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ABSTRACT 

In this paper we study the stability of solutions to 

stochastic programming problems with recourse and show the 

Lipschitz continuity of optimal solutions as.well as the as- 

sociated Lagrange multipliers with respect to the distribution 

function. 
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1. INTRODUCTION 

We consider stochastic programs with recourse [I] of the 

type 

P I 

* 
findxER such that gi(x) - < 0, i =  l,...,~; 

and Z(x) = cx + E[Q(x,w)l is minimized, where 

here RY2 denotes the positive orthant. By S ( w )  we denote a sample 

of the random vector 5 defined on the probability space (il,F,P) 
and with values in R ~ * .  All other quantities that appear in the 

formulation of P are fixed (nonstochastic). We assume that P is 

a stochastic program with complete recourse [I, Section 6 1 ,  i.e. 

that the linear system 

m 2 is solvable for any t E R  . 



The purpose of this paper is to study the sensitivity of 

the optimal value, the optimal solution and associated Kuhn-Tucker 

multipliers, to changes in the distribution of random variables 

of the problem. We shall consider perturbations in the space of 

random vectors 5 defined on (Q,F,P); to indicate this dependence 
of Z on 5 we write Z(x,S) for the objective function of P 5 We 

begin by reviewing and extending some of the properties of Z 

(Section 2) that lead us to certain stability results for the 

set of optimal solutions (Section 3) and the Lipschitz continuity 

of the infima (Section 4). Sensitivity of the Kuhn-Tucker points 

is further analyzed in Section 5. An example is given in Sec- 

tion 6 to illustrate the results. 

~ u ~ a E o v a  [2] obtains distribution sensitivity results 

for stochastic programs, assuming that Z is twice differentiable. 

Here we identify the class of problems for which Z inherits second 

order differentiability properties. We also obtain distribution 

sensitivity results when Z satisfies much weaker differentiability 

conditions, a case that covers all continuous distribution func- 

tions used in practice. 

2. ANALYTICAL PROPERTIES OF THE OBJECTIVE 

To set the stage we start with some well known facts about 

the function Z [l , Section 71 , [3] , we then refine Lipschitz 
continuity and first order differentiability results, and finally 

derive second order differentiability properties. Eventually, 

this will allow us to apply the tools of Nonsmooth Analysis to 

analyze the sensitivity of stochastic programs. A key role is 

played by the lemma below. A f i n i t e  c l o s e d  p o l y h e d r a l  c o m p l e x  

is any finite collection H of closed convex polyhedra, called 
cells of H, such that 

(i) if C is a cell of H, then every closed face of C is a 

member of H; 

(ii) if C1 and C2 are distinct cells of H, then either they 

are disjoint, or one is a face of the other, or their 

intersection is a common face. 



We are interested in a complicial decomposition of the 

parameter-space of a linear program with varying right-hand sides. 

This turns out to be a decomposition in simplicia1 convex cones 

of the positive hull of the points generated by the columns 
1 k A ,..., A of the technology matrix A, i.e. 

1 R POS A = POS ( A  A x R I x R > ~ [  - . 

2.1 Basis Decomposition Theorem [ 4 ] .  Let 

where the matrix A and the vector d are fixed. Then 

(i) P(t) < +a if and only if t lies in pos A; 

(ii) either P is bounded on pos A or P E -a on pos A; 

(iii) when P is bounded, there exists a decomposition of pos A 

into a finite closed polyhedral complex ff whose cells 

are simplicial cones (with vertex at the origin) and a 

one-to-one correspondence between the one dimensional 

cells of ff and selected columns of A which generate them 
such that 

(a) the closed m-dimensional cells of ff cover pos A, and 

(b) the m columns of A associated with the edges of a 

m-dimensional cell C of ff constitute an optimal basis 

for all t in C. 

m 
Applying this result to Q, and recalling that pos W = R 2 

since we have complete recourge (l.2), we see that Q is either 

identically -a or finite on R x Q. We assume throughout that Q 

is finite. Finiteness of Z follows from an integrability condition 

as we show next. 

2.2 Proposition [I, Section 71. If 5 is summable then Z is 
1 finite on R . 

Proof. Let {w(~) , j =I, ... ,J) be the finite collection of sub- 
matrices of W prescribed by the Basis Decomposition Theoremreach 



o n e ' d e t e r m i n i n g  t h e  op t imal  b a s i s  when 

o r  e q u i v a l e n t l y  when w E ( x )  where ( j )  

I 

From t h i s  d i s s e c t i o n  {E ( x )  j = l r . . . , J )  w e  o b t a i n  a  p a r t i t i o n  ( j )  
by s e t t i n g  

W e  have t h a t  

J 
( 2 . 4 )  Z ( x )  = cx + 

-1 
q ( j ) W ( j )  L S ( w )  -Tx]P(dw)  

j=1 

where q 
(j) 

i s  t h e  subvec tor  of  a  q  cor responding  t o  t h e  submatr ix  

of  W. The i n t e g r a n d s  a r e  l i n e a r  i n  5 and t h u s  f i n i t e ,  from 
i 

which fo l l ows  t h e  f i n i t e n e s s  of  Z s i n c e  t h e r e  a r e  o n l y  a  f i n i t e  
I 

number o f  terms. I 
I 

Since  Z i s  f i n i t e  and convex [ I ,  Theorem 7.61 it fo l l ows  I 
t h a t  it i s  l o c a l l y  L i p s c h i t z .  I n  f a c t  Z i s  L i p s c h i t z  [ I ,  Theorem 7 . 7 1 . '  I 
W e  want t o  go one s t e p  f u r t h e r  and show t h a t  t h e  L i p s c h i t z  c o n s t a n t  i 
i s  independent  of  5. W e  a l s o  e s t a b l i s h  t h a t  5 * Z ( x , 5 )  : Lm 1 - - 

1  m2 2 
L ( ~ , F , P ; R  ) + R  i s  a l s o  L i p s c h i t z  con t inuous .  I n  view of  t h e  

above t h i s  w i l l  a l l ow  t o  conclude t h a t  (x ,S)  + Z ( x , S )  i s  L i p s c h i t z ,  ! 
I i . e .  j o i n t l y  i n  x  and 5 .  

2.5 P r o p o s i t i o n .  T h e  f u n c t i o n  ( x , < )  I-+ Z ( x , c )  i s  L i p s c h i t z  
n  1  c o n t i n u o u s  on R x Lm . 

2 
4 
I P r o o f .  W e  f i r s t  obse rve  t h a t  f o r  a l l  < E  Lm 
2 

w i th  L independent  o f  5. A d e t a i l e d  argument would go a s  t h e  proof 1 



of Theorem 7.7 in [I]; recall naturally that here q and T are 

fixed. 

Now for fixed x, the function 

is linear on a finite number of polyhedra: 

and is given by 

for W(j) and q(j) as defined in the proof of Proposition 2.2, the 

assertions following again from the Basis Decomposition Theorem 2.1. 

Hence with M independent of t, we have 

Substituting 5(*) for t and So(-) for to we get 

The joint Lipschitz continuity of Z is an immediate consequence 

of (2.6) and (2.7). 

Next we turn to differentiability properties of Z (*,5). If 

the distribution of 5 is absolutely continuous, i.e. is given by 
.1 

a density function f, then Z is continuously differentiable [4, 

Chapter 111, Theorem 121 and its gradient is given by 

v z  (x) = c - - 1 1 q(j)w(j)p(z(j) (XI) 
j=1 

as follows from (2.4), or equivalently 



with S (x) = {t~;;)(t-Tx) > O )  as before. Note that for 
(j) - 

j = it ..., J, the S (x) are translates of convex polyhedral 
( j 1 

cones, viz. 

We attain higher order differentiability properties for Z through 

the study of the analytical properties of the integrals 

f (t) dt that define VZ . 

n 2.9 Lemma. Let X = (xlr...,Xn)ER and 

n 
where h is continuous, nonnegative and such that I:R +R+ is 

bounded above. Moreover suppose that all (n-1) iterated integrals 

converge uniformly u i t h  respect to the remaining variable, e.g. 

w i t h  i = 1 and 

Xn 
i (t, ,M2,. . . ,Mn) = Cdt2 . . . h dtnh(tl ,t2 I .. ,tn) I 

n 

i(tl ,M2,. . . ,Mn) converges uniformly (with respect t o  tl) to 

i t  - - Then I is continuously differentiable. 

Proof. We prove the lemma for n = 2, the general case is ob- 

tained by induction. We have 

From the definition of I we have that 



and 

a 
The uniform convergence of t h e  marg ina l s  imp l i e s  t h a t  - I i s  axi  
cont inuous  f o r  i = 1 , 2 .  Also t h e  mixed second o r d e r  p a r t i a l s  

a r e  con t inuous ,  s i n c e  

a a -- 
a x ,  ax, I ( x 1 t x 2 )  = h ( x 1 , x 2 )  

a 1  With t h i s  w e  o b t a i n  t h e  uniform c o n t i n u i t y  of - ( x l I * )  w i th  
ax1  

a 1  r e s p e c t  t o  x l ,  and s i m i l a r l y  f o r  - ( * , x 2 ) .  From t h i s  it fo l lows  
3x9 

- & 

a r e  cont inuous  i n  x l ,  x 2  j o i n t l y .  and - t h a t  both - 
a x 2  

2 . 1 0  Theorem. Suppose the random variable 5 has a density 

function f  such that t ~ f ( B t )  satisfies the assumptions of 

Lemma 2 . 9  for any invertible matrix B. Then Z ( 0  , 5 )  is twice 

continuously differentiable. 

Proof. By (2 .8 )  w e  know t h a t  it i s  s u f f i c i e n t  t o  prove t h a t  
a l l  t h e  i n t e g r a l s  

a r e  con t inuous ly  d i f f e r e n t i a b l e .  

I f  f o r  some j ,  W ( j )  i s  t h e  u n i t  ma t r ix ,  t hen  by lemma ( 2 . 9 )  , 
i n t e g r a l  I ( x )  i s  tw ice  con t inuous ly  d i f f e r e n t i a b l e .  

( j )  

If ' ( j )  
i s  n o t  a  u n i t  m a t r i x ,  t hen  by c o o r d i n a t e  t ransforma-  

-1 t i o n  T = W t t h e  i n t e g r a l  I ( x )  becomes 
(j 1 ( j )  



which allows us to apply Lemma 2.9. 

Thus Z(-,S) is twice continuously differentiable. 

Sometimes it is not so easy to verify the uniform convergence 

of the iterated integrals. The following theorem which shows the 

Lipschitz continuity of VZ(x) without demanding uniform conver- 

gence for the integrals, would be very useful in practice. 

2.11 Theorem. Suppose the density function f(t) is such 

that every one-dimensional marginal density function is bounded 

on any finite interval and this property is preserved under in- 

vertible linear transformation t + Bt. Then VZ(x) is ~ i p s c h i t z  

continuous everywhere. 

Proof. First we assume I (x) is in standard form, then 
(j) 

Denoting Tx by x = ( X ~ I X ~ I - = - . X ~ _  ) ' , we have 

L 

Let A1 ( 1 )  be the variation associated to Ax1. Then 
( I  
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of I (x) for all j = 1,2,. ..,J. This yields the Lipschitz 
( j )  

continuity of VZ (x) . 

3. STABILITY OF THE SOLUTION SET 

I 
We study the multifunction A:L1 Z R  defined by 

m, 

A(<) = argmin Z(x,<) = argmin F(x,<) 
x E S 

where 

is the feasibility region and 

Z(x,<) if X E S ,  

+a otherwise. 

The functions gi are taken to *be continuous and thus S is closed 

and F(-,<) is lower semicontinuous. We rely on the theory of epi- 

convergence to derive stability results for the optimality set A 

as a function of 5. 

For convenience of the reader we review the definition and 

the main implications of epi-convergence here, for further details 

the reader is referred to [ 6 ]  , [ 7 ]  . 
n 3.1 Definition. The s equence  {fV:R +g,v=1 ,2,. . . }  i s  s a i d  t o  

e p i c o n v e r g e  t o  f : R" +R a t  x, i f  

k 
(a) f o r  a l l  s u b s e q u e n c e s  {vk,k=l ,2,. . . }  and x - x, we haV@ 

Vk k 
lim in£ f (X ) - > f (x) , 

(b) lim sup fV (xV) - < f (x) f o r  some s equence  xV + x 

V I f  t h i s  h o l d s  f o r  e v e r y  XER", t h e  f a r e  s a i d  t o  e p i - c o n v e r g e  

v 3.2 Theorem. [ 6 1  Suppose  {f i s  a  s e q u e n c e ,  e p i - c o n v e r g e s  

t o  f. Then  f o r  e v e r y  s u b s e q u e n c e  {fVk,k=l .2.. . . I  we have  



V 
k  l i r n  sup ( a r g  min f  ) c a r g  min f  

k  V k  
i . e .  if for k  = 1 , 2  ,..., x  ~ a r g  min f  and x  + x ,  then x ~ a r g  min f .  

Moreover in this case we also have 

V 

l i r n  ( i n £  f  k ,  = i n £  f  . 

With t h i s  r e s u l t  we can o b t a i n  t h e  nex t  theorem. 

1 
3.3 Theorem. If 5 converges to c0  in the L -sense, then F(x ,E)  

epi-converges to F ( x , E O )  and hence 

Proof. By Theorem 3.2 it s u f f i c e s  t o  v e r i f y  c o n d i t i o n s  ( a )  and 

(b )  of D e f i n i t i o n  3 .1 .  Because L i s  sepa rab le ,  w e  may r e s t r i c t  
m2 

ou r se lves  t o  convergent  sequences 5'. Let  xo be a  p o i n t  of S. 
k  

For a l l  subsequences {vk ,k= l ,2  ,... 1 and x  + x 0 ,  by P ropos i t i on  2.5,  

w e  have 

V k  V k k  
l i r n  i n £  r ( x k , S  ) = l i r n  F ( x  , S  ) = F ( x o l S o )  

k + w  k+w 

i f  xk € S  f o r  a l l  k  2 K where K i s  a  c e r t a i n  i n t e g e r ,  and 

v 
k  l i r n  i n £  F ( X ~ , S  ) = + ~ > F ( x 0 , S O )  

i f  xk & S  f o r  a l l  k l K .  This  imp l i e s  ( a )  ho lds  a t  xo ES.  Again 
V - by P ropos i t i on  2 .5 ,  we have a  sequence x  = xo  f o r  a l l  such t h a t  

l i r n  sup F ( X ~ , ~ ~ )  = l i m  F ( x ~ , s ~ )  = F(xo .SO)  
v+'= v+'= 

i. e .  ( b )  i s  s a t i s f i e d  a t  xo E S  . 
V I f  x o & S ,  then  F ( X ~ , [ ~ )  = F(xo ,S  ) = +'= f o r  a l l  v = 1 . 2 ,  ... 

C S ince  S  i s  a  c lo sed  se t ,  xo must be an i n t e r i o r  p o i n t  of S  , t h e  

complement of S. Then t h e r e  i s  a  neighborhood of xo such t h a t  

a t  a l l  p o i n t s  x  i n  t h i s  neighborhood F ( x , S o )  = F ( X , S ~ )  = +m f o r  

a l l  v = 1 , 2 ,  . . . Thus ( a )  and ( b )  hold t r i v i a l l y .  



LIPSCHITZ C O N T I N U I T Y  OF THE INFIMA FUNCTION 

From epi-convergence,  Theorem 3.2 and Theorem 3.3 ,  fo l lows  

t h a t  i f  f o r  v = 1 , 2 ,  ... 
v x V € ~ ( t V )  and x  - xo 

then x o ~ A ( S O )  and 

i n £  F ( x , S 0 )  =: ' P ( S O )  = l i m  [F'(tv) := i n £  F ( x , g v ) ]  . 
v+a  

This  means t h a t  t h e  inf ima f u n c t i o n  P is  cont inuous a t  5 0 .  I n  

t h e  p r e s e n t  s e t t i n g  w e  have a l r e a d y  shown t h a t  z i s  j o i n t l y  

L i p s c h i t z i a n  i n  ( x , ( ) ,  under some a d d i t i o n a l  mild assumptions w e  

can g e t  L i p s c h i t z  c o n t i n u i t y  of P ( 5 ) .  

4 . 1 .  Theorem. Suppose  5 c o n v e r g e s  t o  g o  i n  t h e  L 1 - s e n s e  and 

t h e  s o l u t i o n  s e t  A ( S O )  i s  c o m p a c t .  Then  t h e  i n f i rna  f u n c t i o n  P ( 5 )  
i s  L i p s c h i t z  c o n t i n u o u s  i n  5 i n  t h e  L 1 - s e n s e ,  i . e .  

f o r  some c o n s t a n t  L. 

P r o o f .  The proof i nvo lves  t h r e e  major s t e p s .  

i) W e  prove t h a t  P ( [ )  > -a f o r  a l l  5 such t h a t  115-5011 < 6  

f o r  some 6 > 0 .  

F i r s t ,  n o t e  t h a t  s i n c e  A ( S O )  i s  compact, Z(x,SO) i s  a convex 

f u n c t i o n ,  hence ? ( S o )  i s  f i n i t e  and Z(x ,S0)  ++a  a s  1x1 + + a .  

Suppose t h e  a s s e r t i o n  i) i s  n o t  t r u e ,  then  t h e r e  i s  a  sequence 

{ t V )  converging t o  ( i n  L ' -sense) and having ' ~ ( 5 ~ )  = -a. Hence 
v f o r  each v t h e r e  e x i s t s  a  sequence {xk,k=l , 2 . .  . .)  such t h a t  Z (x;,gV) 

v 
t ends  t o  -a a s  k - a .  Obviously l x k  + a  a s  k - a .  O r  e q u i v a l e n t l y  

f o r  each v t h e r e  i s  an i n t e g e r  K l ( v )  such t h a t  f o r  a l l  k > K l ( v )  - 

it fo l lows  t h a t  



where A i s  any given p o s i t i v e  l a r g e  number. 

On t h e  o t h e r  hand, a s  po in ted  o u t  above, f o r  each v t h e r e  

e x i s t s  an i n t e g e r  K 2  ( v )  such t h a t  

(4 .3 )  
v Z(xk,SO) > A f o r  a l l  k  > K ~ ( v )  - 

Combining ( 4 . 2 )  and (4 .3 )  w e  o b t a i n  

f o r  a l l  k  - > K ( v )  = max [ K l  ( v )  , K 2  ( v )  1 f o r  each v .  

This  c o n f l i c t s  w i th  t h e  L i p s c h i t z  c o n t i n u i t y  of  z i n  ( x , S ) ,  

of P ropos i t i on  2.5.  Thus a s s e r t i o n  i) must be t r u e .  

ii) W e  prove t h a t  Z ( x ,  6 )  a t t a i n s  i t s  minimum when 1 1  5 - toll L1 < 6 .  

Suppose f o r  some sequence S V ,  converging t o  S O  i n  t h e  L 1 -  

s ense ,  t h e  a s s e r t i o n  f a i l s .  Then f o r  each v t h e r e  i s  a  sequence 
v 

x i , = 1 , 2 ,  . such t h a t  I X ~ J  + a  a s  i + a  and 

By s t e p  i) P([') i s  f i n i t e  when v > N 1  f o r  some number N 1 .  - 
This  impl ies  t h a t  f o r  a  g iven > 0 ,  t h e r e  i s  a  l a r g e  number I ( v )  

such t h a t  

By L i p s c h i t z  c o n t i n u i t y  of Z,  f o r  some E > 0 t h e r e  e x i s t s  N 2  2 
such t h a t  f o r  a l l  v > N 2  - 

and f o r  some E~ > 0 and x O E A ( S O )  



Let N = max(N1,N2). The last three inequalities lead to 

for all v > N and i > I(v). - - 
v 

It means that if i and v are large enough {z(xi,SO) 1 is 
dominated by some constant and again is in contradiction with the 
assumptions. Thus assertion ii) holds. 

iii) We now show Lipschitz continuity of p(S). 

From steps i) and ii) we have 

'P(S) = Z(x(S) ,S) for all 6 such that 115 - CO1l < 6. 

Then it follows that 

In both cases, by the Lipschitz property of Z, we have 

5. DIFFERENTIABILITY AND LIPSCHITZ CONTINUITY OF OPTIMAL SOLUTIONS 

AND LAGRANGIAN MULTIPLIERS 

Let us turn now to distribution sensitivity analysis. Suppose 

we have a collection of random variables 6 (w, A) , X E A C R'. Corre- 

sponding to each random variable S(w,X) there is an optimization 

problem P(X) of the following type: 



i 
Min z(x,X) = cx + ~{min qyl~y = C(w,X) - TX] 

Y)O 
P(X): s.t. gi(x) - < 0 i=1,2 ,... ,st 

To those problems, in which z(x,A) and for i =  lr2,...,mlt 

gi(x) are twice continuously differentiable, we can apply the 

classical result of sensitivity analysis, see [ 8 1 ,  and get the 

following proposition. 

5.1. Proposition. Assume 

( a )  t h e  random v e c t o r  C(w,X) has  a  c o n t i n u o u s  d e n s i t y  f u n c t i o n  

D (t, A) such  t h a t  ~ ( x ,  A) i s  t w i c e  c o n t i n u o u s l y  d i f f e r e n t i a b l e  around t h e  
0 

p o i n t  (xofh0), here  ho i s  a  p o i n t  i n  A and x i s  an o p t i m a l  s o l u -  
0 t i o n  o f  problem P(X ); 

i b )  t h e  c o n s t r a i n t  f u n c t i o n s  gi (x) , i = 1 f2,. . . ,ml , a r e  i n  C 
2 

0 0 and t h e  g r a d i e n t s  {Vgi (x ) , I 1  V x  ) i = 1 . . . m 1 a r e  l i n e a r l y  
0 

i n d e p e n d e n t ,  where I1 = {i 11 5 i 5 s gi (X 1 = 01 ; 

i c )  (xO ,uO,vO) i s  a  Xuhn-Tucker p o i n t ,  s a t i s f y i n g  t h e  fo 2 lowing 

o p t i m a l i t y  c o n d i t i o n :  

s 
v ~ L ( ~ ~ , u ~ , ~ ~ , A ~ )  = 0 where L(x,u,v,h) = Z(x,X) + 1 uigi(x) 

i= 1 

n 
~ ( x ~ , ~ ~ , v ~ , h ~ ) ~  > 0 for all y E R  such that Y vxx 



(dl strict complementary slackness holds, i.e. uo > 0, i e  I1. i 
Then 

il the solution K(X) = (x(X) ,u(X) ,v(X)) of the equations 

0 0 is differentiable at A = A with K(X ) = (xO,uO,vO) axd x(X) is 

the optimal point of problem P(X), while u(X), v(X) are the as- 

sociated Lagrange multipliers. 

0 
iil the infima function (A) is differentiable at X . 
Remark: The assumption (a) that z (x,X) is twice continuously 

differentiable is not so stringent; it will be satisfied by most 

continuous distribution functions (i.e. the ones with continuous 

density function). In Section 6,an example is given for illustration. 

When the density function is not continuous, the differenti- 

ability can not be asserted. But for most useful distribution 

functions VxL is Lipschitzian. Thus we can apply some results of 

Nonsmooth Analysis to our problem. 

5.2. Definition. [9] The generalized derivative (Jacobian) 
0 of a Lipschitz continuous function f (x) : Rn+Rn at point x , de- 

0 noted by af(x ), is defined as the convex hull of all matrices M 

of the form 

i M = lim Jf (x 
i 0 

X +x 



i where x  c o n v e r g e s  t o  xo and f  i s  d i f f e r e n t i a b l e  a t  xi,  ~ f ( x ~ )  

i s  t h e  Jacobian .  

S i m i l a r l y  one can d e f i n e  gene ra l i zed  p a r t i a l  d e r i v a t i v e s  
b 

of a  L i p s c h i t z  cont inuous func t ion .  

5.3. D e f i n i t i o n .  [ 9 ]  The g e n e r a l i z e d  p a r t i a l  d e r i v a t i v e  o f  

a  L i p s c h i t z  c o n t i n u o u s  f u n c t i o n  f ( x l  l X 2  ) from Rn x Rrn t o  R" w i t h  

r e s p e c t  t o  xl  a t  p o i n t  (xy,x;) i s  d e f i n e d  by 

0 5.4. D e f i n i t i o n .  [8], [ 9 ] .  I f  e v e r y  e l e m e n t  o f  af ( x  ) i s  o f  
0 maximal r a n k ,  a f ( x  ) i s  s a i d  t o  be s u r j e c t i v e .  I f  e v e r y  e lement  

0 0 0 0 
o f  3 f  (x,  , x 2 )  i s  o f  maximal r a n k ,  a x  f ( x l  , x 2 )  i s  s a i d  t o  be 

1 1  
s u r j e c t i v e .  

5.5. Lipsch, i tz  I m p l i c i t  Function Theorem. [ l o ]  Suppose t h a t  
0 0 

U i s  an open s u b s e t  o f  Rn x Rm, (x l  , x 2 )  l i e s  i n  U ,  f  i s  a  L i p s c h i t z  

c o n t i n u o u s  mapping on U w i t h  v a l u e s  i n  Rn and 

0 0 I f  a x l f ( x l  , x 2 )  i s  s u r j e c t i v e ,  t h e n  fo r  some open s e t  V C R ~  w i t h  
0 n  x2 E V  and some mapping g : V + R  , 

( 1 )  g  i s  L i p s c h i t z  c o n t i n u o u s ,  

0 0 
( 2 )  g ( x 2 )  = X1 

( 3 )  ( g ( x 2 )  , x 2 )  E U  and f  ( g ( x 2 )  , x2 )  = 0 f o r  e v e r y  x2 i n  V. 

Now w e  apply t h e s e  r e s u l t s  t o  our  problem and g e t  t h e  follow- 

ing  p ropos i t i on .  

5.6. Theorem. Assume 

( a )  Z(x, A )  and V x Z  ( x ,  A )  a r e  L i p s c h i t z  c o n t i n u o u s  around (xo ,AO) ,  

where A 0  i s  a  p o i n t  i n  A,  xo i s  t h e  o p t i m a l  p o i n t  o f  P ( A O ) ,  



L 
( b )  t h e  c o n s t r a i n t  f u n c t i o n s  gi (x) , i = 1,. . . ,ml , a r e  i n  C 

0 0 
and t h e  g r a d i e n t s  {Vgi(x ) i E I1 ; Vig(x ) i = 1 . . . m a r e  ,. u 
l i n e a r l y  i n d e p e n d e n t ,  where I, = {i : 1 - < i - < s , gi (x ) = 01; 

gi(x), 1 < i <  s a r e  convex  f u n c t i o n s ,  and fo r  i = s+l, ..., ml, - - 
gi (x) a r e  a f f i n e  f u n c t i o n s ,  

( c )  (x0,u0,v0) i s  a  Kuhn-Tucker p o i n t ,  s a t i s f y i n g  t h e  f o l l o w -  

i n g  o p t i m a l i t y  c o n d i t i o n :  

where m 
S 1 

L(x.u.v,X) = Z(x,X) + 1 uigi(x) + 1 vigi(x) 
i= 1 i=s+l 

for every element M of aX(VL) it holds that 1 (xO,uO,uO,XO) 
T nl y M y > O  for all y E R  such that 

( d )  s t r i c t  complementary s l a c k n e s s  h o l d s .  

Then 

( i )  t h e r e  e x i s t s  a  s o l u t i o n  f u n c t i o n  K(X) = (x(X) ,u(X) ,v(X)) 

t o  t h e  e q u a t i o n s  
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In the proof of theorem 6 of [Ill, the author pointed out 
2 

and proved later that if V ~ L  (x" , u0 ,vO , XO) , gi (x) i = 1 , . . . f m l  
satisfy the conditions cited here in Proposition 5.1, then the 

matrix 

r I 

is of maximal rank. In exactly the same way one can prove that 

under the assumptions in this theorem every element of aKH(~O,XO) 

is of maximal rank, i.e. aK~(~O,h0) is surjective. 

Thus by the Lipschitz implicit function theorem there is a 

Lipschitz continuous function K (A) = (x (A) ,u (A) ,v (A) ) , satisfying 
0 0 

H(K(X) ,A) = 0 for all X in some neighborhood A l  of Xo and K(X ) = K  . 
Next we show that such a solution K(X) = (x(X) ,u(X) ,v(X) ) 

satisfies the optimality condition. In fact, since K (A) , gi (x) 
are continuous and satisfy the equations 

and 

then there exists a neighborhood A2 of XO such that for all 
X E A 1  "A2 we have 

i) ui(X) > O  for those i such that uy > 0, and this 

implies gi(x(X) ) = 0 

0 
ii) gi(x(h)) '0 for those i such that gi(x 1'0; this 

implies ui (A) = 0. 



By the strict complementary slackness condition any i = 

1,2, ..., s falls in one of the two categories, i.e. for all i = 

1 ,  ..., S 

(5.7) ui(A) - > 0 and gi(x(A)) 5 0 . 

Combining (5.7) and equation H(x,u,A,A) = 0, we know that 

for A e A, n A2 (X (A) ,u ( A )  ,V ( A )  ) satisfies the following conditions: 

Using the convexity of Z (x, A) and gi (x) , i = 1 , . . . ,ml , we 
come to the conclusion that x(A) is the optimal solution of Z(A) 

and u (A) , v (A) are the associated Lagrange multipliers. 

(ii) The Lipschitz continuity of infima function ?(A) comes out 

immediately from the equation 

One can get a bound for the Lipschitz constant of K(A) as 

we make explicit here below. 

0 Consider two points K(A) and K(A ) ,  A is in Al On2. Then 

0 0 H(K(A) ,A) = 0 = H(K(A ),A ) . 
Thus 



By the Lipschitz mean value theorem, (Section 3 of [9]), we 

have 

0 for some A€aKH([K(X ) ,K(A)I ,A), where 

0 0 0 
[K(A ),K(X)l = {K(t):K(t)=K(X ) +t(K(X) -K(X )),tE [O,11) . 

and 

For the right hand side of (5.8) one can easily get 

From (5.8), (5.9), (5.10) it follows that 

When aKH(K,X) is generated by a finite number of elements, 

it is not so difficult to give an estimation for I A ~ .  Fortunately 

for some useful piecewise continuous density functions we are in 

this situation as we show in an example in the next section. 

6. AN EXAMPLE 

In Propositions 5.1 and 5.6 we imposed some conditions on 

the density function D(t,X). These conditions are met for most 

of the useful distribution functions which have continuous or 

piecewise continuous density functions. Here we give an example 

to illustrate how the conditions can be verified. 

Problem P(5) : 

Y1 - ~ 3 = 5 ~  - X  
Min z(x,C) = x+E 

1 - 
Y1 + Y2 1 y2 - y3 = E2 - x 



where 5 = (51t52)1 is a two-dimensional random variable. 

(1 5 is normal with density function 

1 
D ( t ~ lt2) = 2n01a2 exp - + 

We have 

Thus 

It is not difficult to verify directly from the expression that 

z(x, S) and Vx ~ ( x ,  S) are continuously differentiable in (x,al ,a2, 

~ , p ~ , p ~ ) .  Another way to do it, as shown in Section 2, is first 
r m  

to show uniform convergence of the integrals 1 D (tl , t2) dti i=1,2, 
X 

then show that the uniform convergence will be preserved under 

transformation t = B T .  We are going to do it with a slightly 

different integral 



F i r s t ,  w i t h  t h e  h e l p  of  t h e  t r a n s f o r m a t i o n  

can assume t h a t  I (x ,  .x2)  i s  i n  t h e  fo l lowing  form 

Now w e  examine t h e  uniform convergence w i t h  r e s p e c t  t o  t l  of t h e  

i n t e g r a l  

(2 ) ]  , w e  have On any f i n i t e  i n t e r v a l  of  t l ,  say  [tl . t l  

t i2)]  ]j and f o r  t2 l a r g e  enough, where F, = min (Itl l,tl E [tl . 
- - 
t = max 1 t l  1 , t l  E [tl(l  ). ti2)]}. t 
There fore  

f o r  l a r g e  p o s i t i v e  number 

uniformly w i th  r e s p e c t  t o  

p :I. Th i s  i s  e q u i v a l e n t  

t o  t, on [ t l  , 

and t h e  l e f t  i n t e g r a l  t e n d s  

on [ t i1)  . t i2)]  a s  M++- f o r  

I, converges  un i fo rmly  w i t h  

t o  ze ro  

any 
r e s p e c t  

By symmetry of  t l .  t2 w e  o b t a i n  uniform convergence of  t h e  

i n t e g r a l  



with respect to t2 on any finite interval for any p < 1. - 

Thus the required uniform convergence holds for any ol, 02, 
p ,  pl, p2, i.e., for any covariance matrix V and any mean value, 

if the integral is in the standard form. 

Suppose that I(xl,x2) has the following form 

where B is a nonsingular square matrix, with the transformation 

T = Bt we can reduce I(xl,x2) into a standard form, with covariance 

matrix (B -1)T VB - l  . Then the required uniform covergence is at 

hand. 

(2) 6 is uniformly distributed in the square [-a,a;-b,b] , a>b>O. 

Then 

where cl (a,b) , c2 (a,b) are polynomials of a and b. 

The expression of Z for x > b  is omitted here, the analytical 

behavior of Z there is quite similar. 

Then 



Clearly VxZ(x,a,b) is differentiable except at points x = -b, 

x = -a. At those points the generalized partial derivatives can 

be computed out easily: 

and 

With this one can easily check whether the conditions im- 

posed in Proposition 5.6 are satisfied. 
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