Bibliography on Nondifferentiable Optimization

Nurminski, E.A.

IIASA Working Paper

WP-82-032

April 1982

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at
BIBLIOGRAPHY ON NONDIFFERENTIABLE OPTIMIZATION

E. Nurminski

April 1982
WP-82-32

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria
IIASA's interest in nondifferentiable optimization (NDO) is based on the great practical value of NDO techniques. This new field of mathematical programming provides specialists in applied areas with tools for solving nontraditional problems arising in their work and with new approaches and ideas for treating traditional problems. Nondifferentiable optimization is concerned with the new type of optimal decision problems which have objectives and constraints resulting from the behavior of different complex subsystems, the solutions of auxiliary extremum problems, and so on. A common feature of these problems is that the objectives and constraints inevitably have poor analytical properties.

Good analytical properties are essential both for performing comprehensive theoretical analysis and for producing efficient computational methods which are acceptable in practice. The most important of these analytical properties are the existence and continuity of derivatives of various orders.

Unfortunately, derivatives are very sensitive to manipulation—many standard operations and representations used in economics or operations research destroy the property of differentiability.
The absence of derivatives leads to many theoretical difficulties and numerous practical failures in solving certain problems in operations research and systems analysis. The lack of continuous derivatives makes it very difficult to predict with a good degree of accuracy the effect of small changes in control variables—and this hinders the performance of many numerical algorithms.

These, then, are the main motivations for the study of non-differentiable functions—that is, functions for which derivatives do not exist in the traditional sense of the word.

To help information flow in this new and rapidly expanding field, a bibliography on nondifferentiable optimization has been prepared with the assistance of contributors from all parts of the world. It is hoped that this bibliography will be of use not only to mathematicians engaged in pure research in nondifferentiable optimization but also to those interested in applying these techniques in other fields.
BIBLIOGRAPHY ON NONDIFFERENTIABLE OPTIMIZATION

E. Nurminski

International Institute for Applied Systems Analysis,

Laxenburg, Austria

This is a research bibliography with all the advantages and shortcomings that this implies. The author has used it as a bibliographical data base when writing papers, and it is therefore largely a reflection of his own personal research interests. However, it is hoped that this bibliography will nevertheless be of use to others interested in nondifferentiable optimization.

1. MONOGRAPHS

This section contains monographs related to nondifferentiable optimization.

References

2. ALGORITHMS

This section deals with algorithms. It also contains reports on applications of nondifferentiable optimization and computational experiments in this field.

References

A.I. Kuzovkin and V.M. Tihomirov, "On the Quantity of Observations Required to Find a Minimum of a Convex Function (in Russian)," *Ekonomika i Matematicheskie Metody* 3(1) pp. 95-103 (1967).

3. GENERALIZED DIFFERENTIABILITY

This section contains papers on general notions of differentiability, optimality conditions in the nondifferentiable case, properties of perturbation functions in parametric programming and the stability of optimum programs in connec-
tion with nondifferentiable optimization.

References

H. Halkin, "The Method of Dubovitskii-Milyutin in Mathematical Programming," pp. 1-12 in *Symposium on Optimization and Stability Problems in*

