multistate schedule of mortali -

ty, fertility, and migration ultimately will converge to a 

stable constant ag e -by-state distribution that increases at a 

constant stable rate of growth (Rogers, 1966, 1975; Le Bras, 

1 97 1) . Le Bras ( 1 977) extended this proof to the case of weak 

ergodicity; and Liaw (1978) has demon s trated that, as in the 

ca s e of the conv entional s ingle-state population projection 

model, the dominant root accounts for the part of an observed 
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population distribution that is stable. The other positive 

roots transmit the redistributional effects of interstate 

transfers, and the negative and complex root s generate fluctu­

ations in population total s and age profiles known as "waves." 

3. THE CONFERENCE ON MULTIDIMENSIONAL MATHEMATICAL DEMOGRAPHY 

There can be little doubt that the foregoing developments 

have greatly enriched the field of mathematical demography and 

expanded the range of application of its traditional analytic 

models. But these developments have left a number of questions 

unanswered. For instance, what is the precise relationship of 

the "linear" IDLT specification to the classic "constant-forces" 

model? More generally, how does each of these specifications 

relate to the underlying continuous-time Markov chain model 

that has come to be accepted as the mathematical basis for 

IDLTs? Are there other possible specifications that are better 

than the se? What are the s tatistical properties of the se and 

other models : For instance, does the linear model exhib i t 

p roblems uf embeddability, identification, and estimJtion with­

structural zeros similar to those that have been discovered for 

the constant-forces model when applied to pane l data? Can mul­

ti sta t c model , be extended to incorporate two sexes? l s t Le re 

a multidimensional stochastic generali :;Jt1on of th e er ,c; od .i c 

theorem .~ ,.c cla ss ic stable popu latio;1 t he: ·r y? How can recent 

developme .. t s on s tocha s tic process mode , a nd methods Oil ma, : e 

mat i\a l ~ Li tistics and mathematical soc; logy be u se d to r v i· ·. c 

th e models of multi s t ate demography? 
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It was to address these and related theoretical and metho­

dological questions and to stimulate further work on empirical 

applications that the editors of this voiume organized and 

directed, on March 23 - 25, 1981, a conference on multidimen­

sional mathematical demography. 8 The Conference brought to­

gether mathematical demographers, who had made prior contribu­

tions to multidimensional models, with other demographers, 

mathematical sociologists, and mathematical statisticians. 

This book is the product of that Conference. 

To provide a focal point for Conference discussions, seve­

ral participants were asked to prepare papers dealing with 

questions such as those raised above. Discussions on the first 

day were devoted primarily to essays on theoretical develop­

ments in, and empirical applications of, multidimensional demo­

graphic models, while those on the second day centered on mul-

tidimensional life table models and methods. Essays on the 

relationships of stochastic process models and methods (from 

mathematical statistics and mathematical sociology) to multi­

dimensional demography were examamined on the morning of the 

third day. The Conference concluded with summaries of the prin-

cipal sessions and a general discussion of needed research and 

next steps in multistate demography. 

The diversity of disciplinary backgrounds and research 

interests of the Conference participants fostered a series of 

lively, intense, and fruitful discussions. It would be neither 

possible nor illuminating to give a detailed summary of these 

8
The Conference was funded by Grant Number SES 80-16789 from the 

Sociology Program, Division of Social and Economic Science, National 

Science Foundation. It was held at the Center for Adult Educa tion of the 

University of Maryland in College Park. 
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discussions in this short chapter. Rather, in the remainder 

of this chapter, we shall focus on a description of the general 

issues and themes around which the Conference papers and dis­

cussions were organized and a statement of some possible next 

steps in research in multidimensional mathematical demography. 

4. ORGANIZATION OF THE VOLUME 

The papers collected in this volume are a selection of 

those presented at the "Conference on Multidimensional Mathe­

matical Demography." They may be conveniently grouped into 

four major themes: data problems, life tables, population 

dynamics, and heterogeneity. 9 

4.1. DATA PROBLEMS 

Empirical studies in multistate demography often begin 

with data, set out in tabular form, which describe changes in 

stocks that have occurred over two or more points in time. 

These changes arise as a consequence of increments and decre­

ments associated with events, such as births and deaths, and 

with flows of individuals between different states of existence. 

9
A list of participants and their current organization affiliations 

is included at the end of the volume. Four additional papers presented at 

the Conference were not revised for publication in this volume: "Estimat­

ing Individual-Level Transition Probabilities for Mul tis ta te Life Tables" 

by James S. Coleman; "Simplified Multiple Contingency Calculations" by 

Nathan Keyfi tz and Andrei Rogers; "Constructing Mul tiregional Life Tables 

Using Place-of-Birth Specific Migration Data" by Jacques Ledent; and 

"Relations Between Individual Life Cycles and Population Characteristics" 

by Samuel H. Preston. 
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The latter can be viewed either as events or as changes of 

state between two points in time (Ledent, 1978). 

When all of the appropriate elements in such tables have 

been filled in with numbers, they generally are referred to as 

accounts (Stone, 1971, 1981; Rees and Wilson, 1977; Rees, 

1980; Land and McMillen, 1981). And when, as is often the 

case, some data are unavailable, ingenuity and sophisticated 

fudging are used to supply the missing entries. Prominent 

among such techniques are various row and column balancing 

methods that have been successfully implemented in economics 

(input-output matrices), transportation planning (origin­

destination traffic flows), and statistics (contingency tables). 

In the second chapter of this volume, Frans Willekens unifies 

much of this work showing that the underlying strategy in all 

of it is a search for missing elements in a flow matrix that 

preserves, in some sense, the structure of the whole data set . 

To accomplish this, Willekens adapts techniques used in demo­

graphic accounting and log-linear models of contingency table 

analysis. 

To implement his procedure, Willekens focuses on two sets 

of accounts: an observed flow matrix, with its marginal to­

tals, structural zeros, and subset of known elements, and an 

estimated flow matrix, with all of its flows specified. The 

elements in the latter are selected to reflect patterns of as­

sociation that resemble those found in a similar but different 

problem setting, or they may reflect historical data or pat­

terns suggested by cross tabulations of intermediate or expla­

natory variables. 

Multidimensional demographic models require data on popu­

lation flows for purposes of applying the methods of estimation ~ 
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that recently have been developed. But, for many phenomena, 

censuses and sample surveys provide only aggregate data. Con­

sequently, techniques such as those presented by Willekens may 

become critical for converting existing data into a form that 

can be used in multistate demographic analyses. 

Age-specific patterns of demographic events such as fer-

tilit y or mortality exhibit remarkably persistent regularities 

(e.g., Coale and Demeny, 1966; Coale and Tru sse ll, 1974). The 

age profiles of these schedules seem to be repeated, with only 

minor differences, almost everywhere. As a result, demographers 

have found it possible to summarize and capture such regulari­

ties by means of hypothetical schedules called model schedules. 

Model schedules have two important applications in demo­

graphy: (1) they may be u sed to infer the empirical schedules 

of populations for which the requisite data are unavailable or 

inaccurate; and (2) they can be applied in analytical studies 

of population dynamics arising out of growth regimes that may 

be defined in terms of a relatively limited set of model 

schedule parameters. Becau se the data requirements of multi­

dimensional population analyses increase exponentially with the 

number of dimensions, the role of model schedules in such 

analyses is likely to be fundamental. 

In Chapter 3, Andrei Rogers and Luis Castro focus on the 

development of hypothetical (synthetic) model schedules that 

reflect regularitie s in age profile found in empirical schedules 

of migration rate s . They define two alternative perspectives 

for creating such synthetic schedules for use in situations 

where only inadequate or defective data on internal gross mi­

gration flows are available. The first associates variations 

in the parameters and variables of the model schedule to each 
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other and then to age-specific migration rates; the second em-

bodies different relationships between the model schedule 

parameters in several standard schedules and then associates 

the logits of the migration rates in the standard to those of 

the popul~tion in question. Preliminary tests of the proposed 

model schedules indicate that, although the quality of fits 

are satisfactory in describing internal migration flows in de-

veloped countries, further work will be needed if such ap-

proaches are to be of practical use in Third World population 

settings. 

4.2. LIFE TABLES 

The life table has been a central concept in classical de-

mography. Its use to describe the facts of mortality in terms 

of probabilities and their combined impact on the lives of a 

hypothetical cohort of individuals born at the same moment has 

been so successful that, in the words of Keyfitz (1977, p. 3) 

" we are incapable of thinking of population change and mor-

tality from any other starting point." The natural starting\ 

point for thinking about multidimensional population change, 

therefore, is the multistate life table, its theoretical de-

rivation, and its empirical calculation. 

Chapters 4 - 6 deal with the methodology of constructing 

multidimensional life tables. Jan M. Hoem and Ulla Funck 

Jensen lead off this section with a critical overview of cur-

rent multistate life table theory and estimation methods. Ar­

guing from a probability theory/mathematical statistics per-

spective, they take the position that the proper place at which 

to begin the construction of an IDLT is with the specification 
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of its state space and transition intensities. Furthermore, 

Hoem and Jensen maintain that the fundamental assumptions of a 

model specification should be made in those terms, and not in 

terms of transition probabilities or survival functions (as in 

the linear model), or other "derived" quantities. Given esti­

mates of the transition intensities, the method they recommend 

for IDLT construction is to compute the transition probabili­

ties and other quantities as a solution to the Kolmogorov 

equations. Hoem and Jensen also construct examples that show 

how the transition intensities in the linear model may violate 

fundamental theoretical requirements, such as nonnegativity 

constraints. Finally, they make a number of observations about 

general demographic methodology and present some results con­

cerning observational plans and statistical inference in multi­

state life tables. 

In Chapter 5, Kenneth C. Land and Robert Schoen identify 

their own set of shortcomings in existing methods of estimating 

IDLTs. One of the most serious of these is that existing 

methods either are capable of incorporating transition forces 

that increase, remain constant, or decrease within estimation­

age-intervals or are capable of being put in explicit algebraic 

form, but they do not have both desirable features. To fill 

this gap in existing methods, Land and Schoen develop a new 

estimation method that is based on the specification of quadra­

tic transition probabilitjes or gross flow functions. They al­

so review the derivation of their general algorithm for estimat­

ing IDLTs (Schoen and Land, 1979) and show how the constant­

forces, linear, and quadratic models can be estimated as 

special cases of this algorithm. In addition, Land and Schoen 
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derive algebraic expressions for the classes of rational poly­

nomial transition force functions corresponding to the linear 

and quadratic models. Referring to the pathologies concerning 

these induced transition forces discovered by Hoem and Jensen, 

Land and Schoen point out that these are nothing more than em­

beddability and estimation-with-structural-zero-constraints 

problems, and that the latter appear also in the approach of 

Haem and Jensen when applied to similar data situations (e.g., 

in the application of the constant-forces model to panel data; 

see Singer and Spilerman, 1976b). 

Both Haem and Jensen and Schoen and Land deal with esti­

mation problems created by mobility data in the form of events 

(moves) such as are typically obtained from population regis­

ters. In practice, however, there exists alternative sources, 

e.g., population censuses and surveys, which yield mobility 

data in the form of movers, i.e., interstate transfers defined 

by a comparison of the states in which individuals were present 

at two different points in time. Both Haem and Jensen and 

Schoen and Land recognize the existence of these alternative 

forms of mobility data from which to estimate IDLTs and adapt 

their methods thereto. In addition, Jacques Ledent, in the fi­

nal chapter of this section, focuses primarily on the problem 

of estimating transition probabilities from the latter type of 

data. Ledent first reviews two existing approaches and then 

attempts to develop them further. 

As revised by Ledent, both estimation procedures require 

the following input data: (a) mortality rates as conventional­

ly measured; and (b) mobility measures obtained by an appro­

priate transformation of the raw data on movers. The first of 
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these procedures, originating from Roger's (1975) Option 1 

method, calls for adequately estimated mobility propensities, 

whereas the second, following from Rogers's (1975) Option 2 

method, requires transition probabilities conditional on survi­

val. Of the two alternative approaches, Ledent appears to pre­

fer the second one, because it relies on some additional infor­

mation about stayers. Also, the latter method is more readily 

applicable to the calculation of increment-decrement life tables 

for open systems, e.g., to multiregional population systems 

that experience international (external) migration. 

In general, these three chapters represent extensions of 

the existing theoretical and methodological streams in multi­

state demography summarized earlier herein. Based on the 

premise that estimation methods must be tailored to each type 

of available data, the paper by Ledent deals with the case of 

data coming in the form of counts of individuals who have moved. 

Methodological rather than theoretical in nature, it revises 

existing procedures of estimation from such data, with a special 

concern for ensuring agreement between some life table statis­

tics and their observed counterparts. 

The chapters by Haem and Jensen and Land and Schoen are 

especially helpful in identifying the relationships of the 

constant-forces and linear survival function specifications to 

each other and to the corresponding Markov chain model. In 

brief, it now is clear that both specifications assume the same 

basic continuous-time(age)-inhomogeneous Markov chain. But, 

whereas the constant-forces approach deals with the age-inhomo­

geneity by dissecting an age range into age intervals that are 

sufficiently small that the transition forces can be approxi-
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mated by constants, the linear specification approximates the 

solution of the Kolmogorov equations (over possibly longer age 

intervals) by linear functions. Thus, for example, the linear 

function defined by Eq. (3.45) of the chapter by Land and 

Schoen can be regarded as a Taylor polynomial approximation (to 

the linear term) of the (generally unknown and nonlinear) solu­

tion of the "true" Kolmogorov equations that generated the data. 

Similarly, the quadratic function defined by Land and Schoen's 

Eq. (3.38) can be regarded as a second-order Taylor polynomial 

approximation. 

Clearly, these linear and quadratic approximations yield 

simple, algebraically explicit computation formulas. Further­

more, in the absence of embeddability and structural zeros 

problems, they appear to produce somewhat more accurate numeri­

cal estimates in abridged IDLTs than does the constant-forces 

model. Nonetheless, as the width of an estimation-age-interval 

decreases, the exponential, linear, and quadratic estimators 

will approach each other. For, in this case, the higher-order 

terms of the rational polynomial transition force functions of 

the former estimators will decrease toward zero so that the 

force functions will deviate less and less from a constant 

level over the age interval. 

In our view, the ultimate conclusions to be drawn from 

these three chapters about "proper" methods of multistate life 

table estimation depend critically on the type of table to be 

constructed and the forms of data available for estimation. 

Clearly, the strong points of the classic constant-forces model 

are its well-developed foundation in mathematical statistics 

and its corresponding ability to deal with problems of statis-
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tical inference in sample data. In addition, the assumption of 
--------~~~,.,,..__...., ... __ ....,,,,_ ..... ~..._ 

constant forces is least critical when the estimation-age-

intervals of an IDLT can be made "small" relative to the local 

variability of the transition forces being modeled. Thus, we 

have no hesitation in recommending the use of this specifica-

tion when the objective is the construction of an unabridged 

IDLT from data in which age intervals can be chosen optimally 

relative to the constant-forces assumption and for which sta-

tistical inferences are relevant. 

On the other hand, when the objective is the construction 

of an abridged IDLT from population-level statistics or census 

data, particularly data in which the estimation-age-intervals 

are fixed in rather wide lengths, the polynomial gross flow 

specifications have two salient features. First, their more 

flexible specifications on the transition forces may yield 

more accurate estimates of transition probabilities than does 

the constant-forces specification. Second, they have the ad-

vantage of computational simplicity. Of course, the statisti-

cal theory for such specifications, embedded as it is in the 

theory of analytic graduation (Haem, 1972b), may be less fa­

miliar to demographers than is that for the classical model. 

But statistical inferences traditionally have been more 

peripheral in the context described in this paragraph than that 

descr i bed in the preceding paragraph. 

In the middle ground between these two extremes, the 

choice of estimation method is less clearcut. But, again, an 

optimal decision depends on whether the objective is an abridged 

or unabridged table, whether the age data are grouped or not, 

and on the relative importance of stati s tical inference ver s u s 
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computational simplicity. Note that these views on the estima­

tion of abridged IDLTs are not greatly different from those of 

Hoem and Jensen (Section 4.4). The main difference is that the 

methods recommended here emphasize simple parametric forms of 

the solutions of the Kolmogorov equations, whereas those of 

Hoem and Jensen emphasize simple parametric forms for the tran­

sition forces. Since the emphasis in an abridged table is on 

producing accurate estimates of the transition probabilities, 

the former may seem more natural in this context. 

4.3. POPULATION DYNAMICS 

The chapters in the third group are concerned both with 

theoretical developments and with substantive applications of 

multidimensional demograpHic models. They deal with the evo­

lution of multistate populations exposed to a given regime of 

growth and interstate mobility. Leading off is Robert Schoen's 

essay on the incorporation of the interaction between the 

sexes, in the form of nuptial i ty and fertility, in 1 i fe table 

and stable population models. Using the harmonic mean as a 

mechanism for distributing the consequences of inter ~ ctions be­

tween the sexe s among the several states of the model, Schoen 

shows how the cla s sic "problem of the sexes" lS mathematical 

demography (Keyfitz, 1977, pp. 293-336) can be accommodated in 

multi $tate models. When the one-sex / two-sex d imension lS c uffi­

bined with the stationary population/stable population and 

decrement/1ncrement-decrement dimensions, te11 d1 t1nct life 

table model.c a ris e . Schoen demonstrates how all ten models can 

be s pecified and con tructed in terms of the same four set s of 

equation s , and di s cusses some of the properties of e · h mod e l. 
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As an illustration, a two-sex (fertility) increment-decrement 

stable population model is presented using birth, death, and 

migration rates for the United States and California, 1970. 

Multistate population projection models disaggregate con­

ventional population projections into a number of state-specific 

categories, such as state of current residence and state of 

birth, status at an earlier age, and duration of occupancy in 

the current state. If interstata transition probabilities vary 

significantly according to the chosen categories, then the dis­

aggregated multistate projection models should produce more ac­

curate results than aggregated models. In Chapter 8, Dimiter 

Philipov and Andrei Rogers explore the consequences of intro­

ducing several such state-specific categorizations of multi­

regional populations. 

A number of studies have reported higher than average pro­

babilities of migration to a given destination among those re­

turning to their place of birth or region of previous residence 

(e.g., Ledent, 1981). Philipov and Rogers incorporate this 

characteristic into a multistate projection model that distin­

guishes between native and alien populations in each region of 

a multiregional system. Introducing higher transition probabi­

lities for return migrants, the y show that such native-depen­

dent projections produce spatial distributions that differ sig­

nificantly from those generated by a native-dependent multi­

state projection model. The latter consistently underestimate 

the fraction of natives in each regional population. 

Concluding this group of essays, Joel Cohen's chapter con ­

siders the ergodic properties of multiregional population pro­

jection models with changing rates and s tochastic patterns of 
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behavior. ~ mathematical demography, ergodic theorems define 

long-run behavior that is independent of initial conditions. 

Weak ergodic theorems describe populations experiencing changing 

rate s , and stochastic ergodic theorem s assume that s uch rate s 

are se lected from a set of possible rates by some s tochastic 

process. Building on extensions of his previous work in single-

state ergodic theory , Cohen (1976, 1977a,b) develops four weak 

ergodic theorems and a stochastic ergodic theorem that assumes 

that a Markov chain se lect s the rates of transition from a set 

of alternatives. 

4.4. HETEROGENEITY 

Most of the models used in multidimensional demography 

assume that moves from one state to another are independent of 

each other, suppose that all of the individuals occupying a 

particular state at a given moment are homogeneous, and con-

sider the evolution that would occur if the various probabili-

ties of interstate transition were to remain constant over a 

time period . Yet it is widely accepted that the reverse is al-

most always a more accurate description of reality. 

Blumen et al . (1955), in an early stochastic analysis of 

occupa tional mobility, posited a model of "mover s " and "stayers" 

as a means for accommodating heterogeneity in simple Markov 

chain models. Their pioneering investigation stimulated a gene-

ration of studies, to which the chapter by Pavel Kitsul and 

Dimiter Philipov is the most recent addition. Kitsul and 

Philipov are motivated by the problem of analyzing mobility 

data collected over unit time intervals of different length. 

For example , in the case of interregional migration, registra-
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tion systems in s ev e ral countries (such as Swed en) can produce 

flow matrices every year. Censuses, on the other hand, usually 

provide such data over a fixed period (five years, say). How 

can the two alternative descriptions of the same mobility phe­

nomenon be reconcil e d? 

To address thi s problem analytically, the authors distin­

gui s h two homogeneous populations of mover s : one with a high 

intens ity of moving and the other with a low intensity. Repre­

s enting the mobility process as a mixture of two Markovian pro­

cesse s , they introduce a few simplifying assumptions, which 

allow them to fit their model to British migration data for the 

five-year period from 1966 - 1971 and also for the single year 

1 9 70. They then demonstrate how their model can be used to 

transform data collected over one unit of time into comparable 

information covering a time period of different length. 

Another stream of research that has grown out of the ori ­

ginal Blumen et al., investigations into the effects of popula­

tion heterogeneity on mobility processes pertains to the use of 

semi - Markov, rather than Markov, specifications (see, for 

example, Ginsberg, 1971, 1972a,b; Hoem, 1972a). In Chapter 11, 

Charles J. Mode reviews a number of junctures at which semi­

Markov process can be related to IDLTs from a s ample path per­

spective. Underlying both IDLT methodology and semi-Markovian 

processes is the notion of a set of states among which an in­

dividual moves over a period of time. The set of states 

visited by an individual and the sojourn times in these states 

constitute the person's sample path. Mode discusses a class of 

stochastic processes ba s ed on probability distributions defined 



30 KENNETH C. LAND AND ANDREI ROGERS 

directly on the sample paths and relates these to problems of 

estimating IDLTs from microdata on sample paths. 

Heterogeneity is also the focus of the chapter by James J. 

Heck.man and Burton Singer, the final contribution to this vol­

ume. The two authors consider strategies for analyzing popula­

tion heterogeneity in demographic studies using models that 

contain mixtures of Markov and semi-Markov processes. To il-

lustrate the critical importance of this topic, Heck.man and 

Singer show how different assumed choices of distributions of 

unobservable variables lead to substantively contradictory in-

ferences in a structural model of waiting-time durations. 

They then derive a nonparametric estimator for mixing measures 

as a strategy to bypass the more traditional, but dangerous, 

ad hoc assumptions about mixing distributions used in most con-

ventional modeling of duration data. Clearly, population 

heterogeneity is a data modeling problem of continuing rele-

vance in multidimensional mathematical demography. Investiga-

tions such as Heck.man's and Singer's, and those reported in 

their references, will therefore be of growing importance to 

the development and refinement of multistate demographic models. 

5. CONCLUSIONS AND NEXT STEPS 

The chapters of this volume, and the literature to which 

they refer, demonstrate that the field of multidimensional 

mathematical demography has come of age. A body of theoretical 

models, grounded in the mathematics of time-inhomogeneous 

Markov chains, now exists. Associated with this are several \ 
I 
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empirical methods, based on actuarial and statistical princi-

ples, for fitting these models to real data and for using their 

outputs to project the future evolution of multidimensional 

populations. Finally, a number of impressive empirical appli-

cations of nonhierarchical increment-decrement life tables and 

population projection models have been made. In some instances, 

these applications have appeared in substantive areas where no 

multistate analyses had existed before (e.g., interregional mi-

gration). In others, the new applications represent substan-

tial improvements over the techniques that were previously 

available (e.g., nuptiality, labor-force participation). 

It is remarkable that these accomplishments span little 

more than a decade. Clearly, this has been a very active period 

in the development and application of multidimensional generali-

zations of the models of classical mathematical demography. 

Furthermore, since many of the individuals who made contribu-

tions to this field during the past decade still are active re-

searchers, and since others in related areas of demography, 

mathematical statistics, sociology, and geography, have been 

made aware of this area of applications and its problems, it is 

reasonable to expect that the near future will also exhibit a 

rapid rate of innovations. What are some promising lines of 

inquiry along which such developments may be expected to occur? 

Based in part on discussions of this topic by participants in 

the Conference, we see several important directions of 

theoretical-methodological research and of substantive applica-

t ions. 

A first, and most obvious, theme for future theoretical-

methodological inquiry pertains to extensions and generaliza-
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tions of ideas and methods summarized and developed in the 

chapters of this volume. For instance, given the computational 

simplifications and other desirable features of the polynomial 

gross flows methods for abridged IDLTs developed in the chapter 

by Land and Schoen, it might be useful to develop extensions of 
I 

these specifications to IDLTs generated by semi-Markov pro-

cesses (the approach that commences with a specification of the 

force functions has been extended to a semi-Markov framework by 

Haem, 1972a). Such generalizations would help demographers to 

deal with the origin- and/or duration-dependence known to af-

feet some mobility processes. Similarly, it is clear that 

s tudies of the effects of population heterogeneity in unobserv-

ables, s uch as those summarized by Heckman and Singer and Kitsul 

and Philipov, have a strategic importance for multidimensional 

demography. The extension of the life tabl e model to capture 

the interactions between the sexes, as described by Schoen, 

opens up numerous theoretical and methodological issues. One 

of the most important ques tions is whether two-sex models ex-

hibit weak or stochastic ergodicity. That is, can multistate 

ergodic theorems, such as those presented by Cohen chapter in 

this volume, be modified to apply to two-sex models? Since the 

rates defined in these models exhibit a complicated interactive 

interdependence, this question seems to require a nontrivial 

transformation of existing theory. Finally, several of the 

issues of statistical estimation and projection developed by 

Haem and Jensen, Ledent, and Philipov and Rogers will provide 

a continuing source of problems for the attention of mathe-

matical demographers and statisticians. As in any area of 
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scientific inquiry, these issues are essentially open-ended 

and in need of continual development and refinement. 

The second methodological innovation that we expect to un­

fold in the near future is an application to multistate models 

of methods of controlling for population heterogeneity in ob­

servable variables that have been developed in fields related 

to multidimensional demography. For example, in the context of 

single-decrement life tables, proportional hazards models have 

been created by statisticians and used by mathematical demo­

graphers to deal with heterogeneity in the presence of conco­

mitant information on covariates (see, for example, Cox, 1972; 

Holford, 1976, 1980; Laird and Oliver, 1981; Manton and Stal­

lard, 1981; Menken et al., 1981). Other methods for coping with 

population heterogeneity have been developed by mathematical so­

ciologists and statisticians in the context of applications of 

Markov chains to microdata from panel studies and event histo­

ries (see, for example, Coleman, 1964, 1981; Singer, 1981; 

Singer and Spilerman, 19 76a,b; Cohen and Singer, 1979; Singer 

and Cohen, 1980; Tuma et al., 1979). The latter methods seem 

especially applicable to IDLTs with little modification, at 

least in the case of piecewise-constant transition forces. For 

other specifications, new methodological developments may be 

required. 

This development of methods for dealing with population 

heterogeneity in multistate models is related to one of the 

main substantive innovations that we see forthcoming, namely, 

the utilization of alternative data and the refinement of 

existing data sources. Up to now, multistate models have been 

constructed primarily from aggregate data with little or no 
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cross classification other than by sex, age-interval, and one 

or two status dimensions (for example, region of residence by 

region of birth as in Ledent, 1981). But in order to apply the 

methods of "covariance analysis," additional information will 

be required on relevant "covariates." This may require the use 

of microdata sets in place of the aggregate tabulations that 

have been utilized heretofore. 

At the same time, efforts should be made to upgrade the 

information gathered in vital statistics and other sources in 

order to take advantage of the power and flexibility of the new 

methods described in this volume. For instance, while it is 

now easy to incorporate differential mortality by labor-force 

participation status into tables of working life, available 

data typically do not allow this to be done because death cer­

tificates do not record the labor-force status of the deceased 

at the time of death. Similar comments on inadequacies of data 

on population flows from censuses and current population sur­

veys could be compiled (see, for example, Land and McMillen, 

1981). But the general point here is that the capacity of the 

models seems to have outstripped the data used in multidimen­

sional demography. It is appropriate, therefore, to suggest 

that census and vital statisticians should consider what modi­

fications of their data collection procedures would allow these 

models to be used to their full potential. 

Because changes in established governmental data collec­

tion procedures take time to implement, methods of inferring 

data from inadequate or inaccurate sources, problems of missing 

data, and related topics in the design and use of model multi­

state schedules should become a central branch of multistate 
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modeling in the future. The data requirements for such model­

ing activities are extensive and, even when available, multi­

state data are difficult to comprehend and manipulate. In the 

large majority of cases, however, multidimensional data are 

simply not available at the level of detail required and must 

be inferred from available sources by such means as multipro­

portional adjustment techniques and model schedules . 

Another line of substantive research that we expect to 

grow pertains to an expansion of the range of applications of 

multistate models. One way in which this will occur is through 

the construction of multistate models for additional types of 

transitions (e.g., schooling), situations (e.g., the marriage 

squeeze), and populations (e.g., a criminal offender popula­

tion). Other studies will apply multistate models to the study 

of economic-demographic interactions (e.g., in the tradition of 

Coale and Hoover, 1958), or, more generally, to the analysis of 

social change (e.g., as in Land, 1979). 

In brief, research in multidimensional mathematical demo­

graphy during the next decade can be expected to proceed apace 

along these and related lines. While some developments will be 

primarily methodological, they almost surely will be motivated 

by strong connections to the empirical transitions in multistate 

space that have characterized contributions to this field in 

the recent past. 
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