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ABSTRACT

In this paper we study the stability of solutions to
stochastic programming problems with recourse and show the
Lipschitz continuity of optimal solutions as well as the as-
sociated Lagrange multipliers with respect to the distribution
function.
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1. INTRODUCTION

We consider stochastic programs with recourse [1] of the
type

n
P find xER.1 such that gi(x) <0, 1i=1,...,8;
gi(X) = O, i = S+1,...,m
and Z(x) = cx + E[Q(x,w)] is minimized, where
(1.1) Q(x,w) = [inf n qy\Wy=£(w)-ij| ;
YER 2

n
here R+2 denotes the positive orthant. By & (w) we denote a sample

of the random vector £ defined on the probability space (Q,F,P)
and with values in R™2. All other gquantities that appear in the
formulation of P are fixed (nonstochastic). We assume that P is
a stochastic program with complete recourse [1, Section 6], i.e.
that the linear system

i)

(1.2) Wy = t ' YER,
. )

is solvable for any t€R ~.



The purpose of this paper is to study the sensitivity of
the optimal value, the optimal solution and associated Kuhn-Tucker
multipliers, to changes in the distribution of random variables
of the problem. We shall consider perturbations in the space of
random vectors £ defined on (Q,F,P}; to indicate this dependence
of Z on £ we write Z(x,£) for the objective function of P&' We
begin by reviewing and extending some of the properties of 2
(Section 2) that lead us to certain stability results for the
set of optimal solutions (Section 3) and the Lipschitz continuity
of the infima (Section 4). Sensitivity of the Kuhn-Tucker points
is further analyzed in Section 5. An example is given in Sec-

tion 6 to illustrate the results.

Dupadova [2] obtains distribution sensitivity results
for stochastic programs, assuming that Z is twice differentiable.
Here we identify the class of problems for which Z inherits second
order differentiability properties. We also obtain distribution
sensitivity results when Z satisfies much weaker differentiability
conditions, a case that covers all continuous distribution func-

tions used in practice.

2. ANALYTICAL PROPERTIES OF THE OBJECTIVE

To set the stage we start with some well known facts about
the function Z [1, Section 7], [3], we then refine Lipschitz
continuity and first order differentiability results, and finally
derive second order differentiability properties. Eventually,
this will allow us to apply the tools of Nonsmooth Analysis to
analyze the sensitivity of stochastic programs. A key role is
pPlayed by the lemma below. A finite closed polyhedral complex
is any finite collection H of closed convex polyhedra, called

cells of H, such that

(i) 1if C is a cell of H, then every closed face of C is a
member of H;

(ii) if Cy and C, are distinct cells of H, then either they
are disjoint, or one is a face of the other, or their

intersection is a common face.



We are interested in a complicial decomposition of the
parameter-space of a linear program with varying right-hand sides.
This turns out to be a decomposition in simplicial convex cones
of the positive hull of the points generated by the columns

A1,...,Ak of the technology matrix A, i.e.

1 k k ¢
pos A = pos (A ,...,A") = {t|t =7 A Xg r X >0 .
=1

L

2.1 Basis Decomposition Theorem [4]. Let

P(t) = inf [cx|Ax=t , x > 0] '

where the matrix A and the vector d are fixed. Then
(7) P(t) < += <Zf and only <f t lies in pos A;
(27) either P 1s bounded on pos A or P = -» on pos A;

(i27) when P is bounded, there exists a decomposition of pos A
into a finite closed polyhedral complex H whose cells
are simplicial cones (with vertex at the origin) and a
one-to-one correspondence between the one dimensional
cells of H and selected columns of A which generate them
such that

(a) the closed m=dimensional cells of H cover pos A, and

(b) the m columns of A associated with the edges of a
m-dimensional cell C of H constitute an optimal basis
for all t Zn C.

Applying this result to Q, and recalling that pos W = R
since we have complete recourge (1.2), we see that Q is either
identically -« or finite on R 1 x Q, We assume throughout that Q
is finite. Finiteness of Z follows from an integrability condition

as we show next.

2.2 Proposition [1, Section 7]. If £ is summable then Z is

. n4q
fintte on R .

Proof. Let {W(j) ;3J=1,...,3} be the finite collection of sub-
matrices of W prescribed by the Basis Decomposition Theorem, each



one determining the optimal basis when
- e )
£ (w) Tx € pos W(]) ’

or equivalently when wéEE(j)(x) where

! _ -1 _
(2.3) _(j)(x) = {wIW(j)[E(w) Tx] > 0}
From this dissection {E}j)(x) ,j=1,...,3} we obtain a partition
by setting
' 3-1 1
We have that
J -1
(2.4) Z(x) = cx + ) [ g, W, . [E(w) - Tx]P(dw)
Lz (3) 7 ()
=12 ) ()

where q(j) is the subvector of a g corresponding to the submatrix W
W(j) of W. The integrands are linear in £ and thus finite, from ‘
which follows the finiteness of Z since there are only a finite
number of terms. O ‘

Since Z is finite and convex [1, Theorem 7.6] it follows ‘
that it is locally Lipschitz. 1In fact Z is Lipschitz [1, Theorem 7.7].

We want to go one step further and show that the Lipschitz constant
is independent of £. We also establish that £+~ zZ(x,£&) :L; =

m 2
L1(Q,F,P;R 2)-+R is also Lipschitz continuous. In view of the

above this will allow to conclude that (x,&) -»2(x,§) is Lipschitz,
i.e. jointly in x and §.

2.5 Proposition. The function (x,£) w» Z(x,8) ts Lipschitz

. n 1
continuous on R ><Lm .

2
, 1
Proof. We first observe that for all EGELmz
(2.6) |Z(x,8) - Z(xO,£)| < L|x-x0|

with L independent of {. A detailed argument would go as the proof
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of Theorem 7.7 in [1]; recall naturally that here g and T are

fixed.
Now for fixed x, the function

n

]
tw»Q (x,t) = inf [qy|Wy=t—Tx,y€R_'_2
is linear on a finite number of polyhedra:
-1 )
. = . - C
S (4 (x) it|W(j)(t Tx) >0({ CR /
and is given by
' W-1
for W(j) and q(j) as defined in the proof of Proposition 2.2, the

assertions following again from the Basis Decomposition Theorem 2.1.

Hence with M independent of t, we have
] t
lQ (x,8) = Q (x,tq) [ < Mle-ty] .
Substituting £(°*) for t and €0(') for ty, we get

(2-7) 'Z(XI‘S) - Z(XIEO)‘ i JQ|Q'<X,€(M)) -0 (X,E,O(w)‘P(dw)

| A

MJ & (w) - Eo(w)|P(dw) = MIIg-gOIIL1 .
Q

The joint Lipschitz continuity of Z is an immediate consequence
of (2.6) and (2.7). O

Next we turn to differentiability properties of 2(+,8). 1If
the distribution of £ is absolutely continuous, i.e. is given by
a density function £, then Z is continuously differentiable [4,
Chapter III, Theorem 12] and its gradient is given by

J

VZ(x) = c - ) g -1

as follows from (2.4), or equivalently



J
(2.8) VZ(x) = c - ) Q,.\W ! J £(t)dt
3=1 (3703 g (x)
(3)
with S(j)(x) = {t|W?;)(t-Tx)_zO} as before. Note that for
j=1i,...,J3, the S(j)(x) are translates of convex polyhedral

cones, viz.

=1 -1
) (%) = WgyTx + {tlw(.

S 3)

. > .

(3 t>0}

We attain higher order differentiability properties for Z through
the study of the analytical properties of the integrals

f(t)dt that define VZ.

S )(x)

(3

2.9 Lemma. Let X = (X1,...,Xn)€ERn and

I(x) = f dt1...L dt_h(ty, ..o t)

where h 1s continuous, nonnegative and such that I:Rn->R+ 18
bounded above. Moreover suppose that all (n-1) iterated integrals
converge uniformly with respect to the remaining variable, e.g.
with i = 1 and

X2 Xn

ity My,eee,M)) = L« dt, ... J dt h(tq,tyreea,t))

2 Mn

i(t1,M2,...,Mn) converges uniformly (with respect to t,) to

i(t1,-w,...,—W). Then 1 <s continuously differentiable,

Proof. We prove the lemma for n = 2, the general case is ob-
tained by induction. We have

I(X1,X2) = Lmdt1 Lm)dtzh(t1,t2) .

From the definition of I we have that

X2

9
W I(X11X2) = Lwh(X1rt2)dt2



and
X

3 -
m I(X1,X2) = J—wh(t.],xz)dt,l .

, . , d )
The uniform convergence of the marginals implies that X I is
i
1,2. Also the mixed second order partials

continuous for i

are continuous, since

9 3

3X; 9%, ITixqrxa) = hixyrxy) .

With this we obtain the uniform continuity of g%i (xqs+) with
1

respect to X4 and similarly for iiL ("Xz)' From this it follows

9T oI ’ 2
that both —= and —— are continuous in x,, X, jointly. O
X4 IX 5 17 %2
2.10 Theorem. Suppose the random variable & has a density
funetion £ such that tr £(Bt) satisfies the assumptions of
Lemma 2.9 for any <invertible matrix B. Then Z(+,8) Zs twice

continuously differentiable.

Proof. By (2.8) we know that it is sufficient to prove that
all the integrals
I(j)(x) = f f(t)dt = qu —1 f(t)dt
. . > T
S5 (5)F2W(5) T

are continuously differentiable.

If for some j, W(j) is the unit matrix, then by lemma (2.9),

integral I(j)(x) is twice continuously differentiable.

If W(j) is not a unit matrix, then by coordinate transforma-

tion 1 = Wz;)t the integral I(j)(x) becomes

I.(x) = J
J T>Tx



which allows us to apply Lemma 2.9.

Thus Z(+,£) is twice continuously differentiable. O

Sometimes it is not so easy to verify the uniform convergence
of the iterated integrals. The following theorem which shows the
Lipschitz continuity of VZ(x) without demanding uniform conver-

gence for the integrals, would be very useful in practice.

2.11 Theorem. Suppose the density function f£(t) Zis such
that every one-dimensional marginal density function 18 bounded
on any finite interval and this property i1s preserved under in-
vertible linear transformation t - Bt. Then VZ(X) s Lipschitsz

continuous everywhere.

Proof. First we assume I<j)(x) is in standard form, then
I,., (x) = J dt J dt, ... J f(t,,...,t_)dt
(3) (Tx), | (Tx), 2 (%), my My
2
Denoting Tx by x = (X11X21---er )', we have
2
fpy 00 = [ et ety e [T ety e
1 2 17727 !
(3) X{ X X Ty M
2
Let AIE;; be the variation associated to AX Then

(2.12) |AI(j)I J{ dt1JX0dt2...JOf(t1,...,tm yat

X1 m2 2 2
- JOdt1fOdtz...JOf(t1,...,tm2)dtm2|
X4 X2 m,
0
X‘] oo ©
= \J H dt { f£(t L )dt ]dt ]
02 0 100" m m 1
X1 X2 Xm 2 2
2
a 0
X111 oo X1
< I{ H_w dt,, L f(t1,...,tm )dthdt1| = \[ £i(t))dt
X4 °° 2 2 X1
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of I(j)(x) for all j = 1,2,...,J. This yields the Lipschitz

continuity of vz (x). W

3. STABILITY OF THE SOLUTION SET

n

We study the multifunction A:L; IR 1 defined by
2

A(g) = argmin Z(x,§) = argmin F(x,£)
XES

where

S = {x|gibd <0,i=1,...,8;59;(x) =0, i=s+1,...,my}
is the feasibility region and

F(XI‘E) = Z(X,E) if XES,
+o otherwise.

The functions g; are taken to ‘be continuous and thus S is closed
and F(+,£) is lower semicontinuous. We rely on the theory of epi-

convergence to derive stability results for the optimality set A

as a function of £.

For convenience of the reader we review the definition and
the main implications of epi-convergence here, for further details

the reader is referred to [6], [7].

3.1 Definition. The sequence {(£Y:R" >R, v=1,2,...} is said to

epiconverge to £ : R >R at x, if

(a) for all subsequences {vk,k=1,2,...} and xk—»x, we have

v
1im inf £ 55y > £(x)

v

(b) 1lim sup fv(x ) < f£(x) for some sequence x’ > x

If this holds for every x €R"Y, the £Y are said to epi-converge

to f.

3.2 Theorem. [6] Suppose {£Y} 63 a sequence, epi-converges

to £. Then for every subsequence {f‘k,k=1,2,...} we have
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\V
lim sup (arg min £ k)c:arg min £

\Y

k k

i.e. 2f for k = 1,2,...,xk€arg min £ and x~ +x, then xearg min f.

Moreover in this case we also have

Yk
lim (inf £ %) = inf £ .

With this result we can obtain the next theorem.

3.3 Theorem. If & converges to £0 in the L1-sense, then F(x,8)

epi-converges to F(x,EO) and hence

lim sup A(§) CA(§

) .
= °

Proof. By Theorem 3.2 it suffices to verify conditions (a) and

(b) of Definition 3.1. Because L; is separable, we may restrict
2
ourselves to convergent sequences £v. Let Xq be a point of S.

For all subsequences {vk,k=1,2,...} and xk-+x0, by Proposition 2.5,

we have
v v
lim inf F(xk,g k) = lim F(xk,E k) = F(Xn:5n)
0’70
k> k>o
if kaES for all k> X where K is a certain integer, and
Kk 5k

if xk €S for all k> K. This implies (a) holds at Xy, €S. Again

by Proposition 2.5, we have a sequence x’ = X for all such that

lim sup F(xv,Ev) = lim F(xv,Ev) = F(xO,EO)
) Y0
i.e. (b) is satisfied at xerS.
If X, €8S, then F(xy,5,) = F(xo,gV) = +o for all v = 1,2,...

Since S is a closed set, X, must be an interior point of Sc, the
complement of S. Then there is a neighborhood of X, such that
at all points x in this neighborhood F(x,go) = F(x,gv) = +o for
all v = 1,2,... Thus (a) and (b) hold trivially. O
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4, LIPSCHITZ CONTINUITY OF THE INFIMA FUNCTION

From epi-convergence , Theorem 3.2 and Theorem 3.3, follows

that if for v = 1,2,...

1

5\) L—* EO R xVGA(iv) and xv > X,
then xOEA(EO) and
inf F(x,£4) =: P(£,) = lim (e(gY) := inf F(x,£")]
Voo

This means that the infima function ¢ is continuous at go. In
the present setting we have already shown that z is jointly
Lipschitzian in (x,£), under some additional mild assumptions we

can get Lipschitz continuity of ¢(&).

4.1, Theorem. Suppose & converges to EO in the L1—sense and
the solution set A(EO) 18 compact. Then the infima function P(&)

1s Lipschitz continuous in § in the L1-sense, T.€.
| e(g) - ?(EO)! <L -HE'-EOHL1

for some constant L.
Proof. The proof involves three major steps.

i) We prove that ¥Y(£) > -» for all £ such that HE-—EOH <$
for some § >0,

First, note that since A(EO) is compact, Z(x,€o) is a convex
function, hence ¥(£,) is finite and Z(x,£4) > += as | x| > +.

Suppose the assertion i) is not true, then there is a sequence
{Ev} converging to EO (in L1-sense) and having ?(Ev) = ==, Hence
for each v there exists a sequence {xﬁ,k=1,2,...} such that Z(xﬁ,gv)
tends to -» as k+>», Obviously |x§|-+w as k+», Or equivalently
for each v there is an integer K1(v) such that for all kjiK1(v)

it follows that

(4.2) 2(x E7) < =4
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where A is any given positive large number.

On the other hand, as pointed out above, for each Vv there
exists an integer Kzlv) such that

v
(4.3) Z(xk,io) > A for all k > Kz(v)
Combining (4.2) and (4.3) we obtain
v Vo,V
Z(Xpr84) = 2(X ., 87) > 24

for all k > K(v) = max[K1(v),K2(v)] for each v.

This conflicts with the Lipschitz continuity of Z in (x,€£) .
of Proposition 2.5. Thus assertion i) must be true.

ii) We prove that 2z(x,£) attains its minimum when HE'-EOHL1 < 8.

Suppose for some sequence Ev, converging to EO in the L'-
sense, the assertion fails. Then for each v there is a sequence
{xz,i=1,2,...} such that |x\i)l-+oo as i+« and

\Y)

) = P(eY)

. v
;1m Z(xi,E
10

By step i) ¢(cV) is finite when v > Ny for some number N,.

This implies that for a given €q > 0, there is a large number I(v)
such that

(4.4) R(gY) < z(x‘i’,g") < (V) + €4 .

By Lipschitz continuity of 2, for some ¢
such that for all v > N

2 >0 there exists N2
2

(4.5) 2(x} Eq) < 2(x5,EY) + e,

and for some €3 > 0 and XOGEA(E

0

(4.6) Z(Xg,Eq) 2 B(xgsE)) + ey .
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Let N = max(N,,N,). The last three inequalities lead to

\Y) \Y) \Y)
2(x;/89) < 2(x7,87) + €,

| A

P(EY) + ey + ey
v
< Z(xO,E ) + ey * ey < Z(xO,EO) + ey + g F oy

for all v >N and i > I(v).

C e s v .
It means that if i and v are large enough {Z(xi,Eo)} is
dominated by some constant and again is in contradiction with the
assumptions. Thus assertion ii) holds.

iii) We now show Lipschitz continuity of P(g&).

From steps i) and ii) we have
P(g) = 2(x(g),&) for all ¢ such that || § -€0H < 8,

Then it follows that

[P(E) = gy | = | 2(x(E),8) - B(xq,Ey) |

<

{Izmo,a) - B(xg,Eq) | if Z(x(8),8) > 2(x4,Eg)

|Z(X(€),€)'-Z(X(€),€O)| if 2(x(§),8) < Z(Xorio)
In both cases, by the Lipschitz property of Z, we have

|P(e) -Pgy) | < L-llg-g4ll g . O

5. DIFFERENTIABILITY AND LIPSCHITZ CONTINUITY OF OPTIMAL SOLUTIONS
AND LAGRANGIAN MULTIPLIERS

Let us turn now to distribution sensitivity analysis. Suppose

P. Corre-

we have a collection of random variables £(w,A), A€ ACR
sponding to each random variable £(w,)) there is an optimization

problem P(A) of the following type:
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Min z(x,)) = cx + E{min qy|Wy = £(w,A) - Tx}

y>0
P(A): < s.t. gi(x) <0 i=1,2,44.,8,
gl(X) =0 i=S+1,...,m1-

To those problems, in which 2z(x,A) and for i= 1,2,...,m1,
gi(x) are twice continuously differentiable, we can apply the
classical result of sensitivity analysis, see [8], and get the

folloWing proposition.

5.1. Proposition., Assume

(a) the random vector &£(w,X) has a continuous density function
D(t,A) such that z(x,)) is twice continuously differentiable around the
point (xO,AO), here XO 18 a point in A and xO 18 an optimal solu-
titon of problem P(AO);

(b) the constraint functions gi(x =1,2,...,m1, are in C2

), 1
and the gradients {Vgi(xo),i€I1;Vig(x0),i==s+1,...,m1} are linearly
0

independent, where I, = {ij1<i<s p gy (x7) =0}

(c) (xO,uO,vO) 18 a Kuhn-Tucker point, satisfying the following

optimality condition:

0 0 .0 .0 s
VXL(x ;0 ,v ,A") = 0 where L(x,u,v,X) = 2(x,X) + z uigi(x)
i=1
I;1
+ v.g. (x)
i=s+1 11
= = t
u (u1, ..,us)', v (Vs+1’ "’Vm1)
0 0 .
uigi(x ) =0 1i=1,.44,8
0 .
ui >0 i=1,...,s
g.x% < 0 i=1 s x%) =0 i = s+ m
i_ > 1 9oy ’ gi LA 4 1 L4
T_2 0 0.0 .0 04

V4 vxx Lix“,u ,v ,2 )Y >0 for all yE€R such that
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T 0
ngl(x) < 0 J.EI1
yTVgi(xo) =0 1<i<s, u;>0
T = =
y Vg.(x") =0 i s+1,...,m ;
i 1
(d) strict complementary slackness holds, i.e. ug >0, ie1,.
Then
1) the solution K(A) = (x(X),ul()),v(A)) of the equations
VXL(x,u,V,A) =0
uigi(x) =0 1 <1c<s
gi(x) =0 s+1 < 1 < m,
. . . _ .0 . 0, _ 0 0 _0 . .
18 differentiable at A = A~ with K(A") = (x,u ,v ) and x(X) zs

the optimal point of problem P(A), while u(i), v(A) are the as-

soctated Lagrange multipliers.
ii) the infima function &()\) is differentiable at A°.

Remark: The assumption (a) that z(x,A) is twice continuously
differentiable is not so stringent; it will be satisfied by most
continuous distribution functions (i.e. the ones with continuous

density function). In Section 6,an example is given for illustration.

When the density function is not continuous, the differenti-
ability can not be asserted. But for most useful distribution
functions v L is Lipschitzian. Thus we can apply some results of

Nonsmooth Analysis to our problem.

5.2. Definition. [9] The generalized derivative (Jacobian)

of a Lipschitz continuous function £ (x) : R™ > R at point xo, de-
noted by Bf(xo), 1s defined as the convex hull of all matrices M
of the form
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where x© converges to x0 and £ s differentiable at xt, Jf(x%)

18 the Jacobian.

Similarly one can define generalized partial derivatives

of a Lipschitz continuous function.

5.3. Definition. [9] The generalized partial derivative of

a Lipschitz continuous function f(x1,x2) from R™ x R™ to R® with

respect to x, at point (xo,xo) is defined by
p 1 17%2

— . of i 1
3x1f(x?,xg) = co {llm " (X1,X2)} .
X

X

N M —
NO 2O

5.4. Definition. [8],[9]1. If every element of af(xo) s of

maximal rank, af(xo) 18 said to be surjective. If every element

of 8x1f(x?,xg) 18 of maximal rank, 8X1f(x1,x2) i1s said to be

surjective.

5.5. Lipschitz Implicit Function Theorem. [10] Suppose that

U 72s an open subset of Rn><Rm, (x?,xg) lies in U, £ ©Zs a Lipschitz

continuous mapping on U with values in RT and
0, _
£(xq,x5) =0 .

If BX1f(x?,xg) 18 surjective, then for some open set vCcR™ with

xg €V and some mapping g @ V-»Rn,

(1Y g Zs Lipschitz continuous,

(2) g(xy) = x§

(3) (G(xz),xz)GEU and f(g(xz),xz) = 0 for every X, in V.

Now we apply these results to our problem and get the follow-
ing proposition.

5.6. Theorem. Assume

0,0

(a) 2(x,X) and VxZ(x,K) are Lipschitz continuous around (x°,)\ ),

where AO 18 a point in A, %0 18 the optimal point of P(AO),
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2
(b) the constraint functions gi(x), i==1,...,m1, are in C
)

0

and the gradients {Vgi(xo) iEEI1 ;Vig(x ,i==s+1,...,m1} are

linearly independent, where I, {i:1<i<s, gi(xo):=0};

93

g, (x) are affine functions,

(x), 1<1i<s are convex functions, and for 1 = s+1,...,m1,

(c) (xo,uo,vo) 1s a Kuhn-Tucker point, satisfying the follow-

ing optimality condition:

(5.7) v Lxu® 0000 =0,
where m
S 1
L(X,U,V,)\) = Z(x,A) + 2 uigi(X) + . z Vigi(x)
i=1 i=s+1
—_— ]
u = (u1,...,us)', v o= (VS+1,...,Vm1)
0 0, _
uigi(x ) =0 1 <1i<s
Y > 0 1<1i<s
i - =+ 2
g (xo) <0 1 <1< s (xo) = 0 s+1 < i < m
i TP s 9 I
for every element M of 3_ (VL) it holds that
X ¢ 0 0,0
(x",u”,u’,2")
T 4
y My >0 for all y€R such that
yTog; x%) <0 if ier,
yTvg.(xo) =0 if 1< i<s , uq > 0
i - = i
v, (x%) =0 if i=sel,...m
(d) strict complementary slackness holds.
Then
(1) there exists a solution function K(A) = (x(A),u(r),v()))

to the equations

VXL(x,u,v,A) = 0
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In the proof of theorem 6 of [11], the author pointed out
and proved later that if ViL(xO,uO,VO,XO), gi(x) i = 1,...,m1

satisfy the conditions cited here in Proposition 5.1, then the

matrix

r ht
2 0 0 _ 0,0 0 0 0
VXL(x a0,V AT ,Vg1(x ) ...Vgs(x ) ,Vgs+1(x ) «.. Vg (x

: O

: O @)

\ J

is of maximal rank. In exactly the same way one can prove that

under the assumptions in this theorem every element of BKH(KO,XO)

is of maximal rank, i.e. BKH(KO,XO) is surjective,

Thus by the Lipschitz implicit function theorem there is a
Lipschitz continuous function K(A) = (x(X),u(X),v())), satisfying

H(K(A),A) = 0 for all A in some neighborhood A, of A, and k(1%) =k°.

Next we show that such a solution K(X) = (x(A),u(i),v()))
satisfies the optimality condition. 1In fact, since K(A), gi(x)

are continuous and satisfy the equations

uigi(x(A)) =0 1 <1i<s
and
0 0 _ .
uigi(x ) = 0 1 <1<s

then there exists a neighborhood A2 of AO such that for all
)\EA1 ﬂAz we have

i) ui(A) >0 for those i such that ug > 0, and this

implies gi(x(k)) =0

i1) g{(x(A)) <0 for those i such that g, (x’) <0; this

implies ui(X) = 0.
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By the strict complementary slackness condition any i =
1,2,...,8 falls in one of the two categories, i.e. for all i =

1,«.¢,8

(5.7) ui(k) >0 and gi(x(X)) <0 .
Combining (5.7) and equation H(x,u,A,\) = 0, we know that
for AeA, DA, (X(AX),u(Ar),v()X)) satisfies the following conditions:

1 2

S BN
VL(x(X),A) + i£1ui(x) g;(x()) + ] v.(NTg;(x(})) =0

i=s+1
gi(x(k)) <0 1 <1i<s
gi(x(X)) =0 1T <1< m,
ui(A)gi(x(k)) =0 1 <i<s
u. (A) >0 1 <1ic<s
l — — —
Using the convexity of Z(x,A) and gi(x), i= 1,...,m1, we

come to the conclusion that x(X) is the optimal solution of Z(X)

and u(i), v(X) are the associated Lagrange multipliers.

(ii) The Lipschitz continuity of infima function P(A) comes out
immediately from the equation

One can get a bound for the Lipschitz constant of K(A) as

we make explicit here below.

Consider two points K(A) and K(XO), X is in A1(1A Then

2"

0

H(K(OA),A) =0 = 85k ,2%

Thus

(5.8) B, A - BHEOO ) = 1% ,1% - 5@&n®)
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By the Lipschitz mean value theorem, (Section 3 of [9]), we

have
(5.9) HEK(M) ) = HEOO 0 = 2 @& -x(1Y))
for some AeEBKH([K(AO),K(A)],A), where
KO0, K] = (R(t):K(t) =x 00 + (k) -x(2 %)), t€0,11}
and
3 H(IK(AY),K(A) 1,0 = 5{ U 3 H(K(t),A)} .
K

K K

(t)
For the right hand side of (5.8) one can easily get

0 0 0 ~
Vo< Re[A =2l .

(5.10) |[H(R(AT) ,A) —H(K(AT) , A

From (5.8), (5.9), (5.10) it follows that

0

A=A

K (1) =K (A 0

<

When aKH(K,A) is generated by a finite number of elements,

it is not so difficult to give an estimation for |A|. Fortunately
for some useful piecewise continuous density functions we are in

this situation as we show in an example in the next section.

6. AN EXAMPLE

In Propositions 5.1 and 5.6 we imposed some conditions on
the density function D(t,A). These conditions are met for most
of the useful distribution functions which have continuous or
piecewise continuous denéity functions. Here we give an example

to illustrate how the conditions can be verified.

Problem P (&) :

min Vi+Yy Y1 =Y-=8&,-%x
Min z(x,§) = x+E-{ 1 2 1 3 1 }

Y]io Y2-Y3=52—X
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where § = (51,52)' is a two-dimensional random variable.
(1) £ is normal with density function
(£ =u )2 [ (bqmug) (Eomin)  (Eo-1,) 2
D(t, ) = ' exp - 1“1{_[01“1 27H2) | 22]}
17 -2 2ﬂ0102 202 s o2 202
1 1 2
We have
51(w)-+£2(w)-2x if 51(m)—x <0, iz(w)-x >0
Q(x,8(w)) = Ez(w) -51(w) if 51(w)-x<<0, Ez(w)-€1(w) >0 .
£q(w) = &5 (w) if E,(w)=x<0, §q(w)=E5(w) >0

Thus

It is not difficult to verify directly from the expression that
z(x,£) and sz(x,E) are continuously differentiable in (x,c1,02,
p,u1,u2). Another way to do it, as shown in Sgction 2, is first

to show uniform convergence of the integrals D(t1,t2)dti i=1,2,
X
then show that the uniform convergence will be preserved under

transformation t = Bt. We are going to do it with a slightly

different integral

I(x1,x2) =
w o (t,=1 )2 (Er=uy) (Eq=lq)  (Ea=has) 2T
Idt[_1_exp{_|:_;_011zz+zz]dt
%, 1 x22”1"2 203 949, 2c§ J& 2
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First, with the help of the transformation
J t‘]-u'] l—tZ-UZ
1 04 2 9,

we can assume that I(x1,x2) is in the following form

* ® t% té
I(x1,x2) = J dt1 J 75 ©XP | - + pt1t2 - — dt2 .
X X 2

Now we examine the uniform convergence with respect to t, of the

integral
£ £
L2 (T "z"*pt1tz'7dt
1 - 7 © 2
X2
2
o . —x(1-p2ye? -1 (e -ptn)
_ 1 2 1 2 2 1
= ﬁ e e dt2 .
X2
. . {1) (2)
On any finite interval of t1, say t1 ,t1 , we have
1 2,,2 1 2 1 2, =2 1 = 2
e < e e

—

for t, large enough, where E1 = min {|t1|'t165[t§1)’t§2)]} and

= max{|t1 |/t € [t1(1), tf”ﬂn

Therefore
2 =
o =2 (1-p) 2 - Tk ot ) 2 w -2 (1-02)EF -1 (£,-0E )2
J e dtz_i{ e ce dt2
M M

for large positive number M, and the left integral tends to zero
(1) .(2)
1 %y

p<1. This is equivalent to I, converges uniformly with respect

to t, on [tf1),tf2q .

By symmetry of t1, t2 we obtain uniform convergence of the

uniformly with respect to t, on [t ] as M~»>+» for any
1

integral
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tf t%

® -— +pt,. t, -—=

_ 1 p) 1%2 772
I, = L{ 77 © dt,

with respect to t, on any finite interval for any p < 1.

Thus the required uniform convergence holds for any Oq1 Tou
Pr Hqrs Hyy i.e., for any covariance matrix V and any mean value,

if the integral is in the standard form.
Suppose that I(x1,x2) has the following form
-i'!-ott -_3
_ 1 2 172 2
I(x1,x2) = J [ 57 © dt,dt

Bt > x

where B is a nonsingular square matrix, with the transformation

T = Bt we can reduce I(x1,x2) into a standard form, with covariance

matrix (8" )T VvB~'. Then the required uniform covergence is at
hand.
(2) & is uniformly distributed in the square [-a,a;-b,b], a>b>0.
Then
1 2 2 3
(x+m (3bx™ + 3ax -6abx-2x)+c1(a,b) -b<x<b
x2
z{x,a,b) =<E+ c2(a,b) -—a<x<b
\-x -a>x

where c1(a,b), cz(a,b) are polynomials of a and b.
The expression of Z for x>b is omitted here, the analytical
behavior of Z there is quite similar.
Then
1 + 1 (bx-+ax-ab-x2) -b < x < b
2ab - -

sz(x,a,b) = < X < =b

(VA
1
]
fn
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Clearly sz(x,a,b) is differentiable except at points x = -b,
X = =-a., At those points the generalized partial derivatives can

be computed out easily:

]

1 a+3b
ax{vx Z(-b,a,b)}' |: m]

and

1
ax{vx Zz(-a,a,b)} [0,51 .

With this one can easily check whether the conditions im-

posed in Proposition 5.6 are satisfied.
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