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SUMMARY

The paper presents a methodology for dealing with the prob-
lems of imperfect information or simplistic modeling in macro-
economic policy problems. The methodology permits to choose a
robust policy from a given set of candidate policies--that is,

a policy that makes the social welfare least sensitive to various
potential modeling errors. This can be achieved even if the
potential modeling errors are related to model structure or de-
lays in model equations--without requiring that the models with
more complicated structure or delays are fully solved and opti-
mized. The particular example chosen to illustrate the method-
ology is a macroeconomic model of intertemporal optimization of
monetary control of inflation and unemployment. The conclusions
for this particular model are two-fold. Firstly, neglected de-
lays or other modeling errors cannot, in general, substantiate
rigorously the constant monetary growth rule that is usually
advanced because of such modeling inaccuracies. In fact, by
choosing an appropriate feedback policy formulation it is possi-
ble to obtain reasonable results of an active policy even if the
underlying model used for policy derivation is very simple and
the economic reality to which the policy is applied is much more
complicated. Secondly, rigorous case can be made against 'im-
petuous' policy making with regard to inflation and unemployment,
that is, against policies that by attaching a small weight to
unemployment attempt to approach rapidly long-run targets for
inflation. Such a policy strategy may induce instability, either
through delay effects, or by making the macroeconomic system very
sensitive to other modeling errors.
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IMPERFECT INFORMATION, SIMPLISTIC MODELING,
AND THE ROBUSTNESS OF POLICY RULES

D. Snower and A. Wierzbicki

1. INTRODUCTION

This paper is concerned with the formulation of macroeco-
nomic -policy rules from macro-models which are inaccurate re-
presentations of economic reality. The models are inaccurate
due to imperfect information or because they are rough approxi-
mations of known economic mechanisms. Rough approximations,
viz., "simplistic models", may be used in order to keep the ana-
lytical or computational derivations of policy rules manageable.
The policy rules are meant to optimize the policy maker's objec-
tive function. Under conditions of imperfect information or
simplistic modeling, the policy maker is aware that policy rules
which are optimal with regard to his model are not necessarily
optimal with regard to the actual economic system he aims to
control. How should the policy rules be devised in the light of

the inaccuracies of the underlying model?

If the policy maker faces probabilistic risk rather than
uncertainty (i.e., his imperfect knowledge is representable by a
model whose true parameter distributions are known), then the
policy rules may be derived from a stochastic optimization prob-
lem. Yet such problems are often notoriously difficult to solve.

Besides, macroeconomic policy makers seldom, if ever, have
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perfect information on the parameter distributions of the models
they use and these models are generally simplistic. Uncertainty
and simplistic modeling call for a different approach to the

formation of policy rules.

This paper presents such an approach. Given uncertainty or
simplistic modeling, policy makers - are commonly interested in
devising policy rules which are not only optimal with regard to
their model, but also insensitive to particular errors in model
specification. In this context, imperfect information and sim-
plistic modeling pose analogous difficulties for the formulation
of optimal policy rules. Regardless of whether errors in model
specification are attributable to imperfect information or de-
liberate simplification of economic relations, our aim is to
find policy rules which are not sensitive to these errors. To
do so, we formulate a number of different policy rules, all of
which are optimal with regard to the policy maker's objective
function and model, but which are not all equally sensitive to

changes in model specification.

Naturally, all macro-economic models are simplified repre-
sentations of actual economic activities. The rationale for
such simplifications is that amendments to the models which
introduce greater realism at the expense of greater complexity
do not affect qualitatively the conclusions of the analysis at
hand. In the formulation of optimal macro-economic policy
rules, modeling simplifications are commonly regarded as accept-
able if they have a negligible impact on the properties of the
policy rules. On Occam's Rasor grounds, in fact, such simplifi-

cations are desirable.

It would appear, at first sight, that the application of
Occam's Rasor requires that policy rules be derived first from
a complex model which is the closest representation of economic
reality which the model-builder is capable of creating and then
successively from simpler models. Simplifications which lead to
close approximations of the former policy rules are accepted;
the rest are rejected. Of course, in practice macro-economic

models are not constructed in this manner; but to the degree to



which they are not, their structure cannot be rationalized on

Occam's Rasor grounds.

The basic insight of this paper is twofold. First, Occam's
Rasor may be used not only as a criterion for the construction
of simplistic models, but also as a criterion for the formula-
tion of optimal policy rules. The aim of our analysis is to
find a number of policy rules which are optimal for a given
model and to choose the policy rule which provides the strongest
Occam's Rasor rationale for that model. Second, Occam Rasor
can be applied without explicitly deriving the policy rules from

a more complex and realistic counterpart of the model.

In other words, (i) the policy rules themselves, if appro-
priately chosen, can make modeling simplifications harmless for
the formulation of these policy rules, and (ii) it is possible
to establish whether a simplification is harmless without ex-
plicitly comparing the policy implications of a "realistic"

model with its simplistic counterparts.

The economic literature contains numerous attempts to de-
rive optimal policy rules in the context of models which are in-
correctly specified. Perhaps the most prominent attempt is the
monetarist argument that the money supply should grow at a con-
stant percentage rate per annum, because the magnitude and tim-
ing of the effect of a money supply change on aggregate demand
1)

are difficult to predict. However, the monetarists have not
explained precisely how the constant monetary growth rule may be
deduced from the assumption of modeling inaccuracy. Presumably,
they do not intend to suggest that such a rule invariably
emerges as the optimal solution of a stochastic optimization
problem in which the relation between the money supply and ag-
gregate demand is described by parameters with known distribu-

tions.

Nor does the constant monetary growth rule necessarily
emerge from our methodology for the choice of optimal policy
rules, as we will show. To illustrate our methodology we will
derive monetary policy rules from a model containing an expecta-

tions—-augmented Phillips curve. In particular, we assume that



the policy maker's objective function depends on unemployment
and expected inflation. According to the expectations-augmented
Phillips curve, actual inflation depends inversely on the un-
employment rate and positively on the expected inflation rate.
Inflationary expectations are generated by an adaptive mechanism.
The policy maker can influence the rate of unemployment by chang-

ing the growth rate of the money supply.

A rise in this growth rate decreases the unemployment rate
in the short run (and thereby raises the value of the policy
objective function) and increases the expected inflation rate in
the medium run (and thereby lowering the value of the policy ob-
jective function). The policy maker presumes that the Phillips
curve or the adaptive expectations mechanism are incorrectly

specified. How should the optimal monetary rule be formulated?

This policy problem merely serves an illustrative purpose
in our analysis of the formulation of policy rules. In general,
our analysis pertains to any dynamic model in which (a) a pres-
ent policy impulse affects the value of the policy objective
function (henceforth called, euphemistically, the "social wel-
fare function") at present and in the future, (b) there is an
intertemporal tradeoff between these effects (such that a pres-
ent social welfare gain is associated with a future welfare loss,
and vice versa), and (c¢) the model is an inaccurate representa-

tion of actual economic processes.

A diverse assortment of important macroeconomic policy
problems share these properties. In the standard theory of op-
timal economic growth, there is a tradeoff between the produc-
tion of nondurable consumption and investment goods, and social
welfare depends on the flow of consumption through time. If the
policy maker stimulates durable consumption, social welfare
rises in the short run, but falls in the longer run (since the
capital stock whereby future consumption goods can be produced,
grows more slowly than it would have done in the absence of the
consumption stimulus). The policy maker may be aware that his
depiction of the production possibility frontier is an inaccu-

rate representation of the actual tradeoff between consumption



and investment good production. In the basic theory of optimal
resource depletion control, a policy stimulus to the production
of nondurable consumption goods implies an increase in the rate
of resource depletion. Thus, social welfare rises in the short
run, but falls in the longer run (since the resources, necessary
for the production of future consumption goods, are depleted at
a more rapid rate). Similarly, in the theory of optimal pollu-
tion control, a consumption stimulus gives rise to a larger flow
of durable pollutants. Social welfare rises in the short run on
account of the consumption stimulus, and falls in the longer run
on account of the argumented pollutant stock. The policy maker
may seek the optimal consumption trajectory in the context of an
inaccurate model of the relation between consumption and re-
source depletion or between consumption and pollution. This
list of examples couid be extended considerably. Our analysis
of policy rules applies equally well to all of them. Our choice
of monetary policy rules to control inflation and unemployment
is to be understood as a concrete illustration of a methodology

with rather wide application.

The expectations-augmented Phillips curve in our model em-
bodies the natural rate hypothesis. In other words, the un-
employment rate is solely related to errors in inflationary ex-
pectations. Correct inflationary expectations are associated
with a unique rate of unemployment, the "natural" rate. The
lower the rate of unemployment, the greater the actual rate of
inflation relative to the expected rate of inflation. The nat-
ural rate of hypothesis has received considerable empirical
support (e.g., Gordon 1972, Turnowsky 1972, Vanderkamp 1972,
Parkin 1973, Mackay & Hart 1974, Parkin, Summer & Ward 1976,
Lucas & Rapping 1969, Darby 1976) and has been given various
logically distinct, but not mutually exclusive microfoundations
(e.g., the "misperceived real wage" paradigm of Friedman 1968,
Lucas 1972, 1973, and Sargent 1973; the "job search” paradigm of
Alchian 1970, McCall 1970, Mortensen 1970, Gronau 1971, Parsons
1973, Salop 1973, Lucas & Prescott 1974, and Siven 1974; and the
"price setting" paradigm of Phelps 1970).
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On the other hand, the adaptive expectations mechanism,
which we use to generate inflationary expectations, has not been
given much attention in the macroeconomic literature since the
theory of rational expectations came into widespread use. How-
ever, several reasons may be given for our use of adaptive ex-
pectations.” Adaptive expectations might be considered as a
realistic approximation of the ideal process of rational expec-
tations. It is generally recognized that if the structure of
the macro-economic model changes and economic agents gain infor-
mation on this change through a costly process of learning, then
their expectations cannot be expected to be rational during this
process. For such circumstances, adaptive expectations mecha-
nisms (possibly with flexible adjustment coefficients) can be
motivated on theoretical (e.g., Friedman 1979, Shiller 1978,
Taylor 1975, and De Canio 1976) and empirical grounds (e.g.,
Lawson 1980, Lahiri 1976, and Turnowsky 1970).

In our analysis we consider monetary policy which, inter
alia, takes the form of closed-loop control of unemployment.
Here monetary impulses cannot be specified at present for all
future points in time. Instead, the growth rate of the money
supply will depend on how the state variable of our model (the
expected rate of inflation) evolves through time. Yet since
our model (by assumption) is an inaccurate representation of
actual economic activities, the evolution of the state variable
cannot be precisely foreseen. Consequently, the growth rate of
the money supply is not perfectly predictable either. Provided
that the monetary authority is able to change the money growth
rate faster than the public is able to learn of this change,
the public cannot be expected to have rational expectations

contingent on the monetary authority's information set.

We assume that the public forms its expectations adaptively
instead. For simplicity, the adjustment coefficient of the
adaptive expectations mechanism is held constant through time.z)
Admittedly, we also use this mechanism when monetary policy
takes the form of open-loop control. Yet, if the public knows
the functional form of the expectations-augmented Phillips curve

and of the monetary authority's objective function, then it can



perfectly predict open-loop control policies and thus can be ex-
pected to have rational expectations contingent on the monetary
authority's information set. If rational expectations are as-
sumed, however, our policy exercise becomes rather uninteresting,
for then monetary policy rules are no longer able to affect the
unemployment rate. The natural rate hypothesis makes the unem-
ployment rate depend on errors in inflationary expectations,
while the rational expectations hypothesis ensures (in the con-
text of our analysis) that such errors do not occur. Thus,
systematic monetary policy is impotent. (See, for example,
Sargent and Wallace 1975, 1976, Sargent 1973, 1976, and Barro
1976) .3

In our analysis, serving as it does primarily illustrative
purposes, tihe assumption of adaptive expectations is retained
even under open-loop policies. As noted, the analysis also
applies to the choice of policy rules in macroeconomic models
centering around the tradeoffs between consumption and pollution,
consumption and resource depletion, and consumption and capital
accumulation. In these latter models, government policies are
commonly assumed to affect consumption either directly (via
government consumption expenditures) or indirectly (via taxes
or environmental controls). Here the assumption of rational
expectations does not necessarily make policy rules ineffective
with regard to real economic variables. (See, for example,
McCallum and Whitaker 1979, Buiter 1977, and Tobin and Buiter
1980). To maintain the applicability of our analysis to these
policy problems and to keep the structure of our model monolith-
ic, the assumption of adaptive expectations is made for all our

policy exercises.

The problem of choosing policy rules under imperfect in-
formation or simplistic modeling is approached in accordance
with the methodology suggested by Wierzbicki (1977). Two macro-

economic models are considered:

(1) The basic model is used by the policy maker to devise optimal
policy rules. It may be a simplified version of a more realistic
model or it may be inaccurate because of the policy maker's im-

perfect information about macroeconomic activity.



(2) The extended model is our proxy for "actual" macroeconomic
activity. This model is unknown to the policy maker or intract-
able for the derivation of policy rules. It serves to indicate
various ways in which economic reality may differ from the basic
model. Policy rules are derived with regard to the basic, not
the extended, model. Thus, the extended model simply provides

a concrete illustration of the uncertainty the policy maker faces

or of the need for constructing simplistic models.

A policy maker who is uncertain as to the accuracy of his
model may wish to test his policies on a proxy of economic real-
ity before implementing them. The extended model is such a

proxy.4)

We will consider three ways in which the basic model may be

an inaccurate representation of the extended model:

(a) Mistaken parameter estimates: The (nonzero) coefficients
of the expectations-augmented Phillips curve in the basic model
differ from those in the extended model. This inaccuracy is
attributable to imperfect information rather than to simplistic
modeling.

(b) Mistaken functional specification: The functional form of
the expectations-augmented Phillips curve in the basic model

5)

differs from that in the extended model. Both imperfect in-
formation and simplistic modeling may be the source of this
inaccuracy.

6): The basic model's Phillips

(c) Mistaken délay estimates
curve has a different delay structure than that of the extended
model. As a simple example, the basic model may ignore delays
in the relation between inflation and unemployment, while the
extended model takes them into account. This, too, can be at-

tributed to both imperfect information and simplistic modeling.

As we shall see, it is quite simple to extend out analysis

to include these modeling inaccuracies not only with regard

to the expectations—-augmented Phillips curve, but also with
regard to the relation between the rate of growth of the money
supply and the unemployment rate. Modeling inaccuracies of this

sort are, as noted, a major reason why monetarists advocate



constant monetary growth rules. Since the relation between the
money supply on the one hand and inflation and unemployment on
the other hand is difficult to predict both in magnitude and
time structure--so the argument runs--the money supply should be
expanded at a constant percentage rate per annum. We will exam-
ine this argument in the light of our methodology for the choice
of policy rules. In other words, given that one or more of the
modeling mistakes above is made, we will specify a number of
policy rules which are optimal with regard to the basic model
and then choose the rule which makes social welfare least sensi-
tive to the postulated mistakes. We call this rule "robust"
with regard to the modeling errors. It will be shown that con-
stant monetary growth rules do not necessarily emerge from this
exercise. If there is a case to be made for such rules, then
this depends very much on some crucial parameters of the basic

model.

As the analysis below indicates, the trajectories of in-
flation and unemployment which are induced by a given policy
rule may be described in terms of two components: (a) the long-
run optimal stationary levels of inflation and unemployment, and
(b) the rate at which inflation and unemployment approach their
respective long-run levels through time. Some values of crucial
parameters of the basic model (mostly, a larger weight given to
inflation versus unemployment in the social welfare functional)
induce faster rates of approach than others. It will be shown
that those parameter values which cause the rates of approach
exceed certain threshold levels run the danger of making the
macroeconomic system unstable. In this case, the system's
dynamic behaviour becomes very sensitive to modeling errors and
thus the policy maker has little chance to maintain both infla-
tion and unemployment near their target paths. This might be
considered as an argument for a constant monetary growth rule
because of the basic difficulty of achieving anything better by
a more active policy. On the other hand, social preferences
with parameters which induce slower rates of approach result in
policy rules which do not have this undesirable property, and a

constant monetary growth rule cannot be substantiated in such a
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case. This is, however, not an argument for or against a con-
stant monetary growth rule, but much rather an argument against
trying to reach long-run targets for inflation and unemployment
in a short period of time. It appears that this argument is not
a theoretical curio, but a case of immediate and far-reaching
policy implications. Over the past years there has been a heated
controversy in a number of mature market economies--the United
States, Great Britain, Germany and others--about how fast a
government should attempt to reduce the rate of inflation to its

long-run target level. Thus far, a government's degree of "im-
patience" with inflation has been viewed largely as a question
of taste. The more weight a government attaches to inflation
relative to unemployment in its policy objective function, thé
faster it should drive the rate of inflation towards the long-
run inflation target. Our analysis suggests that "taste" is not
the end of the matter. We indicate that "impatient" governments
run the risk of macroeconomic instability. In other words, a
case--unrelated to the policy maker's preferences--is to be made

for the less impetuous policy directives.

The paper is organized as follows. Section 2 presents the
underlying macroeconomic model and describes various monetary
policy rules. Section 3 provides analytical solutions to the
policy problems. Section 4 describes the methodology of our
robustness analysis, i.e., provides the criteria for the choice
of policy rules. Section 5 evaluates the various policy rules
by means of these criteria. Finally, Section 6 contains a brief

overview.

2. STATEMENT OF THE POLICY PROBLEM

The basic model consists of three analytical building
blocks: (1) a relation between the expected rate of inflation
and the rate of unemployment, (ii) a relation between the rate
of growth of the money supply and the unemployment rate, and
(iii) a social welfare functional which depends on the expected

rate of inflation and the rate of unemployment.

The first building block is composed of an expectations-

augmented Phillips curve and an adaptive expectations mechanism.



-11-~

Let X be the expected rate of inflation, X the actual rate of
inflation, u the actual rate of unemployment, and u, the natural

rate of unemployment. Then the Phillips curve is

X, =X -A- (u—un) , (1)

where A is a positive constant. Inflationary expectations are

generated by

}.{=B ¢ (Xa-x) 7 (2)

where B is also a positive constant and % is the rate of change

of x through time. Substituting (1) into (2),

X=-C- (u~u) , (3)

where C=A * B > 0.

The second building block is composed of a quantity theory
7) Let M be the stock of

money, V the income velocity of circulation, P the price level,

of money and a variant of Okun's Law.
and Q the production of goods and services. Then

MV =P-+Q (4)
Suppose that V is constant. Let g be the growth in production
and m the growth in the money supply, which is continually equal

to the growth in money demand. Then

m=xa+g (5)

Let In be the trend rate of production growth. Then our variant

of Okun's Law can be expressed as
=8+ (g,-9) (6)

where § is a positive constant. Substituting (6) into (5),
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m=x_ +g, -%° a (7)

Substituting (1) into (7).,

1 .
m=x—A-(u—un)+gn—6--u (8)

The objectives of the policy maker are represented by a
"social welfare" functional. At every instant of time social
welfare depends on the expected inflation rate and the unemploy-

ment rate as follows:

1.2 49, 2 9
1 > X 3 u (9)

where g is a positive constant. A rise in the expected infla-
tion rate affects social welfare adversely because it induces
economic agents to economize on money balances and therefore to
bear the higner transactions costs of exchanging money for
interest-bearing assets. A rise in the unemployment rate also
lowers social welfare since the marginal utility of consumption
is always assumed to be larger than the marginal disutility of
the labour required to produce one unit of the consumption good.
The marginal utilities of both expected inflation and unemploy-

ment are assumed to be negative and declining.

From (3) it is apparent that a fall in the current rate of
unemployment raises the future rate of change of expected infla-
tion. Thus a current welfare gain is associated with a future
welfare loss (and vice versa). The policy maker faces an inter-
temporal optimization problem. We assume that he maximizes
social welfare from the present time (time t=0) to the infinite
future. His rate of time discount, r, is constant and social

welfare occuring at different points in time enters his objec-

8)

tive function additively. Hence, the social welfare function-
al may be written as:
W i/ eIt . (l-% . xz-% . u2)dt (10)

0
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In sum, the policy problem is to maximize (10) subject to (3)
and (8), where m is the control variable and x and u are the
state variables. Note the m is not an argument of the social
welfare functional; there are no policy instrument adjustment
costs. Assume for the moment, that m can be changed instanta-
neously by infinitely large amounts; thereby giving rise to in-
stantaneous, finite changes of u, as determined via Equation (8).
Then, the policy problem may be restated in the following, sim-

pler form:

(oo

W =f e Tt (1-3 - x*-F - uP)at. (11)
0
subject to kX =-C -(u—un) '

wnere x is the only state variable and u may be termed a "surro-
gate control variable". However, it is well known (see, for
example, Markus and Lee 1967) that the optimal control u for the
problem (11) is a differentiable function of time. Thus, the
optimal G is well defined and given this 0 along with the opti-
mal trajectories for u and x, we can compute the optimal m from
(8). Consequently, m is continuous with respect to time and so
the discontinuous changes in m, assumed above, are not really

9)

needed. Hence, the trajectory of m which keeps u on the path
prescribed by optimization problem (1l1l) is optimal with regard
to the maximization of (10) subject to (3) and (8). Thus, u may
be used as a control variable in problem (11l) even though it

enters as a state variable in the other problem.

Problem (ll) serves as our basic model. The extended model
may differ from the basic one in various ways. In the case of
mistaken parameter estimates, the differential equation of the

extended model may be written as

% =-C -(u—ﬁn) , (12)

where (C-C) or (ﬁn-un) is a measure of the mistake in parameter
estimation. For the sake of brevity, we will consider only the

case of a mistake estimate of u,
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In the case of mistaken functional specification, we choose
the following expectations—augmented Phillips curve for our ex-
tended model:

xa=x—A[u-un—%(u—un)2] (13)

where y is a parameter (not necessarily positive). (Note that

X=X wherever u=un). Substituting (2) into (13), we obtain

k=-C+ (u-u_~Y(u-u_) 2 (14)

In the case of mistaken delay estimates, the following

differential eguation is used for the extended model:

X =-C °(u(t-r)-un) ' (15)

where T denotes the length of time whereby x is delayed behind
u'lO)

We now come to the crux of our policy exercise. How should
tne policy rule for u (and hence for m) be devised, given that
the policy maker knows that his basic model contains one or more
of the modeling errors above? We assume that, on account of im-
perfect information or simplistic modeling, the policy maker is
unable to correct these errors, and therefore, unable to derive

his policy rule by optimizing over the extended model.

As noted, our methodology for the choice of policy rule may
be summarized in two steps. First, derive a number of policy
rules, each of which are optimal with respect to the basic model.
Second, find the rule that when applied tc the extended model,
makes social welfare minimally sensitive to the modeling errors
above. This is the rule to be adopted in the light of imperfect
information or simplistic modeling. Needless to say, the sen-
sitivity analysis must be undertaken without solving the control

problem in terms of the extended model.

A "policy" is a mapping from a set of variables in the ex-

tended model (or their counterparts in economic reality) into
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the set of control variables. Every policy which maximizes the
social welfare functional with respect to the basic model we
shall call a "basic-optimal" policy. A number of different pol-
icies, as we shall see, may all be basic-optimal; yet, they may
not have the same welfare implications when applied to the ex-
tended model.

The following are a sample of basic optimal policies.

(1) Open-loop control: Find the basic-optimal trajectory of the
control variable. Manipulate the actual level of u (which is
generated by the extended model, not the basic model) so that u

remains on this trajectory.

Here, the time path of the unemployment rate is predeter-
mined from the present till the infinite future; it does not
depend on discrepancies between the behaviour of the basic and
extended model. In other words, the money supply must be manip-
ulated to keep unemployment on the predetermined, basic-optimal

patn.

(2) Classical closed-loop control: Find the basic-optimal relation
between u and x througn time. For the x generated by the ex-
tended model at every point in time, set the actual level of u

in accordance with the above relation.

Hence, the time path of the unemployment rate depends on
the observed value of x (rather than on the value of x generated
by the basic model). In other words, the money supply must be
manipulated to maintain the predetermined dynamic relation be-

tween the expected inflation rate and the unemployment rate.

(3) State trajectory tracking control: Find the basic-optimal tra-
jectory of the state variable, x. Set u such that x remains on
this trajectory. Here, the money supply is adjusted to keep the

expected inflation rate on a predetermined path.

In Section 3, it is shown that policies (1)-(3) are special
cases drawn from a family of basic-optimal policies with infi-
nitely many members.

(4) Open—loop, Hamiltonian—-optimizing control: Find the basic-optimal

trajectory of the costate variable. Set u such that the current
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value Hamiltonian, defined in terms of the above costate vari-

able and the Phillips curve of the extended model, is maximized.

Here, the policy is to maximize, at each point of time, the
observed difference between the current welfare and the social
cost of accumulation of inflationary expectations (i.e., the

costate variable).

(3) Closed-loop, Hamiltonian—optimizing control: Find the basic-
optimal relation between the costate variable and the expected
inflation x through time. For the x generated by the extended
model at every point in time, set the costate variable in ac-
cordance with the above relation. Set u such that the current
value Hamiltonian, defined in terms of the above costate vari-

able and the Phillips curve of the extended model, is maximized.

(6) Open—-loop, benefit-cost control: Find the basic-optimal tra-
jectory of the costate variable. Define the benefit-cost ratio
at a particular point in time to be social welfare (at that
point in time) divided by the social cost of accumulation of in-~
flationary expectations (at that point in time), as given by the
above costate variable and the Phillips curve of the extended
model. Set u such that this benefit-cost ratio is maximized at

every point in time.

(7) Closed-loop, benefit-cost control: Find the basic-optimal rela-
tion between the costate variable and x through time. For the

x generated by the extended model at every point in time, set
the costate variable in accordance with the above relation. Set
u such that the benefit-cost ratio, defined in terms of the
above costate variable and the Phillips curve of the extended

model, is maximized at every point in time.

As for policies (1)-(3), policies (4)-(7) can be combined
to generate yet further policy options. All above policies are
equivalent and optimal if the extended model is identical to the

basic one.

What now remains to be done is to specify these policies
rigorously and to find those policies which are least sensitive
to the various modeling errors considered above. This is the

subject of the following three sections.
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3. DERIVATION OF THE OPTIMAL SOLUTION AND ALTERNATIVE POLICIES

The current-value Hamiltonian function for the problem (11)
has the form

H=1-2x (t) -3u® (£) +¢(t) - Clu(t)-u) (16)

where 7 (t) is the costate wvariable, i.e., the social cost of ac-

cumulating inflationary expectations. The first-order necessary

condition is

Hu=o»u<t)=§c<t) , (17)

which is also a sufficient condition since H is strongly con-

cave. The costate equation has the form

L(t) -rz(t) =H_ g(t) =rz(t) - x(t) (18)

and the state equation (3), after substituting (17), takes the
form

K(£) =-H_ = k(&) =-C - (Z2(t) —uy) 7 x(0) =x, (19)

Various methods can be used for solving the system of ca-
nonical equations (18), (19) and for establishing the existence
of optimal solutions to (ll). To derive alternative policy
rules, however, it is convenient to use the Riccati substitution
(see, for example, Althans and Falb 1966) :

c(t) =K(t)x(t) +M(t) (20)

in wnicn (as shown in the appendix) K(t) is defined by the

Riccati equation

K(t) = % K% (t) + rK(t) - 1 (21)
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and M(t) by the auxiliary equation

2
M(t) = (-SI- K(t) + r)M(t) - Cu_K(t) (22)

One of the sufficient conditions for the existence of opti-
mal solutions, if the Hamiltonian function is strongly concave,
is that the Riccati equation (21), when solved backward in time,
has a bounded solution. For the equation (21), such a solution

does exist (see the appendix) and has the following form:

1
) 23
K(t) =X = ((1+4 %—)2—1)_]:%>0 ( )
rqgq 2C
The corresponding solution of (22) is
_ 2
M(t) =M=Cu K (24)

Now, substituting (20), (23), (24) into (9), (10) and solv-
ing the differential equations we obtain the optimal solutions

for the problem (11)

rqu rqu

2(t) = (xp-%)e” F e — ; lim R(t) =&, =—= > 0
tow
(25)
~ - qu ~ N qu
Zie) =K(xy-x)e” V2 5 lim Z(8) =, =—2 > 0
oo
(26)
ﬁ(t)==9§(xo—§<m)e_Ut-+un ;o lim Q(t) =G =u (27)
where ﬁm, Em, i, denote optimal long-run solutions and
1
2. 2 3
U=ﬁ=£((l+4c7)2-1) >0 (28)

is a coefficient measuring the speed with which inflation and

unemployment approach their respective long-run optimal values.
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This speed attains its maximal value when r—->0:

=14 _C
umax-llm V=g (29)
r->0 a=
2
The ratio of this maximal speed to the depreciation rate r
v
_ max _ C

or, more precisely, its squared value v2, plays an important role
as a basic aggregated parameter in the analysis that follows.

Observe, for example, that the ratio v/r, as specified by (28),

'_l

is a function of v2 alone, u/r==%((l+4v2)2-l). Suppose the

depreciation rate r is given and fixed, and the parameter v2 is
changed by choosing an appropriate weighting coefficient g; if
g>«, then v2+0, if g+0, then v2+w. The graph of v/r as a func-

tion of v2 is given in Figqure 1.

)
T J
r
10.0
40 - ———_—— —— — —
|
10 4 ————— I
| |
| |
‘ |
0.1 4 I
Too slow Reasonable | Too high
control I results | sensitivity
| |
0.01 — ‘ — —
0.1 05 1.0 5.010.0 50.0 100.0 y2

Figure 1. Dependence of the relative speed of control v/r, on

the aggregated parameter v2==—%—.
r

q
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Since a reasonable value of the depreciation rate is r=0.1/
year, parameter values that result in a ratio v/r< 1 might be
considered as not acceptable socially: the speed of approacning
long-term solutions is too slow in such a case. The ratio vu/r=l
is obtained by v2=2, vV/r=4 by v2=20. We shall show that all
policies become very sensitive to modeling errors (i.e., become
rather impracticable) for v2 much larger than 20, while they re-
main robust for vz between 2 and 20. For this range of param-

eters (v2_12) we can also reasonably approximate V by Um X==C/q%

a
and V/r by v (see the appendix).

The optimal value of the welfare functional (10) can be

determined as a quadratic function of xo—Rm

=W -af - 50%% (31)
where

f o=L(1-1L u2(1+9£2—)) (32)

0 “F\+T3 94, C2

. au,

AW=—C—(X0-X°°) (33)

%W =K(x,-%)° (34)

The term WO stands for social welfare in equilibrium
(characterized, as noted above, by the absence of expectational
errors) AW is the first-order approximation of welfare losses
due to an initial disequilibrium (characterized by the differ-
ence between the initial and long-run optimal rate of expected
inflation), and A2W is the second-order approximation of such
losses. Simplistic modeling or imperfect information increase
sucn losses further; however, the additional losses are always
of second-order form and shall be thus compared with the
term Azﬁ.

Moreover, the maximal value of the Hamiltonian function,

interpreted as a shadow price for passing time 1is
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5 —1-1g? _g ° cc. _
Ct(t)—l 22 (t) 2ﬁ(t)+;(t) C -« (Q(t) un) (35)

Before proceeding to the definition of alternative policy
rules, consider the following short-hand description of our
basic and extended models. Define the vectors of parameters

which distinguish the extended from the basic model as
a=(B,y,1) a=(0,0,0) (36)

and let ﬁn=un+8. The extended model is

W=f°° e T (1-2 x? () -9’ (1)) at (37)
0
subject to R(t)==-C(u(t-T)-un-B-%(u(t—t)-un-B)z).

We denote this model by M(a). Clearly, the extended model

is identical to the basic model (11) if a=a. We denote the basic
model by M(a). The variables of the basic model depend on the
parameter a and will be denoted 2(t,a),Q(t,a), etc. We approach
the solution to the extended model as that of the basic model

through techniques related to the implicit function theorem.

Now consider alternative policies, all of which are optimal
when applied to the basic model, but which might yield different
solutions when applied to the extended one. The simplest policy

is the open-loop optimal control:
u¥(t,a) =a(t,a) (38)

obtained from the basic model and applied to the extended one.

Another policy is the classical closed-loop optimal control
defined by a function {i(t,a) which depends solely on the current
%(t,a) and not on the initial value x,. When comparing (25),

(27) it is easy to see that ﬁ(t,§)=%2(t,§) + (l—rK)un; when
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implementing this policy rule in the extended model, however,
%(t,a) is substituted by expected inflation x(t) taken from the
extended model. Thus, the classical closed-loop optimal control
is

u€(x(t) ,a) = Qq‘ix (£) + (1-rK)u_ (39)

Another alternative policy is the optimal trajectory track-

ing control:
ut(x(t),a) = {u(t) such that x(t) =R(t,a)} (40)

which means that the rate of expected inflation x(t) which
emerges from the extended model is maintained at the pre-

determined path &(t,a).

All these alternative policy rules (38), (39), (40) are
members of an infinite family of closed-loop controls parameter-

ized by a coefficient A:

CK

ut(x(t),a) =a(t,a) +2 - o (x(8) -%(t,a) (41)
. A 0 _ , A _
If A=0, then u’ (x(t),a) =u (t,a). If A=1, then u (x(t),a) =
uc(x(t),g). If the extended model (37) taken together with the

policy rule (41l) remain stable as A+ which can be shown to be
the case if 1=0, then it is easy to check that ux(x(t),g) -

t

u-(x(t),a).

For intermediate values of A, however, we have a parametric
policy rule which dictates that a linear combination of unemploy-

ment and expected inflation, observed from the extended model,
u(t) - A -9%5 x (t) follow the predetermined patn fi(t,a)

-1 -2t

Aside from this infinite number of policy rules, these are
yet further possibilities. Since the optimal control maximizes
the Hamiltonian function (16), the policy maker may employ in
the open-loop Hamiltonian maximizing feedback (see Wierzbicki
1977) :
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a™ (2 (¢, 2) ) (42)
=ar 1 2. . q .2 -
=argmax (1-zx"(t)-Fu”(t) - z(t,a) -£(u(t),a))

with u(t),x(t) are taken from the extended model, and f(u(t),a)
= %X(t) is the derivative of state variable as measured in the
extended model. In other words, we compute the value of the
current welfare function and, using the Phillips curve of the
extended model as well as the shadow price for the accumulation
of inflationary expectations g(t,g), we maximize the difference
between the current welfare and the cost of future inflation.
However, we need not use a predetermined shadow pricevi(t,g);
since we also know its close-loop form E(t,g)==K§(t,g)-+M, we
could also use the measured x(t) for corrections of this shadow
price. This results in the closed-loop Hamiltonian maximizing
feedback:

a2 (x(t) ,a) ,0)
(43)

= argmax (1—%x2(t) —%uz(t) - (Rx(t) + M) f(u(t),a))
u(t)

The Hamiltonian function (16) can also be rewritten in a differ-
ent form. For example, the relation

1.2

1-2x° (t) —%uz

(t)

ufo(

(t,a),L (t,a),a) =argmax - 2
u(t) g (tli) «£(u(t) 19_)+Ct(tli)

(44)

yvields also ufo(Z(t,g),iT(t,g),g)==ﬁ(t,§) at o=a; while it might
yield different solution when o #a. This is the open-loop,
benefit-cost control. Observe that if Et(t,g)so would hold,
then E(t,g) would not affect the maximization in (44) and the
resulting ufo(g(t,g),O,g)=ﬁ(t,g) would be optimal for the ex-
tended model no matter what errors a #a were made in the basic
model. Thus, the benefit-cost control is perfectly robust if

the cost of passing time is negligible. However, in the example
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considered here, Et(t,§) #0 and it will be shown that this con-

trol policy has some undesirable properties.

If Et(t,§) #0, then the errors in determining the shadow

prices can be corrected in a close-loop structure

w™ R x (1)), B, (x(8),2) @)

1-2x% (£) -Zu (¢)
= argmax — (45)
u(t) (Kx(t)+M) £(u(t),a)+c, (x(t),a)

where Et(x(t),g) is determined as in (35) but with u/t) and z(t)
substituted by (17), (20); x(t) is taken from the extended model.

Clearly, it would be possible to generate yet other policy
rules, each involving observations from variables from the ex-
tended model and a scheme for influencing these variables which
is basic-optimal (i.e., yield optimal solutions whenever a=q).
However, we restrict our attention to the policy rules listed
above. If the probability distributions of the model parameters
were known, then a dual stochastic optimal control and estima-

11) could be formulated and possibly solved. Yet,

tion problem
such problems are notoriously difficult. In this paper we

concentrate on the derivation of policy rules when the param-
eter distributions are not known. Such conditions call for a

different methodology, to which the following section is devoted.

4. METHODOLOGY OF ROBUSTNESS ANALYSIS

Consider a given policy rule ul, mapping the variables
measured in the extended model into the control actions for this
model. This policy is defined with the help of the basic model

and thus depends on parameters a (see Figure 2).

Suppose it is at least conceptually possible to so;ve the
extended model under this policy rule, thus obtaining xl(t,g,g)
and ui(t,g,g); these results depend on the policy rule i as well
as on the parameters o,a. Similarly, suppose we could compute
the social welfare functional of the extended model under this

policy rule:
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(46)

If we were able to optimize the extended model and compute
the corresponding social welfare functional ﬁ(g), we would find
that Wi(g,g)iﬁﬁ(g), since the differences between the basic
model and the extended one (a # o) imply that the policy rule
may not be optimal for the extended model. Thus, as a measure
of the robustness of a policy rule, we use the welfare loss of

applying this rule to the extended model:
st (a,a) =W(a) -W'(a,a) (47)

However, since the extended model is more complicated than
the basic one, a direct computation of ﬁ(g) and Si(g,g) may be
impossible. On the other hand, the function Si(g,g) has several
useful properties that facilitate its approximation even Zf only
the solutions of tﬁe basic model, but not those of the extended model are

known. First, Sl(g,g) is non-negative:
a,a) > 0 ; Sl(g,_al) =0 for all a=a (48)

Therefore, if st is differentiable, its first-order derivatives

are zero for all a=a:

(a,a) =0 (49)

It follows further (see Wierzbicki 1977) that if st is twice
differentiable, its second-order derivatives have a specific
symmetry property:

(9_12) =-5

v -
| +
|
|
fe)
|
|
I -
i@
|
!
v
|

2

(50)
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Therefore, Sl(g,g) can be approximated by

i 2
aa (@a) +o(lla-al[D) (51)
where o(+) is a function converging to zero faster than its‘

. Al
argument. As a next step, we need a method for computing S a”
If we could approximate the differences between xl(t,g,g), T
ul(t,g,g) and k(t,a),0(t,a) which would be optimal for the ex-

tended model

x(t,0,a) - R(E,0) =% (t) - (a-a) +o(]||a~a| ]

(52)
i ~1
ut(t,a,a) -Q(t,a) =84 (t) « (a-a) +o(||a-al]) .
then we could easily 12) determine the quadratic form of the
approximation (51):
1 Tal
7(e-2) 75, (a-a)
= %/e—rt( (Xt () - (g-g)2 +q (Rt (t) (g—g))z)dt (53)
0
~1 ~1i .. 13)
However, x (t) and u (t), called extended structural variations ,

are usually not directly computable. It is usually simpler to

compute the basie structural variations

xt(t,0,a) -%(t,a)= x5 (t) - (a-a) +o(||a=a|])
(54)

ul(t,0,a) - (t,a) =G5 (¢) - (a-a) +o(||a-a||)

These approximate the difference between the extended model (un-
dergiven policy rule, or in given control structure) and the opti-
mal solutions in the basic mode. We wish to express the ex-
tended structural variations, in (53), via the basic structural

variations minus the basic optimal variations:

2i(e) =z (e) - %(b)
(55)

al(t) =at(e) -ace) .
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For this purpose, we must compute the basic optimal variations:

2(t,0) - R (t,a) =x(t)- (a-a) +o (| [a-a]|)
(56)
(t,a) -a(t,a) =u(t) - (a-a) +o(||a-a|]|)

The interrelations among the optimizations of the basic
model, the extended model, and the solution of the basic model
under given policy are illustrated in Figure 2. The usefulness
of the method above lies in the fact that although the extended model
might be difficult to optimize or to solve explicitly wnder given policy rule,
the variational equations that determine the basic optimal variations and
basie structural variations are usually much simpler than the extended model
itself. The reason is that these variational equations are solved
along the solutions of the basic model, at the parameter value a.
For example, if the extended model contains delayed variables,
the variational equations related to the influence of the delay

are not delayed themselves.

Observe now that if a is a column vector of p parameters,
ii(t)and ﬁi(t) are, in fact, row vectors of p variations corre-
sponding to these parameter changes; thus x%T(t)xi(t) and
uiT(t)ui(t) are pxp matrices. The matrix §; thus has the

a
forml4) T

5 =f e Tt AT () kb (8) + quiT(e)ut(v))ae (57)
0

|y P

a

In order to analyse fully the approximation (51), we should

actually compute the matrix é;.a

bounds on the changes a-a, and approximate upper bounds for (51)

, estimate independently some

by eigenvalue analysis. Though such an analysis is straightfor-
ward, yet, for the sake of simplicity, we shall only compute the
diagonal elements of §;23, use some upper bounds on the elements
of a-a, and compare the results for each element of this vector
independently. The reason for this simplification is that we do
not wish to concentrate on joint effects of the changes of vari-
ous components of a. Rather, we would like to investigate the

separate effects o0f each policy rule on the welfare loss
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approximation. It will be shown that these effects differ widely

from one policy rule to the other.ls)
n Wi )?
W(a) o Optimization ? L)
o s i ptimization ? |
Optlmlze.mon Difference: of the Extended —A—’_—i
%(t;a), G(ra) | of the Basic Model | @—rerrr w0 Model Xit, &) 8(t,&) ?
M(a) Variations M(£)
Difference:
y Extended Structural
Variations
Wi, a)
Conclusions: u'(t) Extended Model [—>—°
—— Policy Rules - M(< ) x'(t)
u'(x(t), & ,a) = ——o

Measured Variables

Figure 2. Block-diagram representation of the relations between
the basic model, an extended model together with a policy rule,
and an optimized extended model.

5. COMPARISON OF POLICY RULES ON EXTENDED MODELS
5a. Bounds of Parameter Changes

If the methods discussed here were to be applied empirical-
ly, bounds on parameter changes R,v,T would have to be estimated
by econometric methods. In this theoretical paper, however, we
simply assume relative bounds on these parameters. The assumed

bound on the changes of B is

£

(58)
rq

181 s =

max

N

|x0-2w|
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i.e., the error in evaluating u is related to the divergence
between the actual and long-term expected rates of inflation,

and thus also to the divergence between the actual and natural

rate of unemployment {(since B=ﬁn—un and un=ﬁm==—c—v2oo see the
appendix). We assume also that the error in Yu, is of similar
nature
1 C N
|Y|max Y i 2|x0-xm| (59)
rqu

Finally, for the delay 1 we assume a relative bound

-1 _ 9
Thax = 4u T4
max

. (60)

since the relative effects of an overlooked delay t are charac-
terized by the number ut (see the appendix).
5b. Sensitivity to Errors in Estimating Natural

Unemployment Rate

In this simple case we know the optimal solutions for the

extended model, just substituting un by ﬁn in (25), (26), (27).

Thus, the basic optimal variations are obtained immediately

%(t,8) -%(t,a) = 8(1-e"H) I 5 k(e) = Z-eTVY
(61)
a(t,B) -(t,a) = B(l-rke YY) ; u(t) =1 -rke Yt

with B=ﬁn—un; we assume B #0, y=0, T=0 in this subsection and
denote X(t,a)=8(t,B), G(t,a)=G(t,B) in this case. The basic
structural variations depend on an assumed policy rule. Con-
sider first the family of closed-loop controls (41) and substi-
tute it into the extended state equation (12) to obtain (assum-

~

ing C=C):
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Again, in this relatively simple case we can solve the extended

model analytically:

x*(6) =853 (1= +2(t,a) (63)

and determine the basic structural variations

1, A _ _cA - 9 -Aut
E(x (t) -&(t,a)) =x"(t) R (1 -e )
(64)
Tt () -act,a)) =3t (e) =1-e7MVE
which, in turn, imply together with (61), (56) the extended
structural variations
~A _rqg 1 _a-Avty o -ut,
(65)
ﬁx(t)==rKe_Ut-e-AUt

Now we can compute the second-order derivative of the welfare
losses Sx(g,g) with respect to B8:
A ® - . 2 . 2
8% =fe M e f+q@t e Yae
0 (66)
2 (1-2) (1+rK + A (1-2rK))

(rK+X (1-rK)) (rK+2x (1-rK))

= %(l—rK) (2 +1)

In this simple case the function Sk(g,g) is a gquadratic
function of B8; hence the welfare losses associated with B are
1. 22X
=B"S .
2° Sgg
does not depend on units of measurement, we use the ratio of

2 N
Bmax Sx and A2W (the ratio of losses due to inexact parameter

BB

estimation to natural losses due to an initial disequilibrium

In order to obtain a coefficient of robustness which
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2 aA

A Poax Sgg _ (l—rK)3(l+2 (1-)) (1+rK +} (1-2rK))
B Azﬁ 4(rKf (rK+A (1-rK)) (rK+2A (1-rK))
(67)

If A=0, for the open-loop policy, this robustness coefficient

takes the form

~0 _ (1-rK) 2 (2+2rK + (rK)?)
Ry = z (68)
4 (rK)
For A=1, the classical closed-loop policy, we obtain
3
RS = IR (69)
4 (rK)
and for A+x, the optimal trajectory tracking policy:
st _ 1l-rK

We can also determine the feedback coefficient XB that minimizes
(67) and thus provides for the best robustness in this policy

family:

N =

(((rK)2 + 2rK - 2) + 9(rK) 2 (1-rK)) % = ((rK) % + 2rK - 2

B 3rK (1-rK)

>

(71)

All these results depend on the parameters rK, which are deter-

2

mined, via (23), by the parameters EE = v®, the squared ratio

rq
of the maximal speed of controlling inflation and unemployment,
C

Vhax ~— 1Y to the time discount rate r. Thus, when analysing
937

robustness coefficient graphically, we shall employ the parameter

1
v2 instead of rK=((1+4v%)?% - 1)/2v2.
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Figure 3. Dependence of the robustness coefficient ﬁg on v2

and X\.

The graphs of ﬁé as a function of v2 and A, presented in
Figure 3 indicate dramatic changes of robustness--upto 103 times
and over--depending on the choice of A. This can be interpreted
in tne following way. When the attempt to maintain precisely a
predetermined path of unemployment (at A=0) or a predetermined
path of expected inflation (at A+») is made, even slight errors
in the evaluation of the natural unemployment rate u, can result
in large welfare losses. However, if an appropriate combination
of unemployment and expected inflation, G(t,a)-A %? &(t,a) with

A close to A is chosen as a policy target, small errors in the

'
evaluation OE u. do not cause significant welfare losses. We,
however, see that even the choice of A cannot reduce welfare
losses sufficiently, if the parameter v2 becomes much larger
than 20--which would correspond to the desire of obtaining fast
results in controlling inflation (high v/r, see Figure 1) by

attaching a small weight g to unemployment.
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Consider now the open-loop Hamiltonian maximizing policy:

uP° (2 (t,a) ,a)
(72)

= argmax (1—%x2(t) -%uz(t) +E(t,g) «C e (u(r) —ﬁn))
u(t)

The fact that we measure the accurate current speed of change of
inflationary expectations, Xx(t) = -C(u(t)-—ﬁn), does not influ-
ence the maximization in (72); no matter what ﬁn is taken, we
obtain

uho

(Z(t,a),a) ==z (t,a) =Q(t,a) =u®(t,a) (73)

Q|0

Thus, the open-loop Hamiltonian maximizing policy is equivalent
to the simple open-loop policy, if no changes of the functional
form of the Phillips curve are considered. Similarly, it can

be shown for this case that
u? (g (x(t) ,a) ,a) =u(t,a) (74)

the closed-loop Hamiltonian maximizing policy is equivalent to
the classical closed-loop policy. Since the simple open-loop
and the classical closed-loop are not the best choices from our
given set of policy options, it is not desirable to pursue

Hamiltonian maximizing policies.

The benefit-to-cost optimizing policies perform even more
poorly. By setting f(u(t),g)=-%3(u(t)-un-6) and computing the

maximum of (43) we obtainl6)

o u(&,4,a)
wT(E) =B +8(,3) +arE ) (75)
U(x,q,a) 1
) 22 2 1, f )
((B+0(t,a) + —ere) = 2 (1 2 (x50 (1)) 7)) 2
where ufO(t)=ufO(’C‘(t'i)l Et(tli) ,9) and U(ﬁ,ﬁ,i):l-%ﬁz(tré)

..%ﬁz(t,g) for the sake of notational economy; xfo(t) denotes

here the state x(t) measured in the extended model under the



-34-

policy rule (75). Now, if we substitute (75) into the extended
model kfo(t)=-42(ufo

tial equation

(t)—un—B), we obtain a nonlinear differen-

o U(%,4,a) (76)
X (t) =-C(ﬁ(t,§) -un+ —qT(_t—,_)
u(%,4,a) 1

As noted in the preceding section, we do not have to solve this
fo

equation. It is sufficient to linearize it in B at B=0, x  (t)=
&(t,a) to obtain the equations for basic structural variationsl7).
A A 2
*fo G(t,a)x(t,a) 2g4 qu”(t,a)
= + + 1 ;
x8) =C —wmEn f O Clyrma
x5°(0) =0 (77)
/\2 A oy
-fo q” (t,a)  G(t,a)k(t,a) _
u(e) == uX,8,a) T u(%X,4,a) X7 ()

When taking into account (56), (61l), we derive also the equations

for extended structural variations

G(t,a)k(t,a)

() =c TR % (t) +cnfo(t,a) ;%0 =0
G(t,a)&(t,a)
3" (t) R F o0 -0 t,a) (78)
q8” (t,a) G(t,a)&(t,a)
fo _ = = -ut | ¢ = "= -ut
n (t,g)-—l-+U(2,u,§) rKe -+7? 77,0, 3) (1l-e )

The differential equations in both (77) and (78) are unstable if

U(%,Q,a)>0 which occurs when &(t,a),4(t,a) are sufficiently

small. Thus, also the equation (76) is unstablels), if
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U(ﬁ,ﬁ,§)>0. In other words, the benefit-to-cost maximizing

policy invariably leads to unstable results wherever there are

errors in the evaluation of the natural unemployment rate. On

the other hand, this does not imply that the welfare loss under

this policy is necessarily infinite; it might be finite if r>>
(t,a)R(t,a)

¢ U(X,4,a)

for all t. However, even in such a case, when

~fo
u

computing ifo(t), (t) under somewhat simplifying assumption

that x0=ﬁm (see the appendix) it can be shown that

~fo 2

&Pwn? > @Cwn? i @

~ 2
(t) < > (8°%(¢)) (79)
which implies that the welfare loss under the benefit-to-cost
maximizing policy is larger than under the simple open-loop
policy. Since a similar 'result can be derived for the closed-
loop benefit-to-cost maximizing policy, we conclude that these

policies are not desirable ways of dealing with the problems of

inflation and unemployment within our analytical context.lg)
5c. Sensitivity to Mistaken Functional Specification
We assume here that o=(0,v,0), i.e., the extended model

takes the form:

kw)=—ChMt)—un- hﬂt)—%gz) 7 x(0) =x (80)

N

0

The problem of maximizing (10) subject to (80) does not admit an
analytic solution; however, this problem has solutions for suf-
ficiently small y and these solutions are differentiable in Y.
This can be seen by writing the Hamiltonian function for this
problem

H(Z (), x(8),u(t)) =1-2x% () -Fu? (1) +2(v) - C

(ue) ~u - Lu(e) —u)?) (81)

and the necessary conditions of optimality
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H =0 @ qu(t) +YCI(t) (ult) —u ) - Cg(e) =0 (82)
C(t) —xg(t) =H_ = £(t) =xz(t) - x(t) (83)
%(t) =-H_ * &(t) =-C(u(t) ~u_ -Y(u(t) -u)?

x(0) =x, (84)

and observing that the Hamiltonian function remains concave for
sufficiently small y and a corresponding Riccati equation has a
backward stable solution which depends differentiably on the

parameter y; similarly, the solutions of (84), (82) depend then
differentiably on y. However, we omit these details here, and

show only how to derive basic variational equations.

Denote the solutions of this problem by ﬁ(t,y)=ﬁ(t,g)+yﬁ(t)
+o(y),&(t,y)=8(t,a)+yx(t)+o(y), E(t,y)=2(t,g) +yZ (t)+o(y) and
rewrite the equations (82), (83), (84) as

[qli(t,a) - C8(t,a)] +y(qu(t) - CT (t)

+Cg(t,a) (G(t,a) —u )) +o(y) =0 (85)

[Z(t,a) -rl(t,a) +&(t,a)] +yZ(t) =y(rz(t) - x(£)) +o(y)

(86)

2

& (t,a) +C(a(t,a) =u )] +yx(£) =-yC(ule) - 1(a(t,a) -u)?)

roly) ; %(0)=0

(87)

Since the expressions in square brackets are zeros--cf. (17),
(18), (19)--we subdivide the remainders by y and let y+0 to

obtain

a(t) =§§(t) - G(t,a) + (G(t,a) -u) (88)
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T(t) =rs(t) -x(t) (89)

i(O) =0 (90)

since g-i(t,§)=ﬁ(t,g); the last equation is obtained by taking
into account (88). Observe tgat, if ﬁﬁt,g)=un, under initial
equilibrium conditions, then z(t)=0, x(t)=0. If ﬁ(t,_e_l_)—un
increases, whigh might be caused by an increase of xo—ﬁw, then
also g(t) and x(t) will, in general, increase. Thus, the sensi-
tivity of optimal solutions to the parameter y increases with
the distance from equilibrium. While it is possible to solve
the equations (89), (90) in their geheral form, we can signifi-
cantly simplify computations by assuming approximately that
ﬁ(t,g)-un:e u_, that is, by solving these equations at a stan-

n
dard distance from equilibrium. In this case, we obtain

x(0) » 2ul H(1-e™ ;L) ~3ulT (1-rke™VY)
a(t) ~ ul (1-5rke” "% (91)

Consider now the family of closed-loop policies (41). The

extended model equation under these policies takes the form

) (6) =-c(a(t,a) —uy + 2 52 (e) - &(e,2))

o 2
- (@, (g,a) a2 KA O R(E2DD o 62)

Again, the solutions of this equation are differentiable func-
tions of y, x"(t)=R(t,a)+yx  (t)+o(y), u’(t)=a(t,a)+ya  (£)+oly) .
When linearizing (92) by the same technique as applied for (82),
(83), (84), we obtain



_38_

. 2
;<>\(t) ==X %E)\(t) +%C(ﬁ(t,_§) - un)2 H x"(0) =0

(93)

Under the approximative assumption ﬁ(t,i)-unzlﬁv (93) yields

2
u g - - -
1T “n (1-e Aut) ; ux(t):e 1 i AVE

2 XKC ) (94)

ix(t) ~

The basic structural variations ix(t),ﬁx(t) and the basic opti-

mal variations §(t),ﬁ(t) determine extended structural variations

N 2 1 -2 -
2 (t) z-%un 2 (ogg (1=e Uty _5(1-e7V%y)

(95)
3 (1) ~ %ui(SrKe_Ut - e~ AVE

and, in turn, the second-order derivative of the welfare loss

s =f TR (M e))? + q@(r)) %) at

I 4 2
N 25un-rK d (1 - 1 . 9r2K2+2rK—2+19A(1—rK)rK )
= 2 50r2K2 (rK+A (1-rK)) (rK+2A (1-rK))
(96)
A dimensionless robustness coefficient is
2 A\
ﬁx"lYlT§X SYY
Y AR (97)
25 1-rK 1 2g2
~ 22 K (1 - . _9r"K"+2rK-2+19) (1-rK) rK
32 "xK s0g2g2  (TKFA(T-R)) (TKF2X (1-TK) )

and it takes the following forms for A=0 (open-loop policy),
A=1 (classical closed-loop policy) and A+» (optimal trajectory

tracking) :

~0 -
R, ~ 125 (s0r’k” - 9r’k® - 2rk + 2) (98)

64r K
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2% ~ g'ng (=50r K349 1r2K%-2rK+2) (99)
Y 64r K’ (2-rK)

Y 3 rK

w
4

The feedback coefficient iY that minimizes (97), thus providing

for the most robust policy from this family, can be determined as

0, if 4r?K2+3rK-3>0 <rK>0.758 *v%<0.42
1
XY = ((9r2K2+2rK-2)2-19r2K2(4r2K2+3rK—3))2.—(9r2K2+2rK-2)
19rK (1-rK) !
if v2>0.42.

(101)

Similarly as in the previous subsection, we represent these

results as a function of the parameter v2=l%£% rather than rK

(see Figure 4). The dependence of the robﬁs%ness coefficient
ﬁi on ) is rather weak--except for larger vz, when the application

AN AN
Rr Ry
2

10¢ + 102 .r

100
10-1 Jr 10—1 1
v2=02
10721 1072¢
10-3 . — + 1073 , , ., .
01 05 10 50 100 500V2 001 0.1 1.0 100 1000 A

Figure 4. Dependence of the Robustness Coefficient R on v2 and ).

<>
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of X< XY is not advisable.

A

However, since X\ >XY (see Figure 4a) and ﬁi does not rise

B

steeply for A>iy, we may presume that the feedback coefficient A

A

should be chosen to A to provide for greater robustness with

8’
respect to the uncertainty about natural unemployment rate than
with respect to the uncertainty about the functional form of the

Phillips curve.

A simplified form for a compromise i (that is close to XB

but satisfies A <X<XB) can be obtained by assuming
5= L (102)
rK
(see Figure 5a). If this particular X is chosen, then the

policy target ﬁ(t,g)—x %(}’E(t,g)= u(t)-;\ %x(t) can be

NS
Rp, Rpr 7
A
104 102 {
8+ 10!
614 109
st 10~
2+ 3 10724
= /
0 + T + —+ %10—3 —t T T + v
0.1 05 1.0 50 100 500 0.1 05 1.0 50 100 50.0
v v

~

Figure 5. a) Comparison of Optimal Feedback Coefficients i A,

and \_; B’

Y ~ ~
b) Comparison of Robustness Coefficients RX and RA at A=) and of
the Relative Speed v/r of Controlling Inflgtion Tdwards Its Long-
term Value.
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transformed to the form

-ut

C _ . _ EL

u(t) ;ax(t)—e (un rqxo)e (103)

where

1 1

2 2,1y2 2 2,2
e=q-pg=2=lHVTFDT 2 Cc L (VT T -

2 2 3
2V rq
(104)

This means that a robust policy is to choose money supply
rate m as to keep the combination of unemployment and the ex-
pected inflation, u(t)--ﬁ%x(t), at the predetermined trajectory
£ (u --E—xo)e_Ut. The robustness coefficients ﬁé and ﬁi corres-
ponding to this policy are shown as functions of v2 in Figure 5b;
parallel to this, Figure 5b also displays the coefficient % -
the relative speed of controlling inflation towards its long-

term value--from Figure 1.

The graphs in Figure 4b should be interpreted as follows.
Once a coefficient A and thus a robust policy form has been
chosen, the robustness coefficients depend on basic parameters
of the model. The aggregate parameter v2 can be inversely in-
fluenced by the choice of weighting coefficient g at the un-
employment rate u(t) in the social welfare functional (10). If
this coefficient is large enough, such that the resulting v2 is
small, say, “2i2' then the attainable robustness coefficients
are quite good. However, for v2i2 we have the relative speed
U/ri1, which means that we control inflation slower than the
time discount rate--a solution that is socially not acceptable.
To increase the relative speed, we must go to v2>2; at v2=20
we obtain vu/r=4, which with r=0.1/year would give v=0.4/year,
still a moderate speed of controlling inflation (a reduction of

circa 40% of the original distance x,-X in a year). However,

0
the robustness of the solution suffers from the choice of the
higher relative speed. If some impetous decision-maker would

promise his electorate to bring the inflation down in a year
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(say to‘achieve v/r~10) he would have to go as far as to v2~100,
where tne robustness coefficients are rather bad; errors in model
specification might then easily result in social welfare losses
several times higher than the social welfare losses due to the

initial difference xo-Rm.

Admittedly, the results shown in Figure 5b are based on the
and |vy| . While these bounds do not in-

ax max
fluence the conclusions on the choice of the feedback parameter

assumed bounds |B8[_

A, they do influence the actual values of robustness coefficients.
Thus, an impetous decision-maker could require more precise
econometric estimations of the bounds on parameter uncertainty.
Our theoretical exercise does not permit us to draw conclusions
about the desirable degree of accuracy for parameter evaluations;
it provides only possible guidelines for the econometric pursuit
of such conclusions. However, given an attainable degree of
accuracy, the results will have the same qualitative character:
the faster we try to achieve the long-term goals, the more sen-

sitive to model errors are the results of our policy.

For the sake of brevity, we omit here the discussion of
Hamiltonian-maximizing and benefit-to-cost maximizing policies,
although the former policies might make sense in the case of a

mistaken functional speicification.
5d. Sensitivity to Delays

We assume here 0=(0,0,t), that is, the extended model takes

the form
x(£) =-C(ul(t-1) -u_ ) ;

x(0) =x u(t) - given for t€[-T1;0) (105)

0 !
The problem of maximizing (10) subject to (105) is, in fact, not
very difficult to solve (see the appendix). However, this is
due to the special form of the problem and we shall proceed as
if we did not know its explicit solutions. We can do so, be-
cause we know its solutions if 1=0 (the basic model solutions)

and we need only linear approximations of its solutions for
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small t. We denote the 'unknown' solutions by &(t,t), Q(t,1),

20)

A(t T); assuming their dlfferentlablllty in T at =0, we
postulate R(t, T) =R (t, a)+rx(t)+o(r), a(t,1)=0(t, a)+ru(t)+o(r),

z(t,1)=¢ (t,<_a_)+TC (t)+o(1).

The necessary conditions of optimality for problems with
delays in control (see, for example, Wierzbicki 1970) require
that the following shifted Hamiltonian function is maximized

H(Z(t+n), x(t) ,u(t)) =1-2x%(t) - Su’(v)

+ g (t+t) « C(u(t) —un) (106)

where the delay in control is compensated by a forward time
shift (of both z(t) and u(t-t1)):; the adjoint equation for the
shadow price g (t), however, remains in its classical form if
there is no delay in state variables. Thus, the necessary con-

ditions of optimality are:

ﬁu=0 < a(t, 1) =% c(t+T,T) (107)
é(tlT) —ri(tlT) =HX had é(tlT) =r£(tl‘[) _ﬁ(tl‘[) (108)

Q(tIT) =—H§ < Q(tIT) =_C(ﬁ(t-TIT) _un) 7
(109)
2(0,1)==x0 , G(t,t) - given for te&e[-t1;0)
Now subtract the terms #(t,a)= E(t,g) from both sides of
Q1

(t,1)., E(t,T) to obtain:

Maln

(107) and use the postulated forms o

ta(t) +o (1) =S(E(t+t,1) - 2(t,T) +L(t, 1) - 2(£,a))

flofle!

(110)

_._C z(t+1,T)-C(t,1) , 2 o (1)
=T - +T(E) + )
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When subdividing by 1 and letting 1+0 (observe that z(t,0)=
E(t,g)) the equation for the basic optimal control variation is

obtained:
(111)

(t,a) +2(t))

Y De

(

Q0

(t) =

cb

The same technique can be used for deriving the equation for the
basic optimal state variation, which takes the form
x(0) =0 , (112)

X(t) =-C(u(t) -Q(t,a)) i

while the equation for the basic optimal costate variation is

easily derived as
(113)

T(t) =rZ(t) - x(t)

All these variational equations do not contain delayed terms, al-
though they approximate a problem with delays; they are there-
fore easy to solve.

Observe now that ﬁ(t,g)=%2(t,g); substituting this equa-

tion into (111), (112), we obtain:

i‘ C2 a3

x(t)=-7§-c (t) (114)
Since the system of equations (113), (114) is homogeneous, its
solutions are of the form Z(t)=K§(t) where K is defined as in
(21), (23); but if x(t)=SZKx(t) and x(0)=0, then x(t)=0 and
T(t)=0. Thus, we have the basic optimal variations

u(e) =-zi(t,a) = v xg-0e ™Vt 5 x() =0,
(115)
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Consider now the family (41) of closed-loop policies. The

extended model equation under these policies takes the form:

2 () =-c(Q(t-1,a) w0 & (x (£=1) - &(t-T,a))) ;
xx(t)-given by (105) for te[0; 1] (1le)

Provided that the equation (116) is stable, we can approximate its
solution as a differentiable function of time. By subtracting
tne basic model equation from both sides of (116), subdividing
by 1 and letting 1+0, we obtain the equation for basic structur-
al variations

X' (£) =-A0X* () +CQ(t,a) ; X (0) =0 (117)

which yields the solution

X (1) =527 (% - 8,) (e7MVE eV (118)

and while taking into account (41)

=X _y CK =X _ A CK o -Avt _ _-ut
u’ (t) =A g ¥ (t)-—X:T\)(I(xo %) (e | e ) (119)
Thus, the extended structural variations are
3N (6) = XM (8) - X(8) = 2o (x, - &) (eTMVE - e7VE
A=-1'70
(120)
~ A _ =X _= _CK _ A Avt 1l _-ut
4% () =u”(t) ~u(t) = g (% R, (3= = )

and the second-order derivative of the welfare loss is deter-

mined as
/\A ) _ . N
she=f et @ en 2+ gt o) Y a
0 , (121)
=r(x -2 )2 (l-rK)
0 0o rK(rK+2X (1-rK))
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1
q_
If we assume Tmax:=4ul =Zg-,then the robustness coefficient
takes the form max
2 A
ﬁk__rmax STT - (l—rK)2 (122)
T AZW 4 (rK+2) (1-rK))

Observe that this robustness coefficient decreases monotonically

with A. However, if we assume A=), we obtain relatively small

values of ﬁi as shown in Figure 6.

ah
10! 1
Y
100 ¥
1077 ¢
-2 R \ .4
1074 ¢ ak ah
Ray Re
1073 1
1074 — . \
0.1 05 1.0 5.0 10.00 500100 2
Figure 6. Comparison of Robustness Coefficients ﬁg,ﬁi and ﬁx
with A=%. T

Thus, we can conclude that the omission of delays in the basic
model does not jeopardise the successful application of closed—-loop policies
to the extended model with delays--provided that the extended model
remains stable and the approximation of the welfare loss remains
valid (observe that a correctly computed éir would increase

sharply, even to infinity, if the extended model becomes un-
stable).
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Therefore, we must investigate stability conditions of the
equation (1l16). Since this equation is linear, it is sufficient
to analyse the stability of its homogeneous part:

X(t) =-Aux{t-1) ; x(t) =0 for £t<0 , x(0) =x (123)

0

When applying Laplace transformation to both sides of this equa-

tion, we obtain
S - X(s) =-ive '°x(s) (124)

and we can use (see the appendix) the classical Nyquist crite-
rion for the stability of a feedback system. The result is that
the equation (1l16) is stable, if

m
TV < ﬂ (125)

(where m=3.14 ...). Therefore, the use of a sufficiently large
feedback coefficient A would destroy the stability of the system.
Moreover, it is known from the classical theory of feedback
systems, that the condition (125) should be satisfied with 50%
margin

T

U < Yoy (126)

in order to obtain approximately aperiodic solutions of (116),
which is necessary for a satisfactory approximation of xx(t) by

2(t,§)+rix(t), since both Z(t,a) and ix(t) are aperiodic.

We can investigate further the condition (125) if we assume

A ~ ~ 2
A=X, consider A as a function (102) of v, A(v) = 2V '
2,1
5 1 (1+4v )j-l
consider % as a function of v, %==iliﬂ%—Lg, and transform the
condition (125) to
T‘r< ATT U= TT2 (127)
2X (V) o= 2v
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or, if taken with 50% margin

i
T-r<_2- (128)

Since T and r might be taken as given parameters--say,
r=0.1/year and 1=0.25 years as an estimate of delay21-—hence the
inequality (128) specifies really the highest value of the param-
eter v2 that is admissible for a stable implementation of the
closed-loop policy (41l) with A=X. For example, if r=0.1/year
and 1=0.25 years, we obtain v2<3l.4, Umax=r-v<0.560/year. If
v =C/q% is higher than this value--say, because of a very small

max
weight g related to the unemployment in the social welfare func-

tional--then the closed-loop policy with A=X is not desirable.
However, for these high wvalues of v2 all other policies are also
very sensitive to all types of errors (see Figures 3, 4, 5).
Thus, if the weight g is small, resulting in relative high speed
v of controlling inflation or, equivalently, in a hight wvalue of
the parameter v2, a monetary control of inflation and unemploy-
ment cannot really be effective--either because of delayed
effects endangering stability or because of incomplete informa-

tion and various modeling errors.

On the other hand, v, Vax and v2 can always be diminished
by increasing the weight g related to the unemployment. After
all, a relative speed of v =0.56/year, v=0.51/year is not that
small: e_0'51z0.60, whicﬁa;eans that the long-term solution is
being approached at a rate of circa 40% per year. In short,
these results suggest that policy directions aimed at achieving
the long-run target rates of inflation and unemployment rapidly
run the risk of either inducing instability or becoming partic-
ularly sensitive to unpredictable modeling errors. Policy
directions which aim for a slow, gradual achievement of the long-

run targets have a greater chance of success.
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6. OVERVIEW

In the analysis above we have presented a methodology for
the formulation and assessment of macroeconomic policy rules
under conditions of uncertainty or simplistic modeling. We
believe that these conditions are prevalent in macroeconomic
policy making: rarely do policy makers have accurate knowledge
of the parameter distributions in their models and usually these
models are recognized as rough approximations of the macroeco-
nomic phenomena which the policy makers face. The policy maker
is assumed to know which parts of his macro-economic model may
be subject to error--which parameter estimates and delay esti-
mates may be mistaken and which functions may be misspecified--

but he does not know how these errors are distributed.

In this setting, the policy maker formulates a number of
different policies each of which optimize his objective function
(viz., the "social welfare function") subject to the constraints
represented in his model. The policy which is actually chosen
is the one which makes social welfare minimally sensitive to the
given modeling errors. This is not a narrowly prescribed, water-
tight exercise, because the number of policies to choose from is
limited only by the policy maker's imagination. Our methodology
does not reduce the policy maker to a spiritless automaton
which solves a given optimization program over and over again.
The policy maker always faces the possibility of discovering
new policy options which may make social welfare even less sen-
sitive to his modeling errors than the policies he currently
employs. It does not appear possible to find a universally
"best" policy with regard to our methodology. All that our
methodology does is provide criteria for the choice of a policy

from a given set of candidate policies.

The traditional way of deriving how sensitive social wel-
fare is to policies derived from modeling errors is (a) to maxi-
mize social welfare with respect to the "wrong" model and there-
by derive the "wrong" policy, (b) to maximize social welfare
with respect to a hypothetically "right" model and thereby de-
rive the "right" policy, (c) to find the level of social welfare

associated with the "right" model and the "wrong" policy, and
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(d) to take the difference between social welfare under (b) and
(c). 1In our methodology, we essentially follow this way. How-
ever, we change the interpretation of the 'right' and 'wrong'
models by replacing them with 'extended' and 'basic' models,

and we simplify the steps (b, ¢, d) by model linearization. The
extended model is not 'right', the basic model is not 'wrong'--
for if the policy maker were able to find the socially optimal
policy with regard to the 'right' model, there would be no rea-
son for him to use the 'wrong' model in the first place. Thus,
the basic (not 'wrong') model is really, for a given purpose,
the best representation of the problem at hand, and the extended
(not 'right') model simulates possible, not actual errors in the
basic model. Moreover, when applying our methodology, we do not
have to solve the more complicated extended model--neither to
optimize it exactly, nor to determine exactly the impact of the
basic-optimal (not 'wrong') policy in this model. Instead of
this, we apply linear approximations to the extended model solu-
tions in both cases, and approximate thus the social welfare
loss as required in the step (d). Our methodology permits thus
the policy maker to choose a robust policy (viz., from a given
set of candidate policies, the one that makes the social welfare
least sensitive to modeling errors) without requiring that the
social welfare optimization problem be solved with reference to

the more complicated, extended model.

Our methodology applies to all macroeconomic problems in
which policies affect social welfare at present and in the future
and there is a tradeoff between these welfare effects. As noted
in Section 1, a large number of macro-economic problems share
these properties. The problem of inflation and unemployment
which we chose to analyse performs simply an illustrative pur-
pose. In fact, there is no reason why our methodology should be
applied solely to macro problems. Microeconomic problems with
the properties above--say, a firm maximizing the discounted
stream of its present and future profits subject to uncertain

technological conditions--are usually amenable.

Yet, within the confines of the particular problem of in-

flation and unemployment treated in this paper, we examined the
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monetarist case for constant money growth rules and developed a
rather sceptical stance in this regard. Furthermore, we were
able to formulate a rigorous argument against "impetuous" policy
making (i.e., policies which cause target variables to approach
their long-run optimal levels rapidly). Such a policy strategy
may induce instability, either through delay effects, or by mak-
ing the macroeconomic system very sensitive to modeling errors.
Although one could suspect that such a conclusion is valid=--by
comparing, say, the effects of inflation and unemployment
policies in countries such as Austria and the USA or Great
Britain-—-a rigorous argument using model uncertainty and policy
robustness considerations adds to a further understanding of

this problem.



APPENDIX: MATHEMATICAL DERIVATIONS

Solution of the Basic Model

For the problem:

maximize W(x,u) = <>°e-rt(l —%xz(t) -%uz(t) )dt
X,u 0

subject to differential constraint--the state equation:

x(t) =-C(u(t) —un) ;. x(0) =X,

we have the (current value) Hamiltonian function:

H=l—%x2(t) —leuz(t) +T(E)-Ce (ult) —u )

and first-order optimality conditions
C

Hu=0 < u(t) =EC(t)

() —ro(t) =H_ e £(t) =ro(t) - x(t)

together with the state equation (A2). We do not know yet
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(Al)

(A2)

(A3)

(A4)

(A5)



whether a solution of the problem (Al), (A2) exists. However,
if we substitute (A4) into (A2) and combine with (A5), we obtain

the system of canonical equations:

5 —_~(C _ . _
x(t) = C(qc(t) u) i x(0) =x,
(A6)
E(t) =rz(t) - x(t)
which can be solved by using the Riccati substitution:
(t) =K(£)x(t) +M(t) ; &(t) =K(t)x(t) +K(t)% +M(t)
(A7)

where K(t) and M(t) are supposed to be such that (A7) holds in-
dependently of Xqg- By substituting (A7) into the second equa-

tion in (A6) while taking into account the first one, we obtain

K(£)x(£) +K(£) (=C(S(R(E)x(E) +M(£)) =) +H(E)
(A8)
=r(K(t)x(t) + M(t)) - x(t)
or, equivalently
y C2 2 C2
(K(t) —?K () = rK(t) + 1) x(t) = (r+?K(t))M(t)
(A9)

-CunK(t) -M(t)

Since this equation should hold independently of Xg s thus, also
of x(t), both of its sides must be zero. In this way, we derived

the Riccati equation:

y C2 2

K(t)=-a-K (t) + rK(t) - 1 (A10)
and the auxiliary equation

. 2
M(t) = (9q— K(t) + r)M(t) - Cu_K(t) (A11)
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These equations are useful for many aspects of analysis of
optimal solutions of the problem (Al), (A2): not only they de-
fine closed-loop control laws and the second-order derivative
K(t}] of the (current value) Bellman optimal value function, but
also they can be used to check sufficient conditions for opti-
mality. One of the various forms of sufficient conditions of
the existence and optimality of solutions to (Al), (A2) is as

follows (see, for example, Wierzbicki 1977):

1) The solutions should satisfy the necessary conditions
(Ad4), (A5), (A2).

2) The second-order derivative Huu of the Hamiltonian

function (A3) should be strictly negative for all t
(which is, indeed, the case).

3) The Riccati equations (Al0), (All) should possess
bounded solutions when solved backward in time--which,
in the case of constant coefficients and an infinite
time interval, means that they should have a stationary
solution that is stable backwards in time.

The last two conditions are sufficient for strict negative
definiteness of the Hessian operator of the welfare functional
reduced to the space of control trajectories. Now, the station-
ary solutions of the Riccati equation (Al0) result from the

following equation

C2 2
0=-€K +rK-1 ; K(t) =K =const (Al2)

and have the form

2
K="S% (-1(1+4 5
2C rq

1
2) (A13)

Of these two solutions, only the positive one is backward-
stable. We can check this by applying the first Lapunov theo-
rem: a solution of a nonlinear differential equation is asymp-
totically stable, if a linearized equation at this solution is

asymptotically stable, and unstable, if the linearized equation
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is unstable. To check backward-stability, we change the sign of

time, and linearize (Al0) at K(t)=K to obtain

= 2
dr(t) _ _,_2C =
a(=t) ( q K+r)K(t) +1 (Al4)
where K(t) is a variation of K(t)._  This equation is asymptoti-
.. 2C2 2¢2 1. c2k
cally stable if —E—K4-r> O;but-jf—K4-r—-K+-75— from (Al2),
hence we must have K>0. Hence, the backward stable stationary
solution of (AlQ) is
1
2 1 2
k=29 (1414457 = 2. AHVIZ 1, (A15)
2C req r 2v
2 _ c?
(where we introduced a composite parameter v == for reasons
explained in the main text in the paper). The gqgation (Al1l)
has a stationary solution
Cu_K 2
M= 3 =Cu_K (Al6)
c n
—K+r
q
C2 1
which is backward-stable if 73-K+-r=vi>0, hence if K>0.
We can now substitute the values of K and M into (A7), (A6)
to obtain
C2 C2
x(t) =—?Kx(t) —?M+ Cun ;0 x(0) =X, (A17)
c? c? 2
Since Cu - —M=Cu_(l-—K") =rKCu_, the integration of (Al7)
n q n q n
yields
rKCu
() =xpe VT + (1-e7VH —2 (A18)

C2 rKCun rqu
where u==75-K;if we denote = by &_, then

v C
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t,q | (A19)

[o o]

R(£) = (x4-8 )e "

By substituting this into (A7) we obtain

() =K(xy-2)e VS + 2 (a20)
rKqu qu 2,2 qu
. s _ L2 _*'n C’K™, _**"n
where ¢ _=K& +M= G +CunK -——E—(rK-+ ) = C

By substituting tnis into (A4), we obtain

X. -2 )e-Ut-ku (A21)

Now, the solutions (Al9), (A20), (A2l) are indeed the solu-
tions of the problem (Al), (A2), since they satisfy the first-
order necessary conditions and they correspond to a backward
stable solution of the Riccati equation, while the second deri-
vative of the Hamiltonian function there is strictly negative
(thus, the welfare functional W, treated as a functional of
control trajectory u alone, while the dependence on state tra-
jectory x is reduced by solving the state equation (A2) and sub-
stituting into (Al), has its second-order derivative--the
Hessian operator--strictly negative definite; this is sufficient
for the existence of a unique maximum of the welfare functional.
The control trajectory u is here considered to be an element of

a Hilbert space with the norm ||u||=(.fme—rtu2(t)dt)%)).
0

When analysing the obtained optimal solutions, we observe
that they depend actually on three parameters. These parameters
are: the discount rate r; the natural unemployment rate u i and

the composite parameter v2 =J%—-that, at given r, could be taken

rq
as representing the influence of the weighting coefficient g and

the squared coefficient C2.

Thus, the Riccati coefficient K, defined by (Al4), depends
on r and vz, while rK depends on vz alone. At a given value of
r, K decreases monotonically as a function of v2 from the wvalue
= at v»>0 (say, g»«) to 0 as v»>» (say, g»>0). On the other hand,
as a function of r, taking into account the dependence of v2

on r (at given C,q) K also decreases monotonically
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1
from the value %% at r+0 to 0 as r+= (we could set Kxl/r for
large enough r such that r2>>4c%h;). The relative speed co-
efficient v has the form:
1
2,2
v=r - (l+4v2) -1 (A22)

Thus, if r is given, v increases monotonically as a function of
v2 from the value 0 at v=0 (say, g»>») to « as v+» (g+0; we could
set v~rv for v>>1/2). This means that increasing the weight g
to unemployment necessarily decreases the relative speed of
control. On the other hand, as a function of r at given C,q,

the speed coefficient v decreases monotonically, from the value

C
V) =3

max 1 (A23)
>

g

2 1
at r=0, to the value 0 as r»>= (we could set wa%; for r>>2C/q2).
Thus, a larger discount rate also decreases the relative speed

of control.

However, if we assume that it is socially desirable to have
the relative speed coefficient v at least as large as the dis-
count rate r, v/r>1l, then we easily obtain from (A22) that this
could happen only if v232 --and, from (Al4) that this corres-

ponds to Kfﬁj;. For this range of v232 (v>>1/2) we can set

ULV = v , thus v practically does not depend on r and

max

|0

changes only with C and g, decreasing with an increased q.

The optimal value of the social welfare function, after

appropriate integrations (omitted here) has the form

W=wW(x,u) =3(1-Fqul (1+3)) =2 (x,-%,)

v (A24)

1 )
- -2—K(x0-xm)
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Observe that this is a quadratic function of X with

S L —K(x,-% ) =-2(0) ; AW=-%_(x.-%_) (A25)
axo 00 0 T w00 T
and
3% 24 2
3 = -K ; A W=-K(X0—X°°) (A26)
axo

Thus, the costate variable determines the first derivative
of the optimal value function, while the Riccati coefficient--
its second-order derivative. These are known properties of those
variables, and are presented here only in order to check the
correctness of a rather long integration in (A25). The forms
AW and Azﬁ represent tne first and second-order parts of welfare

losses due to the initial disequilibrium x,-%_.

0
Finally, observe that we can represent the optimal control

i(t) as a function of 2(t) and not as a function of Xyt

= CK - &K =K -
A(t) =<2 R(t) = 58, +u, === R(E) + (1-1K) (A27)

u
n

which gives the classical version of the closed-loop optimal control.
The feedback coefficient %§==% has the same properties as the rela-

tive speed coefficient v, scaled down by C. Thus, for v/r>1,

U
v232, we have %%ﬁu—%?§==1%. This has an important interpreta-
g2
tion: since ﬁ(t)—un==%(2(t)—2m), hence at optimal solutions, the

ratio of the (out-of-equilibrium) unemployment ﬁ(t)-un to the
(out-of-equilibrium) expected inflation X(t)-R_approaches, but

never exceeds, the value 1/g3.
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Bounds on Parameter Changes

In this theoretical exercise, bounds on parameter changes
must be assumed heuristically, however, with some rational argu-
ments. We observe that first ﬁm:=%?‘ﬂ1' If we are uncertain
about the actual natural rate of unemployment, ﬁn, the largest
mistake we can reasonably postulate is related to the assumption

that the current expected inflation x, is equal to its long-term

0

1 =rj~ 11 =£ =~ - = —— - =
optimal value, x0 C un, un rq;XO’ B un un rq‘xo un
;E(xo—ﬁw). Such a mistake is not very probable: observing a

real economic process, we can usually tell whether we are far or
close to the long-term equilibrium. Thus, we assume that we can
estimate at least half of the distance from the long-term equi-
librium, which gives half as large bound on the uncertainty
parameter f£:

| 8] = (A28)

|3 _-u
max n

To obtain a comparable bound on the parameter y, we assume

that we observe correctly the variable

X=Xa _ p o _ Yo )2
) A=u u, 2(u un) (A29)
A—u+ﬁn
which would give y=2 ———>- We are uncertain about both
(u-1a_)
n
~ ~ 2 ~ : .
-u+ - -
A-u+d  and (u-4 ) We can assume |A u+un|<|8|max, since this
uncertainty is related to the uncertainty in ﬁn. However, the
larger is (u-ﬁn)z, the better conclusions we can obtain about
Y; 1n a probabilistic estimation, this fact would correspond

to the impact of the variance of the explaining variable. Thus,
we must assume some minimal 'variance' (u-u )2; if we take,
arbitrarily, a rather small 'wvariance' (u—ﬁn)zzz4ui, then we

obtain the bound

1 Plmax 1 ¢ lxox (A30)
n
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To obtain a bound on the maximal neglected delay Tnax Ve

note that if the postulated optimal change of the expected infla-
tion has the form 2(t)=(x0—2w)e—Ut+2w, and a real economic pro-
cess would exhibit a delay T in the impact of unemployment on in-

flation, we would observe actual x(t)=x, for t<t. Thus, the

0
observed difference has the form:

R(t) - R(t) = (x,-8) (1-e™*

) ™~ (xo—fcm) vt ’ tiT
(A31)

Now we assume arbitrarily that we might overlook this dif-

ference until its relative value becomes 25%, that is, until
X(t)-2(t) _1

——§8:§__ =7 Thus, the maximal delay that we can overlook is
bounded by
L
max 4v  4vu 4C -
max

(here we assume that we are interested in the range of solutions
where v/r>1, v2 >2, and v =v ) .
- - max

Sensitivity to Errors in Estimating Natural Unemployment Rate

In this case, we assume that policies derived from the
basic model with parameter u, are applied to an extended model,
which differs from the basic one only by a changed parameter ﬁn’
where ﬁn—un=6; the parameter a=(8,0,0), the parameter a=(0,0,0).
Hence, in this simple case we know the optimal solutions for the
extended model which will be denoted here by &(t,a)=x(t,B8),

G(t,a)=0(t,B); in particular

_ -ut _.-ut, L rg ., -
R(t,B)-—er + (1l-e ) c U,
CK t t (A33)
A — -V ~ - R -v .
a(t,B) ‘TE'XOe +-un rK:+ e u,
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If we subtract from these solutions the solutions (Al8), (A2l)
for the basic model--denoted here by &(t,a), (t,a)--we obtain

R(t,8) - R(t,a) = (G -u ) - Zd(1-e7"") (A34)
Q(t,8) -8(t,a) = (§ -u) » (1-rke™") (a35)

By the definition of basic optimal variations x(t), u(t)--

see Equation (56)--we obtain in this case
St = -ut (A36)
u(t) =1-rKe

Now we consider the family of closed-loop control policies:
Wt x(e),2) =alt,2) + 1 (x(e) - () (A37)

and suppose such a policy is implemented to the extended model
with ﬁn#un; we denote the state and control under such implemen-

tation by xx(t), ux(t):

&M (t) =-c(a(t,a) -H A (x* (&) - (£,2)))

A
x"(0) =x, (A38)

Now, &(t,a) satisfies R(t,a)=—C(ﬁ(t,§)—un); by subtracting this
from both sides of Equation (A38), we obtain

A

&M (£) - %(t,a) =-Av(x"(t) - &(t,a)) +CB ;

x* (0) -%(0,a) =0 (A39)

2
where u=9§§ and B=ﬁn—un. The solution of this equation is

xM(e) - R(t,a) =8C - )\U(l-e'“t) (A40)
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which, when set into (A37), yields

-Avt

ut (1) - a(t,a) =8 (1-e V) (ad1)

Thus, the basic structural variations--see Equation (54)--we
have the form

;A(t) =—£1—(l—e-XUt) -lut

L ; ThE) = 1-e

(A42)

and the extended structural variation--see Equation (55)--are

2 (6) =5 (e (1-eTMVE) - (1-eTVY)
ﬁ>‘(t)==rKe"Ut-e_>‘Ut (A43)

To compute the second-order derivative §éB of the welfare

losses--see Equation (53)--we have to integrate the expression

§EB==J[ e—rt((ix(t))z-+q(ﬁx(t))2)dt (A44)
0

which after rather long integrations and transformations (omitted
here for brevity's sake; however, these transformations have been
checked by assuming A=0,1, or « and performing independent,

simpler integrations and transformations) results in

AN G g 2 (1=1) (1+TK+) (1-22K))

Sgp =7 (1-rK) " (2 paii-er)) (zre oy (I-zxy T L) (B4S)
No ti bustness coefficient R’ = 2 §X /zgﬁ i il

w, ne robus e coe 1Clen 6 = Bmax BB 1S easl y
determined
3
A (1-1K) (1-2) (1+TK+) (1=-2rK)
Rg ETEED 1+ 2 e (R (eRe 23 (1=2) ) (a46)
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SA
R
The equation _§T-=0 is a quadratic equation in XA (with the
full form omittedzggr the sake of brevity); we choose by check-
3R
ing the sign of > the root that indeed minimizes RB:
dA
L
~ 2 2 2 2
Y = (((rK) “+2rK=2) + 9(rK) “(1l-rK))“ - ((rK) “ + 2rk-2)
g 3rK(1-rK)
(A47)
L
(l+4v2)2-l .
While taking into account that rK = 5 is a mono-
2v

tonically decreasing function of v2, with rK+1 as v™+0, we can
show that AB is a monotonically decreasing function of rK and

thus increasing function of v2, with AB+l.5 as v2+0. The graphs

of X_. and ﬁx are given in Figures 3, 5 in the main text.

B B
The open and the closed-loop Hamiltonian maximizing policies
as well as the open and closed-loop benefit-to-cost maximizing

policies are considered in the main text.

Here we show only that the welfare losses under the open-
loop benefit-to-cost maximizing policy are larger than the cor-
responding welfare losses under the open-loop policy. With this

aim, we recall Equation (78) for the extended structural varia-

tions:
%50 (t) =c - krt,a) - %) +ent,a) 5 %0 =0
(n48)
afo(e) =«f(t,a) + %5°(t,a) - nfO(t,a)
where
Kfo(t a)==ﬁ(t,§)ﬁ(t,g) .
= U(klﬁlé) !
~2
fo _ qu” (t,a) -ut fo -ut
n (t'é)'—l'+57§7§757 - rKe + rgC - (t,a)-(l-e )

U(&,8,a) =1-352%(t,a) - $a%(¢,a) (A49)
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Since the structural variations under the open-loop policy

have the form (see Equation (A43), where we should set A=0):

3°(t) =ct-E1-eT >0 ; 8%t) =rre™VF-1<0
(A50)
. ~fo ~fo
and do not depend on X when computing X7 (t), (t) we can
assume any reasonable X, that does not increase these variations
unnecessarily. The most reasonable assumption is X —2 , which
means that we will compute x (t) ~fo(t) along the long-term
equilibrium for the basic model. In such a case, we obtain
rqu
Fo= L ) (A51)
r2 2u2
c(1-Lqu?-12 % n
2 44n 72 Cz
nfo==l-rﬂe vt | fo(g-f-qu(l -e Ut))
r2q2u2
A 1" *"n_ 1 2 . _ 1 2 1
U(®,4,a) =1-5 2 Fqu =1 Equn(l+\)—2)

Observe that for reasonable values of q, u v2 we have

A f ~ .
LKR,u,g)z].and k-© << r/C, nfo=-u0(t)+el(t), where el(t) is a
small positive function. Thus, also ﬁfo(t)=ﬁo(t)—62(t), where

ez(t) is a small positive function; but ﬁo(t) is negative, hence

(~fo(t))2 >(ﬁo(t))2. The Equation (A47) can be rewritten as

) =-caf® ) ; %E%0) =0 (A52)

while io(t)==—Cﬁo(t) ~o(0) =0. Thus, the solution of (A52) has

also the form X i (t)= (t)+€ (t)

4
function, and (:T{fo(t))2 > (% (t))2. Therefore, we obtain the in-

where 53(t) is a small positive

equality
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00 Q0

/e_rt((ifo(t))z+q(f1fo(t))2)dt >f e T ((x° (1)) 2
0 0
+q(&°(e))?) at (A53)

which means that the welfare loss with the open-loop benefit-to-
cost maximizing policy is larger than the loss with the open-
loop policy. In an analogous way, the same result can be estab-
lished for the closed-logp benefit-to-cost maximizing policy

versus the closed-loop policy.

Sensitivity to Mistaken Functional Specification

We assume here B=0, v#0, 1=0. Thus, the extended model has
the form

X(t) =-C(u(t) —un-%(u(t) -un)2) ;. x(0) =X, (A54)

First we must derive the basic optimal variations. The Hamilton-
nian function for the optimization problem related to the ex-

tended model has the form

H=1-2x(t) - $u’(6) +2(8) - C+ (u(e) ~u_-L(u(e) ~u)?
(A55)
and yields the necessary conditions of optimality
H,=0 ® qu(t) +vyCo(t) (u(t) -u)) -Cz(t) =0 (A56)
C(t) -rg(t) =H * L(t) =ro(t) - x(t) (A57)

X(£) =-H_ ® %(t) =-Clu(t) ~u_ - Fu(e) -u)?) (a58)
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We denote solutlons to the extended optlmlzatlon problem
by G(t,y) =104(t, a)-kyu(t)-ko(y), (t,y) =(t, a)-kyx(t)-ko(y),
C(t,Y)-—E(t,g)-FYC(t)-+o(y). We substitute the solutions into
(A56+58), subtract the relations for Q(t,a), &(t,a), g(t,g) as
defined by the basic model (A4), (AS), (A2) and obtain as ex-
plained in the main text, the set of differential equations for

basic optimal variations:

a(t) =§€ (£) - ¥ (A59)
%(t) =r§(t) —§(t) (A60)
: 2 R
X(t) = E—Z(t) +C(p+¥) ; x(0) =0 (A61)
where
¥=a(t,a) (A(t,a) ~u) ; ¢ =2(Q(t,a) -u)? (262)
r= r= n ! 2 n

Observe that when ((t,a)-u —0 then Y 0, ¢=0 and the set of
equations (A59:61l) has trivial solutlons u(t) =0, z(t)=0, x(t)=

If ﬁ(t,g)—un==%f(xo-xw)e vt is positive and increases--say, if

X. lncreases above ﬁw——then ¥ and ¢ increase with it monotoni-

cglly. The solutions of the linear set of equations (A60); (A61)
will increase then together with ¢+Y (more precisely, a norm of
the solutions increases with the norm of ¢+¥, where we could
take as a norm ||¢+Y¥|| =(,gwe_rt(ﬁ(t)+Y(t))2dt)2. A general

way of solving Equations (A59:A6l) consists of a Riccati

substitution
T(t) =K(t)x(t) +M(t) (A63)
where K(t) satisfies the Riccati equation (Al0), since the homo-

geneous parts of Equations (A63), (A6l) and that of Equation

(A6) are identical; thus, we take the backward stable stationary
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solution of (Al0), K(t)=K as defined by Equation (15). The
auxiliary equation for M(t) is different; however, since Equa-
tions (A60), (A6l) have the same form as Equation (A6) except
for the fact that ¢+¥ substitutes u, ., we obtain the equation
similar to (All):

. 2
M(t) = (%K+r)M(t) - CK (¢+¥) (A64)
C2
where 7¥4K+-r=l/K from (Al2). The general difference between

(All) and (A64) is that ¢+¥ is a function of time, while u is
a constant. Thus, to obtain a general backward stable, bounded

solution to (A64) we have to consider its general solution:

t
M(t) =M(o)e™K 4+ /K. CKZ/ e /K(y(1) +¥(1))dT  (B65)
0

and, after the integration, we choose M(0) in such a way that

t/K vanish from the solution. While

the unbounded terms with e
all this can be done, the solutions have rather complicated
forms and result in very tedious integrations when further com-
puting the second-order derivative of welfare losses §$Y' Thus,
we are going to simplify the computations by accepting approxi-
mate expressions for all variations. The simplification is
based on the observation that all variations depend monotoni-
cally on the norm of ﬁ(t,g)-un==%§(xo—xw)e‘ut; if we substitute
this expression by a constant function of time, say, by ﬁ(t,g)—
O_fw)’ we would only estimate all variations and their
impact on SYY from above. However, when estimating the bound on

Ymax
we should assume some value of x

CK
un'vjf(x

, we assumed a 'variance' (u—un)2 by 4ui. Correspondingly,
0f if we take Xq such that
ﬁ(t,g)-un=wun on averagdge, the 'variance' (u—un)2 might be con-
sidered to be close to 4ui because of the actual time-dependence
of Gi(t,a). Clearly, the choice of the 'variance' and the bound

v
max
and affect the absolute value of the finally derived robustness

or the corresponding 'average' ﬁ(t,g)—unfwun are arbitrary

o P\ . . .
coefficient RY. For a more precise estimation of robustness

coefficient, we would have to estimate econometrically Y max and
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X0 determine the precise of the functions ¥ and ¢, and integrate
all variational equations for this precise form, using numer-
ical integration if necessary. Here, in order to provide for
an example, we perform only approximate calculations under a

reasonable set of assumptions.

Under the approximate assumption G(t,g)-unﬁzun, the func-

tions ¥ and ¢ take the form:

A
¥=2u_ ; ¢=5u, (A66)
and the equation (A64) has a stationary, backward stable solution

Vi 2

v 242
M(t) =M=CK > un (A67)
Now, we substitute (A63) into (A6l) to obtain
- 2~ 2 A
x(t) =-Cq—K§(t) —%H(t) +C(6+¥) ; x(0) =0 (A68)
2.2 2
Since 1 ——C—EK——=rK and thus C(¢+V¥) —%—E=rKC . %urzx’ the solution

of (A68) is

-ut

xPp

2
(0) =24 %un (1-e” V%) (269)
C2K
with U==—a—. Correspondingly, we use (A63) to obtain
= _5 2 rgk ., _-vut 2, _5.29,4_ -ut
(;(t)-—2 u- ( o (l-e ) + CK )-—2 unt:(l rKe ) (A70)
and (A59) yields
u(t) =z u’ (1-5rke™"") (A71)
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We now turn to the basic structural variations corresponding

to the family of closed-loop policies (A37). By substituting (A37)
into (A53), we obtain

(1) =-cate,a) vy + 5 M) - &(e2) - Fv@ae,a)

-un+k%g(xx(t) -2(t,a))?) (A72)

We assume the solutions in the form xx(t)=2(t,§)+Y;A(t)+O(Y),

ux(t)=ﬁ(t,§)+yﬁx(t)+0(y), substitute them into (A72) and subtract

the equation of the basic model, subdivide by y and let y-0.

All this yields the equation for the basic structural variations:
. 2

7 () =x5§—§*(t) +Cé ; X (0) =0 (A73)

Again, we would have to integrate this equation for a precise

form of the function ¢; however, assuming the approximate form
(A66) we obtain

Ay 1.2 g ., __-Aut
X (t)-—2 U, TRC (l-e ) (A74)
From (A37), we have T (t)y=Xx %—Kix(t); therefore

1l 2

E}\(t) -1 ~-Aut

5 U (l-e ) (A75)
The extended structural variations are obtained as
~A _=A _= _1l 2rq 1 __~Aut, _ __-ut
X" (t) =x"(t) X(t)—zun . (—>\rK (l-e ) =5(1-e ))
(A76)
3t (t) =3 (e) - (L) =%ur21 (5rke” Ut - 7MYy (A77)



-70-

Even under the simplifying assumptions of constant ¢ and Y,
the integration of the second-order derivative SiY of the welfare

losses is rather long:

§$Y =/ e TE M) 2w gt (e D at
0

(A78)
25 2rK2 2.2
_ Yn q(l_ 1 9r "K"+2rK-2+19X (1-rK) rK )
2 2 (rK+X (1-rK) (rK+2X (1-2rK))

50r2K

(Again, this expression has been checked by independent integra-
tions for separate A=0, 1, or »). Now, it is easy to determine

the robustness coefficient

A
SA IYImax YY _ 25 1-rK 1 9r2K2+2rK—2+l9A(l—rK)rK )
2,2 (rK+X (1l-rK)) (rK+2X (1-2rK)

(A79)
3R}
—g%;=0 is again a guadratic equation in A;
A

however, its root that indeed minimizes ﬁY

The equation
might become negative,
and we have the constraint X>0 imposed by stability consider-

ations for the closed-loop policy (A37). Thus, we obtain

-~

0, if 4r’K% +3rK =35>0 = rK> 0.758 @vZ < 0.42
o= , 1
Y ((9r2K%+2rK-2) 21912k 2 (4r2K%+3rK-3) ) 2= (9r2K2+2rK-2)
19rK(1-rK)
2
if vo>0.42 (A80)

which yields smaller values of iY (see Figure 5a in the main

text) than A, determined by (A47). However, a much more simple

B

expression:
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> 1
A =% (A81)
yields values such that XY<K<XB (see Figure 5a; this inequality
can be also proven analytically, but we omit these details).
A}\ A}\

The compromise on robustness coefficients R, and RY at A=) is

g
quite satisfactory (see Figure 5b).

Sensitivity to Delays

We assume here that B=0, y=0 and t1#0. Thus, the extended

model equation is
x(t) =-Clu(t-1) ~u ) ;

x(0) =x; ; u(t) given for te&[-1;0) (A81)

When maximizing the welfare functional (Al) under the difference-
differential constraint (A8l), we use the modified Hamiltonian

function

HZ=1-%XZ () _%uz (t) +c(t) +C+ (ult-t) -u )

+ l-%xz(t+r) —%uz (t+T) + T (t+1) +C+ (u(t) =u )

(A82)

However, this function is used for maximization with res-
pect to u(t) alone (notto u(t+t) nor u(t-t)). Thus, it is suffi-

cient to consider only a part of this function:

ja o JNd

=1-2x* (1) -Fu® (0) +z(e+D) - Clule) -u) (A83)

Denote the solutions to the optimization problem of the
extended model by G(t,t), &(t,T), g(t,r). The necessary condi-

tion of optimality is that the function H_--or equivalently,

N z
the function H--has a maximum in u(t) at the optimal solution.
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ThuS:
u ’ q 14

The costate equation for this problem retains its basic form,

since there are no delays in the state in this problem:

c(t,T) -re(e, 1) =H, © o(t,7) =ri(t,1) ~R(t,T)  (A85)
and the state equation, after substituting (A84), takes the form

b _ N __~(C2 _ . ~ - .
R(t, 1) = H;°X(t,r)— C(qc(t,r) un) i x(0,1) Xy i

&(t,t) given by (A79) for te[0;T] (A86)

Now, the system of canonical equations (A85), (A86) does
not contain delayed terms and is, formally, identical with (A6).
Thus, we could try to use the known solutions &(t,a), E(t,g) of
(A6) to obtain the solutions of (A85), (A86). This would, how-
ever, be incorrect since the state trajectory &(t,1) for te[0;T]
is predetermined by the given u(t) for te[-1;0]; thus, a correct
way is to accept this initial part of the trajectory and start
to optimize the state trajectory at t=1, with a new initial state
x(Tt,T). Proceeding this way, we can write the optimal solutions

for the optimization problem of the extended model:
%(t,1) = (R(1,1) -2 )e W E7T) Lo for t>1 (AB7)

-u(t-T1) + 7

T(t, 1) =R(&(1,1) -% e Co for t>1 (A88)

a(t, 1) =%§(2(r,r) —f(w)e-Ut+un , for £>0 (A89)

where %X(1,1) must be obtained by solving the equation (A8l) for
t€(0;t] and R _, ¢ _,v are the same as in the basic optimal

solutions.
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However, the fact that we can actually optimize explicitly
the extended model with delays is due to the particular form of
this model (we have only one delayed control in the state equa-
tion; we could not get the solutions of this model as easily if,
for example, the state equation would contain both delayed and
undelayed control). Thus, we shall proceed further as if the
explicit optimal solutions (A87+89) for the extended model were

not known.

We poétulate 2(t,r)=2(t,3)+r§(t)+o(r),ﬁ(t,r)=ﬁ(t,g)+rﬁ(t)
+o(1), £(t,T)=¢(t,a)+1Z(t)+0(1), and use (A84) to obtain:

Q(t,t) -0(t,a) = ta(t) +o (1)

(Z(t+1,T) -4 (t, 1) +2(t,T) - 2(t,a)

]
ellp!

(E(t+r,r)—i(t,f)

o(1)
T T )

C =
T = + 7 (t) +
P z(t)

(A90)

Observe that lim %(E(t+r,r)—2(t,r))=£(t,0)=£(t,g). Hence, when
>0
subdividing both sides of (A89) by T and letting 1+0, we obtain

the equation for the basic optimal control variation:

a(e) =S(T(e) +2(t,a)) (A91)

Q0

Similarly, by subtracting from both sides of (A8l) the corres-

ponding sides of (A2), we have

R(t,7) - &(t,a) = TR(t) +o (1)

==C - (ﬁ(t—T,T) - ﬁ(tli))

ﬁ(t—T,T)-—ﬁ(t,T)_Fﬁ(t)+ o(t)

=—T.C.( T T

)

(A92)
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Since lim %(ﬁ(t-T,T)-ﬁ(t,T))=—6(t,0)=‘6(t/§)(the control in
>0

the basic model is a differentiable function of time), we obtain

x(t) =-C(u(t) -Q(t,a)) ; x(0) =0 (A93)
The equation for costate variation is easily derived:

~

T(t) = rT(t) - % (£) (A94)

However, since g-i(t,§)=ﬁ(t,a), the substitution of {A91) into
(A93) yields

2
= -
(t) = 3

x>

(t)

Xi> e
o>

(0) =0 (A95)

Now, the system of canonical equations (A94), (A95) is
homogeneous; if we apply the Riccati substitution %(t)=K§(t)+ﬁ(t),
we obtain M(t)=0. Since, however, §(0)=0, %(t)=K§(t) yields
necessarily i(t)so, %(t)so. Thus, we have the basic optimal
variations

%(t) =0 (A96)

If we apply the family (A37) of closed-loop policies to
the extended model (A8l), we obtain

%" (£) = -c(a(t-1,a) -u e (x* (£-1) - R(t-1,2))) ;

xx(t) given by (A8l) for te[0;T]

We assume that (A96) has stable solutions (in further text, we

will analyse the stability conditions for (A96)). Therefore,
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we can approximate xx(t)=2(t,§)+r§x(t)+o(r). By subtracting (A2)

from botn sides of (A96), we have

M (£) - &(t,a) =X (£) + o(1)

= -C(f(t-1,a) - f(t,a) +x9q5 (1% (£-1) +0(1)))

ﬁ(t-Tl_a_) _ﬁ(tli)

=-7+C «( - +x%—K(§A(t—r)+@))
(n98)
which yields, if - 1+0
¥ (e) =-auxM (8) +cli(e,a) 5 X(0) =0 (299)

Thus, basic structural variations are determined by integrating
(A99)

(1) =207 (xy-8,) (eTMVE-eTVE (A100)

and by substituting T (£) =) %ISEA (t)

=X X CK, . _& -Avt __-ut
u” (t) =5-T Y g (x0 %) (e e ) (Al101)

It now remains to determine the extended structural variations.

~ A _=A _= _CK _ A _-avt_ 1 -ut
U (t) =u”(t) —u(t) = g u(x0 g ) (_l—)\ e 1=% e )

(Al02)
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t -ut

2 (1) =% (1) - (0) = 2px,-R,) (e MV -7V (2103)

and to integrate the second-order derivative of the welfare loss:

e =f T (et ra@ (e fat
0

3
_ _ 2 (1-rK)
=T (xy-R.) " TR(TRF2N (I=2K)) (nl104)
Now, the robustness coefficient ﬁ? has the form
Tz g 2
AA _ max 1T _ (1-rK)
R == 27 " TEKF2(I-ER) (a105)

and is a monotonically decreasing function of X. It would be
wrong, however, to assume that we should choose very large A in
order to obtain small values of ﬁi: very large X might result
in instability of (A96) and, therefore, the aperiodic approxima-
tion Ex(t) defined by (A99) does not hold any longer for large A.

Since the equation (A96) is linear, its stability is deter-

mined by its homogeneous part:

X(t) =-rux(t-1) ;7 x(t) =0 for t <0, x(0)=x0

(Al0s6)

To analyse the stability of this equation, we first apply Laplace

transformation to both sides of it:

sX(s) ==Au + e 'Sx(s) (A107)
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and represent the result as a feedback system, with the feedback
error X(s) and the output variable Y (s)=K(s)X(s), determined by

the open-loop transfer function K(s)=m§ie-rsz

X(o) =0-Y¥Y(s) ; Y(s)=K(s)X(s) ; K(s)=l§ie‘TS

(A108)

Now, we can use the classical Nyquist criterion for the

stability of feedback systems. We analyse the argument and the

module of the complex variable K(jw)=h%%e-3wr, where j is the
imaginary unit. We have
argk (ju) =- Z-jut ; |K(jw)| =22 (A109)

The Nyquist criterion states (in this simple case) that the feed-

back system is stable if [K(jwg)|[<l for w

and AV = 2AVT
W

0 i

0 such that argK(ij)

=-1. Thus, we have w,= <1 guaranteeing stability,

T
0 27T
which can be rewritten as:

m
TV <2—>\ (AllO)

However, in classical feedback systems theory it is also
known that if the Nyquist criterion is satisfied with 50% margin
(|K(Jwy) [<0.5)

1
TV <7x (A1ll)

then the dynamic solutions in the feedback system might be
reasonably approximated by aperiodic solutions (the system is
far enough from its stability boundary, hence, the closed-loop
solution might be approximated by aperiodic functions--if the

open-loop itself is aperiodic).
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Therefore, we conclude that the approximation (A99) of the
solutions of the extended model under closed-loop policies might

be reasonably applied only if (Alll) is satisfied. If we assume

1
~ 2 2,2
that A=\ === = 2V , and observe that u/r=At4v ) -1
rK 2 1 2
(1+4v=)2 -1
then we transform condition (All0) to the form
m
T +r < > (A112)
2v
or, with 50% margin
Ter<—" (A113)
2
4v
which, given an estimated T and r, limits the maximal vz and,
1
v (1eavdZo1
thus, the maximal relative speed of control, = 5 ’
2 C2
that can be assumed (say, by choosing g in v =—7—0 when apply-
rqg

ing a closed-loop policy with A=A,



FOOTNOTES

The monetarists have also justified their constant monetary
growth rule by arguing that policy makers tend to misspeci-
fy their monetary rules by attempting to stabilize interest
rates ratner than growth rates of the money supply. The
relevance of this argument has become muted in recent years
as a number of governments--including the American and the
British--have concentrated increasingly on monetary stocks
and less on interest rates in their formulation of monetary
policies.

It is feasible to relax this assumption in the context of
our analysis.

However, Snower (198l) has shown that systematic monetary
policy may remain effective if the macro-economic model is
nonlinear. Yet the subject of optimal policy rules under
rational expectations lies beyond the scope of this paper.

The extended model serves as a guinea pig, an experimental
laboratory field for checking conclusions derived from the
basic model. The need for such models in economic analysis
is paramount and there are several attempts at using such
models in policy-oriented analysis. In this paper, a much
more theoretically organised way of using such models is
proposed.
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Inaccuracies (a) and (b) might be formally equivalent. For
example, the functional form of the Phillips curve in the
extended model may be expanded by Taylor series. The co-
efficients of the higher-order terms may be set to zero in
the basic model. Then the mistaken parameter estimates of
the basic model are responsible for its "simplistic" func-
tional specification. Nevertheless, it is heuristically
useful to distinguish between (a) and (b). Thus, we denote
the discrepancy above as a case of (b) rather than (a).

We make a distinction between delays and lags. A dynamic
delay is the time after which the first effect of an exog-
enous impulse are observed. An econometric lag is the time
after which the statistically most significant effects are
observed. Thus, delays are usually smaller than lags.

This combination falls in the tradition of Vanderkamp
(1975), Dornbusch and Fischer (1978), and others.

For the discussion of other possible formulations of the
decision-maker's objective function see Wierzbicki

(1980a, b).

Except, possibly, at the initial time t=0, if the initial
values x(0)=x, and u{(0)=u, do not coincide with an optimal
path. In such a case, a sharp change of m might be re-
qguired to bring them on an optimal path.

The case in which m lags T units of time behind u is ana-
lytically uninteresting. The optimal trajectory of m(t)
implied by the basic model becomes identical, in this case,
with the optimal trajectory of m(t-t) of the extended model.

Here, by dual control problem we understand (following
Feldbaum 1962) a problem of joint estimation of model
parameters and optimization of control. Only very simple
classes of dual control problems possess known solutions.

This is because the state equation, at o=a, is linear in
x(t) and u(t). If it were not, the integrand in (53)
should be based on the second derivatives of the Hamilton-
ian function.

Strictly speaking, %' (t) and @' (t) are extended structural

sensitivity cnwraunﬁ, not wnﬁat&ww;iby variations we should
rather understand X" (t)-(a-a) and 4 (t)+(a-a). However,

we shall use in,further text the colloquial name variations

for il(t) and ﬁl(t).

Clearly, é;.a is semi-positive definite, as a generalized

positive combination of semi-positive definite matrices

T (eyxt (£) and uwit(t)ul(t).
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It should be stressed that the methodology presented in
this section is not new: it has been developed by
Wierzbicki (1969) and generalized considerably for models
described by Banach space equations by Wierzbicki and
Dontchev (1977); a full description can also be found in
Wierzbicki (1977). However, this methodology has not, as
yet, been applied to economic problems. It goes without
saying that the possible applications extend far beyond the
the topic of this paper.

The expression (75) is one of the solutions of a quadratic
equation; the other solution (with the sign before the
square root in (75) changed to plus) is eliminated because

only (75) satisfies ufo(t)=ﬁ(t,§) at R=0, xfo(t)=2(t,g).

We perform this linearization by subtracting i(t,g)=
-C(ﬁ(t,g)—un from both sides of (76), subdividing the re-

sults by 8 and letting B+0. Egquivalently, we can employ
the theorem on the differentiable dependence of the solu-
tions of differential equations on parameters.

This follows from the second Lapunov theorem on the stabil-
ity of nonlinear differential equations when applied to the

equation (76). Observe that even if B=0, but xfo(O)#x0

(for example, due to an error in estimating initial infla-
tionary expectations) we obtain the unstable variational
. =fo G(t,a)R(t,a) g, .
equation x  ~(t)=C x~(t) for the propagation of
vi(k,0,a)

the wvariation ifo(O) of the initial state.

This does not mean that the benefit-to-cost maximizing
policies might not be desirable in other applications, in

particular when ﬁt(t,g) is negligible. See Wierzbicki
(1977) for examplés of such applications in non-economic
context.

Such a differentiability has been proved by Dontchev (1980)
for a broader class of problems, including the problem
considered here.

See footnote 6; an estimate of an econometric lag in u would
have to be, most probably, a higher number.
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