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FOREWORD 

Low fertility levels in IIASA countries are creating aging populations whose demands 
for health care and income maintenance (social security) will increase to unprecedented 
levels, thereby calling forth policies that will seek to promote increased family care and 
worklife flexibility. The Population Program is examining current patterns of population 
aging and changing lifestyles in llASA countries, projecting the needs for health and in- 
come support that such patterns are likely to  generate during the next several decades, 
and considering alternative family and employment policies that might reduce the social 
costs of meeting these needs. 

The program is seeking to develop a better understanding of how low fertility and 
mortality combine to  create aging populations, with high demands for health and income 
maintenance, and reduced family support systems that can provide that maintenance. The 
research will produce analyses of current demographic patterns in llASA countries together 
with an assessment of their probable future societal consequences and impacts on the aging. 
It will consider the position of the elderly within changing family structures, review na- 
tional policies that seek to promote an enlarged role for family care, and examine the costs 
and benefits of alternative systems for promoting worklife flexibility by transferring in- 
come between different periods of life. 

In this report, James Vaupel (USA) and Anatoli Yashin (USSR) examine the impacts 
of heterogeneity on populations whose members are gradually making some major transi- 
tion. Their focus is on human mortality, but the mathematics they develop is relevant to  
studies of, for example, migration, morbidity, marriage, criminal recidivism, drug addiction, 
and the reliability of equipment. The authors show that the observed dynamics of the sur- 
viving population - the population that has not yet made the transition - will systemat- 
ically deviate from the dynamics of the behavior of any of the individuals that make up 
the aggregate population. Furthermore, they develop methods for uncovering the under- 
lying dynamics of individual behavior, given observations of population behavior. These 
methods will be useful in explaining and predicting demographic patterns. In addition, 
because the impact of a policy intervention can sometimes only be correctly predicted if 
the varying responses of different kinds of individuals are taken into account, the methods 
should prove to  be of value to policy analysts. 

A list of related IIASA publications appears at the end of this report. 

ANDRE1 ROGERS 
Leader 

Population Program 
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SUMMARY 

The members of most populationsgradually die off or drop out: people die, machines 
wear out, residents move out, etc. In many such "aging" populations, some members are 
more likely to "die" than others. Standard analytical methods largely ignore this hetero- 
geneity; the methods assume that all members of a population cohort at a given age face 
the same probability of death. This paper presents some mathematical methods for study- 
ing how the behavior over time of a heterogeneous cohort deviates from the behavior o f  
the individuals that make up the cohort. The methods yield some startling results: indi- 
viduals age faster than cohorts, eliminating a cause o f  death can decrease life expectancy, 
a cohort can suffer a higher death rate than another cohort even though its members have 
lower death rates, and cohort death rates can be increasing even though its members 'death 
rates are decreasing. 

WHAT DIFFERENCE DO DIFFERENCES MAKE? 

Many systems are aggregations of similar objects. Forests are collections of trees; 
flocks are congregations of birds or sheep; cities are amalgams of buildings; plants and 
animals are built up of cells. The units in such aggregations usually have limited life spans 
and evolve and change over their life before they die or are renewed. The units, although 
similar, are rarely identical; even two mass-produced automobiles of the same make and 
model can differ substantially. In studying populations of similar objects, however, and 
in analyzing the impact of interventions and control policies, the simplifying assumption 
is often made that the units are identical. A key question thus is: what difference does it 
make t o  ignore individual differences and to treat a population as homogeneous when it is 
actually heterogeneous? 

This report examines some aspects of this question. The focus is on patterns over 
time in aging and lifecycle processes and, more specifically, on jumps and transitions in 
these processes. Examples abound. Animals and plants die, the healthy fall ill, the unem- 
ployed find jobs, the childless reproduce, and the married divorce. Residents move out, 
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machines wear out ,  natural resources get used up, and buildings are torn down. Infidels 
convert, ex-convicts recidivate, abstainers become addicted, and hold-outs adopt new tech- 
nologies. Regularities in these processes are studied by  researchers in such diverse special- 
ties as reliability and maintenance engineering, epidemiology, health care planning, actuarial 
statistics, and criminology, as well as b y  analysts in disciplines such as demography, eco- 
nomics, ecology, sociology, and policy analysis. 

In many collections o r  populations, some units are more likely to  make a transition 
than others. Standard analytical methods largely ignore this heterogeneity; the methods 
assume that all members of  a population (or subpopulation, such as US black males) a t  a 
given age face the same probability of change. This paper presents some methods for study- 
ing what difference heterogeneity within a population makes in the behavior of a changing 
population over time. 

The analytical methods will be illustrated b y  examples drawn from the study of 
human mortality, and, henceforth, the word "death" will be used instead of the more 
general terms "change" and "transition". Readers interested in areas of applications other 
than human mortality should associate death with a more appropriate analogous word like 
failure, separation, occurrence, o r  movement. 

The focus on  human mortality implies a focus o n  the simplest kind of  life-cycle pro- 
cess, i.e., a process with just one transition that leads t o  exit. This simplicity permits the 
effects of heterogeneity t o  be  clearly shown and readily explained. The focus o n  human 
mortality gives the exposition a concreteness that fosters intelligibility. Furthermore, it 
turns out  that the analytical methods yield some stimulating insights and policy irnplica- 
tions when applied to  human mortality. 

ROOTS O F  THE RESEARCH 

A small but growing body of  research is relevant t o  the analysis of differences in 
behavior over time between heterogeneous and homogeneous populations. Some strands 
of this research can be traced back t o  Cournot's study of judicial decisions (1838) and 
Weinberg's investigation of the frequency of  multiple births(l902).Greenwood and Yule's 
analysis of  differences in accident proneness and susceptibility to  illness (1920) was fol- 
lowed up b y  Lundberg ( l940) ,  Arbous and Kerrich ( l951) ,  and Cohen and Singer (1979). 
Gini (1924) considered heterogeneity in female fecundity; Potter and Parker (1964) and 
Sheps and Menken (1973) developed this approach. In their influential study of  the in- 
dustrial mobility o f  labor, Blumen, Kogan, and McCarthy (1955) distinguished "movers" 
from "stayers" and then considered an arbitrary number of  groups with different "prone- 
ness t o  movement"; Silcock (1954) used a continuous distribution over individuals to  
describe the "rate of wastage" in labor turnover. This research o n  the mobility of labor 
was generalized and extended to such related fields as income dynamics and geographic 
migration by Spilerman (1972), Ginsberg (1973), Singer and Spilerman (1974), Kitsul and 
Philipov (1981), and Heckman and Singer (1982), among others. Harris and Singpurwalla 
(1968) and Mann, Schafer, and Singpurwalla (1974) developed methods for taking into 
account differences in reliability among machines and equipment. Shepard and Zeckhauser 
(1 975,  1977, 1980a,b; Zeckhauser and Shepard 1976) pioneered the analyses of hetero- 
geneity in human mortality and morbidity; Woodbury and Manton (1977), Keyfitz and 
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Littman (1980), Manton and Stallard (1979, 1981a,b), and Vaupel, Manton, and Stallard 
(1979a; Manton et al. 1981) have made further contributions. 

This rich body of  research indicates that there is a core of mathematical methods 
that can be usefully applied to  the analysis of heterogeneity in such diverse phenomena as 
accidents, illness, death, fecundity, labor turnover, migration, and equipment failure. These 
sundry applications and the varied disciplinary backgrounds of the researchers make it 
hardly surprising that key elements of  this common core of mathematics were indepen- 
dently discovered by several researchers. Further progress, however, surely would be accel- 
erated if the wide applicability of the underlying mathematics of heterogeneity were 
recognized. 

A UNIFYING QUESTION 

Building on  this body of research and, most directly, on  Vaupel et al. (1979a), this 
report addresses a basic question: how does the observed rate of death, over time, for a 
cohort of  individuals born at  the same time relate to  the probability of death, over time, 
for each of the individuals in the cohort.* This question provides a unifying focus for 
developing the mathematical theory of the dynamics of heterogeneous populations. It is 
also a useful question in applied work because researchers usually observe population 
death rates but often are interested in individual death rates, for three main reasons. First, 
the effect of a policy or  intervention may depend on  individual responses and behavior. 
Second, individual rates may follow simpler patterns than the composite population rates. 
And third, explanation of  past rates and prediction of  future rates may be improved by  
considering changes on  the individual level. 

It turns out  that the deviation of  individual death rates from population rates im- 
plies some surprising and intriguing results. Individuals "age" faster than heterogeneous 
cohorts. Eliminating a cause of death can decrease subsequent observed life expectancy. 
A population can suffer a higher death rate at  older ages than another population even 
though its members have lower death rates at  all ages. A population's death rate can be 
increasing even though its members' death rates are decreasing. 

The theory leads t o  some methods that may be of use to  policy analysts in evaluat- 
ing the effects of various interventions, e.g., a medical care program that reduces mortality 
rates at  certain ages. Shepard and Zeckhauser (1980b) develop and discuss some methods 
of this kind. The theory also yields predictions that may be of  considerable interest t o  
policy analysts. For example, in the developed countries of  the world, death rates after 
age 7 0  and especially after age 8 0  may decline faster - and a t  an accelerating rate - than 

*The word "rate" means different things to different specialists. In this report, "rate of death" is a 
measure of the likelihood of death at some instant. As noted later in the text, the phrase "rate of 
death" as used here, has numerous aliases, including hazard rate and force of mortality. The "rate 
of death for an individual" or "individual death rate" is deflned by equation (la);  the "cohort death 
rate" is defined by equation (lb). Note that "rate of death", as used here, is neither a probability nor 
an average over some time period. Furthermore, note that the rate of death for an individual is a 
function of that individual's probability of  death at some instantaneous age conditional on the indi- 
vidual's surviving to that age. Some readers may find it helpful to mentally substitute "force of mor- 
tality" for "rate of death" whenever the phrase appears. 
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now predicted by various census and actuarial projections. As a result, pressures on social 
security and pension systems may be substantially greater than expected. 

MATHEMATICAL PRELIMINARIES 

Let a be some set of parameters w. Assume that each parameter value characterizes 
a homogeneous class of individuals and that the population is a mix of these homogeneous 
classes in proportions given by some probabilitybdistribution on a 

Denote by p,(x) the probability that an individual from homogeneous class wwill 
be alive at  age x ,  and let p,(x) be the instantaneous age-specific death rate at age x  for an 
individual in class w. By definition, 

Similarly, let p(x )  be the probability that anarbitrary individual from the population 
will be alive at age x .  That is, let p(x)  be the expected value of the probability ofsurviving 
t o  age x  for a randomly chosen individual at birth. Alternatively, p(x )  can be interpreted 
as the expected value of the proportion of the birth cohort that will be alive at age x .  The 
cohort death rate P ( x )  is then defined by 

Throughout this paper, superscript bars will be used to  denote variables pertaining to ex- 
pected values either for a randomly chosen individual at birth or, equivalently, for the 
entire cohort. 

Suppose that all the individuals in a population were identical and that their chances 
of survival were described by p(x) .  Then, it turns out that p(x )  would be the sameasp(x). 
Thus, a cohort described by F ( x )  could be interpreted as being a homogeneous population 
comprised of identical individuals each of whom had life-chances given by p(x )  equaling 
p(x) .  This remarkable fact means that researchers interested in population rates can sim- 
plify their analysis by ignoring heterogeneity; this simplification has permitted the devel- 
opment of demography, actuarial statistics, reliability engineering, and epidemiology. 

For some purposes, however, the simplification is inadequate, counter-productive, 
or misleading. For example, sometimes researchers are interested in individual rather than 
population behavior, sometimes patterns on the individual level are simpler than patterns 
on the population level, and sometimes the impact of a policy intervention can only be 
correctly predicted if the varying responses of different kinds of individuals are taken into 
account. That is, sometimes individual differences make enough difference that it pays to 
pay attention to  them; a variety of specific examples are given later inthisreport. Further- 
more, the complexities introduced by heterogeneity are not intractable; indeed, the math- 
ematical methods presented in this paper are fairly simple. 

The expected proportion of the entire population that is alive at time x  and that 
will die in the period from x  to  x  + 1 is given by the formula 

4 ( x )  = 1 - exp [- 5' GV) d.] 
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When F ( x )  is small and does not change significantly in the period from x  to  x  + I ,  then 

Consequently, P ( x )  is often intuitively interpreted as describing the probability of  death. 
Because of their instantaneous nature, death rates like F ( x )  and p,(x) are often 

more mathematically convenient than probabilities like q ( x )  or other statistics such as life 
expectancy or life-span fractiles; the mathematical methods of  this report will be derived 
largely in terms of  death rates. As might be expected, the rate of death is commonly used 
in various applications and has numerous aliases, including hazard rate, mortality rate, 
failure rate, occurrence rate, transition rate, rate of wastage, force of mortality, force of 
separation, force of mobility, conditional risk, death intensity, transition intensity, inten- 
sity of  migration, and intensity of  risk. 

BASIC MATHEMATICAL FORMULATION 

In mortality analysis, the adjective "heterogeneous" usually implies that individuals 
o f  the same age differ in their chances of death. As in many other problems involving rela- 
tive measurement, it is useful t o  have some standard or baseline t o  which the death rates 
of  various individuals can be compared. Let p ( x )  be this standard, baseline death rate; 
how values of  p ( x )  might be chosen will be discussed later. The "relative-risk" for indi- 
viduals in homogeneous class w a t  time x  will be defined as 

It is convenient to  use p ( x , z )  t o  denote the death rate at  time x  of individuals a t  relative- 
risk z.  Clearly, 

Thus, 

The standard death rate p ( x )  can therefore be interpreted as the death rate for the class 
of individuals who face a relative-risk of  one. 

This formulation is simple and broadly applicable. More importantly, it yields a 
powerful result that is central t o  the mathematics of  heterogeneity. Let fx (z )  denote the 
conditional density of relative-risk among survivors at  time x .  As shown in the Appendix, 
the expected death rate in the population P ( x )  is the weighted average of the death rates 
of  the individuals who comprise the population: 
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Since .?(x), the mean of the relative-risk values of  time x ,  is given by 

it follows from equation (4) that 

This simple result is the fundamental theorem of the mathematics of heterogeneity, 
since it relates the death rate for the population t o  the death rates for individuals. The value 
of p (x)  gives the death rate for the hypothetical "standard" individual facing a relative- 
risk of  one; multiplying p(x)  by z gives the death rate for an individual facing a relative- 
risk of z .  The value of  T(x) gives the average relative-risk of the surviving population at 
time x .  In interpreting this it may be useful, following Vaupel et al. (1979a), to  view z 
as a measure of "frailty" or "susceptibility". Thus, T(x) measures the average frailty of 
the surviving cohort. 

UNCHANGING FRAILTY 

- The relationship over time of F(x) versus p(x)  is determined by the trajectory of 
z(x). The simplest case to  study is the case where individuals are born at some level of 
relative-risk (or frailty) and remain at  this level all their lives. In this case, the only factor 
operating to change F(x) is the higher mortality of  individuals at higher levels of relative- 
risk; thus, this pure case most clearly reveals the effects of  differential selection and the 
survival o f  the fittest. Although most of this report addresses this special case, some gen- 
eralizations are discussed later. Because the mathematics derived for the special case also 
holds for a broader range of  assumptions, the special case is less restrictive than it may 
seem a t  first. 

Imagine a population cohort that is born at some point in time. Let fo(z) describe 
the proportion of individuals in the population born at various levels of relative-risk z ;  
fo(z) can be interpreted as a probability density function. Assume that each individual re- 
mains at the same level of z for life. For convenience, the mean value of fo(z) might as 
well be taken as one, so that the standard individual at relative-risk one is also the mean 
individual at birth and so that p(0) equals F(0).  As before, let p (x ,z )  and p(x)  be the 
death rates of  individuals at relative-risk z and of  the standard individual. Let H(x ,z )  be 
the cumulative "hazard" experienced from birth to time x :  

Clearly, 
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The probability that an individual at relative-risk z will survive to  age x is given by 

p(x ,z )  =p(x) '  = exp [-zH(x)] (1 1) 

Consequently, 

where the denominator is a scaling factor equal to  p(x), the proportion of the population 
cohort that has survived to age x .  Thus 

Differentiating equation (13) with respect to x yields 

where 02 (x) is the conditional variance of z among the population that is alive at  time x .  
Since p ( x )  > 0 and o i ( x )  > 0,  the value of d?(x)/dx must be negative. Therefore, as 
might be expected, the mean relative-risk declines over time as death selectively removes 
the frailest members of the population. This means that p ( x )  increases more rapidly than 
ji(x): individuals "age" faster than heterogeneous cohorts. 

If p (x)  is greater than zero for all x ,  then 

- 
z(x)  >?(xl)  iff x < x' ( l s a )  

and 

p ( x )  < p ( x l )  iff x < x '  

Consequently, 

? [p-' ( p ) ]  < Z [p-' (p ' ) ]  iff p < p' ( 1  5b) 

where p-' ( p )  is the inverse function of p(x), and p and p' are two specific values of the 
survival function. That is, mean relative-risk declines monotonically not only with age (or 
t ime)x  but also with the proportion survivingp. 
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HOW p DIVERGES FROM C( 

The magnitude of the divergence of p(x) from P(x) depends on the distribution of 
relative-risk. Several researchers in different fields, including Silcock (1954), Spilerman 
(1972), Mann, Schafer, and Singpurwalla (1974), and Vaupel, Manton, and Stallard 
(1 979a), have discovered that the gamma distribution is especially convenient to  work with, 
since it is one of the best known nonnegative distributions, is analytically tractable, and 
takes on a variety of shapes depending on parameter values. If the mean relative-risk at 
birth is one, then the gamma probability density function at birth is given by 

f, (z) = kkz  '-' exp (- kz)/ r ( k )  

where k ,  the so-called shape parameter, equals (when the mean is one) the inverse of the 
variance 0 2 .  When k equals one, the distribution is identical to the exponential distribu- 
tion; when k is large, the distribution assumes a bell-shaped form reminiscent of a normal 
distribution. 

If relative-risk at birth is gamma distributed with mean one, it can be shown (see 
Vaupel et aL 1979a) that 

- Z(X) = p(x)oz = exp [- 0 2 ~ ( x ) ~  = exp [- o2 1 P(X) h] 

and that 

Thus, the relationship of p(x) to C((x), as determined by ?(x), can be determined by the 
cumulative hazard for either the population or the standard individual. In the special case 
where o2 equals one, the value of ?(x) falls off with p(x), the proportion of the cohort 
that is surviving. It also can be shown (Vaupel et al. 1979a) that f,(z) is gamma distributed, 
with a mean of F(x) and a shape parameter equal to the same value of k as at birth. 

These results for the gamma distribution with mean one at birth are easily general- 
ized to  the case of any mean ?(0) at birth. Equation (1 8) then becomes 

and equation (1 9) becomes 

There is, however, little reason to use this generalized formulation. Let 
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and 

This simple and harmless transformation converts equations (1 8') and (19')  back to (18)  
and (19) .  Furthermore, as indicated earlier, the standard death rate ~ ( x )  might as well be 
associated with the mean individual at birth. 

Instead of working with a gamma distribution, it might seem more natural to assume 
that there is some normally distributed risk factor w that determines relative-risk z :  

It turns out that if w is normally distributed with mean zero and any variance o2 , then z  
will be gamma distributed with a shape parameter of one-half. Thus nothing is to be gained 
by working with the normal distribution with mean zero rather than with a gamma dis- 
tribution. 

In the "mover/stayer" model developed by Blumen er al. (1955),  individuals fall 
into two groups with relative-risk z ,  and z ,  . The value of z ,  can be assumed equal to 
zero, but more generally z ,  can simply be taken as less than z , .  Using equation (1 3 ) ,  it 
is not difficult to confirm that when mean relative-risk at birth is one, 

- [ z , / ( l  - z l ) l  exp [ - z , H ( x ) l  + [ z , l ( z ,  - 1 1 1  exp [-z ,H(x)l  
z  ( x )  = 

[11(1 - z , ) I  exp [ - z , H ( x ) l  + [ l / ( z ,  - 1 1 1  exp [ - z ,H(x) l  
( 2 2 )  

Consequently,Z(x) will start at a value of one whenx is zero and will fall off to a value of 
z ,  as the individuals at relative-risk z ,  die off at a relatively rapid rate. 

Another distribution of interest may be the uniform distribution, stretching from 
1 - a  t o  1 + a, with a< 1 .  In this case, it is possible t o  show that 

- i exp [ a H ( x ) ]  + exp [ - a H ( x : ) ]  
z ( x )  = 1 - a  

exp [ a H ( x ) ]  - exp [ -aH(x) l  

In deriving this result, it is helpful to realize that Z(x) can be considered to be a function 
of H and that the equation for ? ( H )  can be expressed as 

where f * ( H )  is the Laplace transform of fo (2) .  Equation ( 2 3 )  implies that Z(x) approaches 
1 - a as x increases. 

Although formulas for Z(x) have not been derived for other distributions, the value 
of Z(x) can generally be readily computed, t o  a close approximation, by applying numer- 
ical methods to equation (1 3) .  The values in Table 1 for the Weibull and lognormal distri- 
butions were calculated in this way. 
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TABLE 1 The divergence of p from j. 

Variance and forms o f  
initial distribution Values of when 5 is: 

of relative-risk 1 .OO 0.75 0.50 0.25 0.10 0.05 

Gamma 1 .OO 1.03 1.07 1.15 1.26 1.35 
Weibull 1.00 1.03 1.08 1.17 1.34 1.49 
Lognormal 1 .OO 1.03 1.07 1.14 1.23 1.30 

~xponential' 1 .OO 1.33 2.00 4.00 10.00 20.00 
Lognormal 1.00 1.27 1.64 2.30 3.33 4.24 

Gamma 1.00 1.78 4.00 16.00 100.00 400.00 
Weibull 1 .OO 1.70 3.32 9.56 36.10 99.01 
Lognormal 1.00 1.49 2.23 3.46 5.61 7.65 

 hen 0' = 1, the gamma and Weibull distributions are identical to the exponential distribution. 

Table 1 is designed t o  show how p(x)  diverges from F(x) given different initial dis- 
tributions of  relative-risk with different variances. The table presentsvalues of p(x)  divided 
by F(x), which equals the inverse of?(x). The results are presented for different values of 
p(x), the proportion o f  the intial population that is surviving; presenting the results for 
values of p(x) rather than for values of x is convenient since assumptions about the rate 
of  aging over time (i.e., about how p(x)  changes with x )  do not have t o  be made. The table 
indicates that p(x)  can be substantially greater than F(x) when only a fraction of the 
population is alive. Even when the variance in relative-risk is only 0.1 (compared with a 
mean level a t  birth of one), p(x) is 30 t o  50  percent higher than F(x)  when 5 percent o f  
the population is surviving. As the table demonstrates, the degree of divergence of p(x)  
from F(x)  depends on both the form of  the initial distribution of relative-risk and the 
variance o f  this distribution. 

THE SHAPE O F  THE AGING TRAJECTORY 

Although Table 1 and equations (18), (19), (22), and (23) provide information 
about the amount of  divergence between p(x)  and F(x), analysis of  the shape of  p (x)  
and F(x)  requires some assumptions about how one of  these two curves increases with x .  
If relative-risk at birth is gamma distributed with mean one and variance a', then the 
correspondence between six different formulas for p(x)  and F(x) is given in Table 2. 
Figure 1 depicts how the curves for p (x)  and F(x)  diverge in four cases. The table and 
figure clearly demonstrate that the pattern of  individual aging can radically differ from 
the observed pattern o f  aging in the surviving cohort. For instance, when p(x)  is constant, 
F (x)  declines with age; heterogeneity introduces spurious age-dependence on the popula- 
tion level. 
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I p ( x )  = a  e x p  (bx)  

X X 

FIGURE 1  Patterns of divergence. The examples depict the trajectories o f p ( x )  and p ( x )  that corre- 
spond to some of the algebraic expressions presented in Table 2. 

TABLE 2 Individuals age faster than heterogeneous cohorts. 

When z is gamma distributed with variance d at birth: 

If the value of p ( x )  is given by: ... then the value of p (x )  is given by: 

a  a l ( 1  + a'ax) 

ax a x / ( l  + ~ ' a x ' / 2 )  

a  exp ( b x )  a  exp ( b x ) ~  { l  + d a [ e x p  ( b x )  - 11 / b )  

a  exp (- bx )  a  exp ( - b x ) / { l  + 0'a [ l  -exp ( -bx) ]  / b )  

a  exp ( b x )  exp { d o  [exp ( b x )  - l ]  / b )  a  exp ( bx )  

a  exp ( -bx) exp { u a a [ ~  -exp ( - bx ) ]  / b )  a  exp ( -bx)  

NOTES: If p ( x )  = ax, then p ( x )  reaches a maximum of ( a / 2 a 2 ) %  when x  = ( 2 / a ~ ' ) ~ .  If p ( x )  = 
a  exp (bx) ,  then as x  -+ -, P ( x )  -+ b / @  . If P ( x )  = a  exp ( bx )  (i.e., follows a Gompertz curve , then J 
the ratio of p  ( x )  to P ( x )  can be expressed as a doubleexponential equation: p ( x ) / P  ( x )  = . 

THE DISTRIBUTION O F  LIFE SPANS 

Although the discussion so far has focused o n  the divergence of p and F over time, 
comparisons of individual versus cohort behavior in heterogeneous populations could also 
be expressed in terms of  other statistics. Consider, for example, the fractiles of  the distri- 
bution of  life spans or ,  equivalently, the distribution of age of  death. Table 3 presents 



12 J. W. Vorcpel, A.I. Yoshin 

some of these fractiles for a population and for individuals. Fractiles for the standard indi- 
vidual are given for three levels of heterogeneity, as measured by a2 ; fractiles are also 
presented for individuals at three levels of relative-risk z .  The calculations assume that 
relative-risk is gamma distributed with mean one at birth and that the observed death rate 
for the population is given by a Gompertz function, a exp (bx), where a equals 0.00012 
and b equals 0.085. The table indicates that the distribution of life spans in a population is 
more spread out than the distribution of possible life spans for an individual. In particular, 
the right-hand tail of the distribution is shorter for individuals, especially for robust indi- 
viduals where variance in heterogeneity is high. 

TABLE 3 The distribution of life spans. 

Age at which the probability of being alive equals: Length of 
right-hand tail 

Category 0.75 0.50 0.25 0.10 0.01 0.001 XO-I -XO.SO 

For entire cohort 62.6 72.9 81.1 87.0 95.2 100.0 27.1 

For individuals 

NOTE: See text for discussion and explanation of underlying assumptions 

MORTALITY CONVERGENCE AND CROSSOVER 

For many pairs of populations, mortality rates converge and even cross over with age. 
For example, blacks in the United States have lower mortality rates than US whites after 
age 75 or so (Shepard and Zeckhauser 1980b, Manton and Stallard 1981a). In 1980, Puerto 
Ricans had a longer life expectancy at age 65 than the residents of any other country or 
area for which statistics were available (Vaupel 1978). In most developed countries, male 
and female death rates converge in old age. Nam et al. (1978) present statistics on this 
and a variety of other convergences and crossovers. 

These convergences and crossovers of population death rates may be artifacts of 
heterogeneity in individual death rates. Let r(x) denote the ratio of death rates for the 
standard individual in population 2 versus 1 : 

Similarly, let r(x) denote the ratio of the population death rates: 
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For simplicity, assume that the ratio is constant over time on the individual level, so that 
individuals at any level of relative-risk in the second population are always r times more 
likely to die than corresponding individuals in the first population: 

r ( x ) = r > l  fora l lx  (26) 

Further assume that relative-risk is gamma distributed in the two populations with mean 
one and variances 0: and 0: at birth. Let 

Then it follows from equations (8) and (19) that at birth 

but as x increases 

Depending on the value of p ,  i.e., on the ratio of the variances in relative-risk,T(x) 
can either increase or decrease. If p is greather than one, 'i(x) will fall to a value less than 
one. This means that although, on the individual level, p,(x) is always r times higher than 
p (x), the cohort death rate F,(x) will start out higher than C(, (x) and will end up below 
F: ( x )  The crossover point will occur when 

where pl (x) is the proportion of population 1 still surviving at age x .  For example, if r 
equals 2 and p equals 1.5, the crossover will occur when pl (x) equals 0.5.  Figure 2 com- 
pares the trajectories of r and 7 ;  Table 4 presents some specific numerical results. 

- 
r , p <  l l r  

r 

- 
r , p > 1  

X 

FIGURE 2 Patterns of mortality convergence and divergence. 
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TABLE 4 A mortality crossover. 

ASSUMPTIONS: In calculating this table, which illustrates how an observed crossover in death rates 
in two populations may be an artifact of heterogeneity, it was assumed that relative-risk is gamma dis- 
tributed with mean one, 0: = 1, and 0: = 2. Furthermore p ,  ( x )  = 2p1 (x), for all x, where p ,  (x) = 
0.0001 exp (0.1~).  

Empirical data on convergences and crossovers in mortality rates can be used to 
estimate the degree of heterogeneity in relative-risk in a population. If some assumption 
is made about the distribution of relative-risk (e.g., that it is gamma distributed) and about 
the relationship of p,(x)  to p2(x) (e.g., that one is a constant multiple of the other), 
then estimates of the variance in heterogeneity can be calculated. Vaupel et  al. (1979b) 
and Manton et al. (1981) applied this method to various cohorts of the four populations 
of male and female Swedes and US whites. The results suggest that for these populations, 
the variance in heterogeneity is roughly one. 

GERONTOLOGICAL FAILURES OF PEDIATRIC SUCCESS 

Heterogeneity slows observed rates of progress in reducing population death rates 
at older ages. Essentially, reductions in death rates at younger ages permit frailer individ- 
uals to survive to older ages. This influx of frailer individuals serves as a brake or counter- 
current on  reductions in mortality rates at the older ages; Vaupel et al. (1979a) and 
Shepard and Zeckhauser (1980b) recognize this. 

As a simple illustration, divide life into two parts - youth and old age, say - at 
age x,. Suppose that a proportion P(xo) of each birth cohort used to survive to age x,,  
but that because of some pediatric advance, a proportion pf (x0) ,  greater than p(x,), now 
survives. Because I increases monotonically with p ,  T(x,) will increase. Consequently, if 
the values p(x) ,  where x is greater than x,, remain the same, the values of ji(x), where x 
is greater than x,,  will increase. However, if observed death rates at younger ages are re- 
duced t o  low levels, further progress will add fewer and fewer additional persons t o  the 
ranks of the elderly. Thus, progress in reducing population mortality rates will not be 
slowed t o  the extent it previously was. 

It follows from equation (8) that 
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Up until now this report has focused o n  a single cohort aging through time; thus x repre- 
sents both age and time. Generalization t o  the case of  multiple cohorts is straightforward: 
let p ( a , y ) ,  P(a ,y ) ,  and T(a,y)  be  the values of  p ,  P ,  and?  for a cohort of age a in year 
y. Then, fundamental theorem (8) can be rewritten as 

and it follows that 

and that 

Both equations are interesting, but  for the purposes of studying the dynamicsof mortality 
progress over time, the second equation is the relevant one. 

Let 

and 

Thus, n and ?i are measures of the rate of progress in reducing individual and population 
death rates. Equation (30c) can be  rewritten as 

When individuals remain a t  the same level of  relative-risk for life, progress in reducing 
individual death rates will reduce the value of the negative term in this formula; a t  any 
age a the value of  ?(a,y) will approach one as y increases, and the value of a? (a ,y ) /ay  
will approach zero. This is easy to  see in the special case where relative-risk is gamma dis- 
tributed a t  birth with a mean and variance of one. Then,Z(x) equals p(x) so 
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The proportion surviving at any age a will clearly approach one as progress in reducing 
death rates continues. Furthermore, the change over time in the proportion surviving will 
approach zero. 

Equation ( 3 2 )  consequently indicates that as progress in reducing individual death 
rates continues, 

faCv) + naCv) for any a ( 3 4 )  

Since progress in reducing death rates permits frailer individuals to survive to older ages, 

But, of course,?(a,y) is greater than zero. Therefore, 

%(y) < %(y) for any a ( 3 6 )  

In short, the observed rate of progress in reducing the population death rate at any 
age a will be less than, but will approach over time, the rate of progress in reducing indi- 
vidual death rates at age a .  Table 5 presents some numerical results concerning ?i,(y) when 
%(y) is constant for all a and y ;  Figure 3 depicts the pattern of these results. 

The pattern shown in Figure 3 is roughly the pattern actually observed in the United 
States, Sweden, and other countries over the course of this century. Thus, the observed 
acceleration of progress in reducing mortality at older ages may be, at least in part, an 
artifact of heterogeneity. To the extent this is true, death rates after age 7 0  and especially 
after age 8 0  may decline faster in the future than now predicted - and at an accelerating 
rate. The various implications of an increase in the size of the elderly populations, includ- 
ing the pressures it would place on pension systems, are discussed by Myers (1981) ;  the 
work by Arthur (1981)  is also relevant. 

TABLE 5 The acceleration in observed rates of  progress in reducing mortality rates. 

Observed rate of  progress *(a,  y )  when age a equals: 

Year y 20 40 60 80 

0 0.00986 0.00894 0.00528 0.00131 
40 0.00991 0.00927 0.00626 0.00184 
80 0.00994 0.00950 0.00714 0.00252 

120 0.00996 0.00966 0.00788 0.00334 
00 0.01000 0.01000 0.01000 0.01000 

NOTE: It is assumed that the rate of progress on the individual level is 0.01; 

Furthermore, z is assumed to be gamma distributed with mean one and variance one 
at birth, and p(a,O) = 0.0002 exp (0.10). 
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FIGURE 3 Trajectories of progress in reducing mortality rates. 

WHEN PROGRESS STOPS 

Suppose progress has been made over a number of years in reducing individual mor- 
tality rates and then, suddenly, the progress stops so that the mortality rates henceforth 
remain constant. In the succeeding years (i.e., as y increases), the value of p(a,y),  the 
proportion of the original birth cohort surviving to age a in yeary,  will increase and then 
level off. The increase in p(a) will result from the aging of the younger cohorts that have 
experienced lower death rates because of the previous progress. Since, as noted earlier, - 
z is a monotonically increasing function of 5 ,  it follows that ? will increase as well. The 
value of p(a,y),  any a and y ,  will be constant - that is what no progress means. But 

Thus, p(a,y) at any age a will increase over time. 
In short, current mortality rates for populations are lower than the mortality rates 

that would prevail if current mortality rates for individuals persisted. If progress in health 
conditions stops, death rates will rise. This implies that estimates of "current life expec- 
tancy" are too high. These estimates are based on current population death rates, but they 
are supposed to represent what life expectancy would be if health conditions remained 
unchanged. Vaupel et al. (1979a) indicate how the correct value of current life expectancy, 
adjusted for the effects of heterogeneity and past health progress, might be calculated. 
Table 6 and Figure 4 compare the patterns of p(a,y) and P(a,y) when health progress 
stops. 
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If progress in reducing p accelerates and decelerates over time, the observed trajec- 
tory of ii will be bumpy and might show periods of  apparent negative progress; this phe- 
nomenon might underlie the increase in death rates observed in the United States in the 
middle and late 1960s, following a relatively rapid decrease in the 1950s. 

TABLE 6 When progress in reducing mortality rates stops. 

Year y ~ ( 6 0 , ~ )  P ( 6 0 , ~ )  

ASSUMPTIONS: p(a,O) = 0.0002 exp ( 0 . 1 ~ )  
p (a ,y )  = p(a,O) exp (-O.Oly), y < 80 
p(a ,y)  = p(a,80) ,  Y > 80 

Y 

FIGURE 4 When progress in reducing mortality rates stops. 

INDEPENDENT COMPETING RISKS 

Suppose there are several causes of  death and that an individual can be at different 
relative-risks for the different causes. Let zi denote the level of relative-risk for cause of  
death i and let pi(x,zi) be the death rate from cause i at time (or age) x for individuals a t  
relative-risk z j .  As before, define zi such that 
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Assume that an individual's relative-risk for any cause of  death is independent of  his or 
her relative-risk for any other cause of death. Then, as shown in the Appendix, a straight- 
forward generalization of fundmental theorem (8) yields 

jii (x) = pi(x>Zi (x) (8'a) 

and 

where jii represents the population death rate from cause i and where Fi(x) is the mean 
relative-risk from cause i among the individuals surviving t o  time x. The value of Ti(x) for 
any cause of death i can be calculated on  the basis of fo(zi), the distributionof zi at birth, 
and pi(x), the death rate from cause i: 

Thus, the dynamics of mortality from any specific cause of death can be studied without 
knowing the death rates and distributions of relative-risks for other causes of death. 

Suppose that the zi are gamma distributed with mean one and variances a:. (As 
before, the means might as well be set equal t o  one, as in that case the "standard" indi- 
vidual at relative-risk one will be the mean individual a t  birth.) Then equation (19) gener- 
alizes t o  

where 

X 

ffi(x) =J pi (t) d t  
0 

Furthermore, equation (1 8)  generalizes t o  

where Pi(x) is the proportion of the population that would survive to  age x if i were the 
only cause of death: 
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The formulas for the uniform distribution (23) and the two-point distribution (22) simi- 
larly generalize. 

Thus, the case of independent, competing risks is almost as easy to analyze as the 
simpler case of a single cause of death. In a sense, the competing risk case adds another 
layer or dimension of heterogeneity as now individuals not only differ from each other, 
but they also differ within themselves in susceptibility to various causes of death. 

Patterns of aging for individuals can be compared with observed patiems of aging 
for the surviving cohort in much the same way when there are several causes of death as 
when there is only a single cause of death. Figure 5 presents an example. The mortality 
curve shown in Figure 5, which is plotted on a log scale, is intriguing because it resembles 
the observed mortality curves of most developed countries: mortality falls off after in- 
fancy, begins increasing again after age 7 or so, rises through a hump roughly between 

FIGURE 5 A population mortality curve produced by three causes of death. The three independent 
causes of death act, on the individual level, as follows: p, (x)  = 0.02 and z, is gamma distributed with 
0: = 500; p, (x)  = 0.00001 exp ( 0 . 4 ~ )  and z, isgamma distributed with 0; = 200; p, (x )  = a  exp (bx) 
exp { a [exp (bx) - 11 lb0: ) , a  = 0.00015, b = 0.08, and z, is gamma distributed with 0: = 1. 
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ages 15 and 30, and then at older ages increases more or less exponentially. Figure 5  was 
generated by assuming there were three causes of death. For individuals, the incidence 
of the first cause is constant, the incidence of the second cause increases exponentially, 
and the incidence of the third cause increases according to the double-exponential form 
that produces, on the population level, an observed exponential increase. 

Just as mortality convergences and crossovers for two populations may be artifacts 
of heterogeneity, convergences and crossovers for two causes of death may also be arti- 
facts of heterogeneity. In the earlier discussion of population crossovers, the subscript i 
denoted population 1  or 2 - e.g., pi was the death rate for population i. The mathematics 
is equally valid if the subscript i denotes cause of death 1 or 2. So, for example, cause of 
death 2 might be twice as likely as cause of death 1 ,  at all ages, for all individuals. If the 
variance in z, , however, is greater than twice the variance in z, , then the observed rate of 
death from cause 2 in the surviving cohort will approach and eventually fall below the ob- 
served rate for cause 1.  

What will be the effect of progress in reducing individual death rates on observed 
progress in reducing deaths in surviving cohorts? For any specific cause of death, the 
mathematics will be the same as outlined in the section on progress above. Furthermore, 
in the case being considered here of independent causes of death, progress in reducing one 
cause of death will have no effect on pi(x) or &(x) for any other cause of death i. Since 
everyone has to  die of something, the number of people eventually dying from other causes 
will increase, but the death rates pi and pi will not change. 

CORRELATED CAUSES OF DEATH 

When causes of death are not independent but are correlated with each other, the 
mathematics becomes more complicated. The fundamental equations 

and 

are still valid, but now the value of Ti(x) depends on the death rates and distributions of 
relative-risks for correlated causes of death: 

m m 

$ $zifo(z zn)exp [-zlHl(x)--*-- -znHn(x)] dz, ,..., dzn 
- 0 0 

zi(x)= .. m (39) 
$ --. $ fo(zl ,..., zn)exp [-z,H,(x)---• -znHn(x)] dz, ,..., dzn 
0 0 

where, as before, 
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As a simple example, consider the following special case. Suppose that there are two 
causes of death and that,  as in the mover/stayer model, there are two kinds of people. Let 
pl  (x) and p2 (x) be  the death rates from cause 1 and 2 for the standard individual in the 
first group, and let pi (x) and pk(x) be the rates for the second group. Finally, suppose 
the rates are interrelated as follows: 

0 < pl,(x) < p l ( x )  for a l l x  ( 4 0 4  

and 

p;(x) = O for all x (40b) 

Thus, the second, "robust" group does not die from cause 2 and faces a lower death rate 
than the first group does from cause 1. 

Let n(x) denote the proportion of the total population that is in the first group at 
time x .  The observed death rate for the first cause of  death will be 

and the observed death rate for the second cause of death will simply be 

Suppose some progress is made in reducing the incidence of the second cause of  
death. Then the observed death rate from the first cause will increase. This observed death 
rate is the weighted average of  the death rates for the first and second groups. If death rates 
for the first group are reduced (as a result of  progress against the second cause of death), 
more of this group will survive. The value of  n(x) will increase and since p , (x )  exceeds 
pi(x) ,  the value of F l (x)  will also increase. The value of  n(x), b y  the way, is given by  

n(0) e x p i -  5 0 [ ~ , ( t ,  + r2 ( t ) l  d t  

n(x) = (42) 

n (o)exp] -  7 tl [p1(t) +p2( t )1  d f l  + [ I  -n(0)1 exp 1- 5 p ; ( t )  O 

d t ]  

A more general situation in which causes of death are correlated can be described as 
follows. Let z, , . . . , z, be independent relative-risks with mean one. Let the death rate for 
an individual be given by  

where z is the vector o f  relative-risks for the individual and wi is a weight such that 



Death in heterogeneous populations 23 

The basic idea is that an individual's risk from any specific cause of death i depends on a 
general relative-risk (or frailty) factor zo and a specific relative-risk factor zi. 

It can be readily shown that 

If the zi are gamma distributed with mean one and variances o f ,  then 

and 

If wi is greater than zero, then reducing the incidence of cause of death j will in- 
crease Y0(x). This increase in G(x )  will, if wi is greater than zero, result in an  increase in 
the observed incidence of cause of death i .  Indeed, if Hi(x) is reduced by hi, then &(x) 
will increase by 

In short, when relative-risks from different caus.es of death are positively correlated, 
progress against one cause of death may lead to observed increases in the rates of other 
causes of death. 

WHEN THE RELATIVE-RISKS O F  INDIVIDUALS CHANGE 
PROPORTIONATELY OVER TIME 

So far it has been assumed that an individual is born at some level of relative-risk 
and remains at that level for life. Clearly, however, individuals' relative-risk levels may in 
some situations change significantly over time. Sometimes this change is caused by factors, 
such as improvements in living conditions or progress in medical technology, that may 
affect individuals proportionately t o  their current relative-risk levels. That is, for all indi- 
viduals, 
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where z(x) is an individual's relative-risk at time x, and q(x) measures the intensity of the 
change. Alternatively, the value of z(x) could be given by 

where z ,  is an individual's relative-risk at birth andg(x) measures the cumulative change. 
The values of q(x) and g(x) are related by 

Because p(x, z) equals zp(x), it follows that 

Let 

The function pl(x) can be interpreted as describing the trajectory of death rates for the 
standard individual under the changing conditions described by g(x). Then, the funda- 
mental equation becomes 

where, analogously t o  previous formulas, 

In short, by combining the function g(x) with p(x), all the mathematical apparatus de- 
rived earlier can still be applied. 

As shown in the Appendix, g(x) could describe a stochastic process. After a partic- 
ular realization of g(x) is known, then the equations above would hold. Before g(x) is 
known, the equations hold for expected values; if 

where g(x) is the conditional expectation ofg(x) as defined in the Appendix, and if z and 
g(x) are independent, then the expected mortality curve E(x) is given by 
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where Z1(x) is given, as before, by equation (1 3) and where E(x) may be considered a con- 
ditional expectation of the observed mortality rate P(x), as discussed in the Appendix. 

DEATH AND DEBILITATION 

In some situations death may be associated with some illness, such as tuberculosis 
or rheumatic fever, or some catastrophe that not only kills people but that also weakens 
the survivors. To model this kind of correlation between death and debilitation, suppose: 

for all individuals in the population. Thus, the greater the cumulative death rate H(x) 
has been, the frailer each of the surviving individuals will be. 

Since equation (52) is just a special case of equation (48b), equations (51), (811), 
and (13") can be used to analyze this situation. For illustrative purposes, it is sufficient 
t o  consider a simple, concrete instance. Suppose, for example, that zo is gamma distributed 
with mean one and variance oZ.  And suppose that p(x) is constant and equals c at all 
ages x .  Then, 

If the debilitating effect is small relative to the selection effect of heterogeneity - specifi- 
cally, if ct is less than or equal to oZ - then E(x) will decline with age and approach zero. 
On the other hand, if ct exceeds 0 2 ,  then F(x) will initially rise above the level c, but will 
then start t o  decline, will fall below c when 

and will eventually approach zero. Thus, if a is big enough, the debilitation effect will 
dominate for a few years until the selection effect of heterogeneity takes over. 

A RANDOM WALK THROUGH RELATIVE-RISK 

Factors such as further education, increasing income, decreasing alcohol consump- 
tion, increasing cigarette consumption, and other changes in life style, living conditions, 
work environment, and so on  may gradually alter any particular individual's relative-risk 
(or frailty) level relative to other individuals' levels. Suppose that the process is the usual 
kind of random walk known as a Wiener or Brownian-motion process. In this kind of pro- 
cess, the change in an individual's relative-risk at any instant in time is proportional t o  the 
individual's level of relative-risk. Furthermore, the cumulative change over an interval of 
time is proportional t o  the length of the interval. More exactly, 

dz(t) = z ( t )  b ( t )  dw (t) , z (0) = zo (55) 
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where w(t)  is a Wiener process conditionally independent of  z ,  when time of death ex- 
ceeds t and b(t)  is some deterministic function such that 

As shown in the Appendix, if T denotes time of  death, then 

~ ( x )  = p ( x ) i ( x ) ~  exp / b(s) dw(s)- %J b(s) ds] I T > X  1 1 [: 0 

where Z(x) is defined, as before, by equation (13). Thus, remarkably, the mathematical 
apparatus developed above for the special case of  unchanging individual relative-risks also 
holds, in terms of  expected observed mortality E(x), for the more general case where the 
relative-risk level of each individual is gradually changing according to a random walk pro- 
cess. However, the calculation of  the conditional mathematical expectation o n  the right- 
hand side of equation (8"") requires more sophisticated methods of estimation based, 
for example, on the theory of random point processes (Yashin 1970, 1978; Snyder 1975; 
BrCmaud 1981). 

The three kinds of  change in relative-risk discussed above - deterministic propor- 
tional change for all individuals, stochastic proportional change for all individuals, and 
independent random walks for each individual - can be combined with obvious changes 
in the mathematics. 

CONCLUSION 

"lndividuals", whether people, plants, animals,or machines, differ from one another. 
Sometimes the differences affect the probability of  some major transition, such as dying, 
moving, marrying, or converting. If so, the observed dynamics of the behavior of the sur- 
viving population - the population that has not yet made the transition w i l l  systemati- 
cally deviate from the dynamics of the behavior of  any of the individuals that make up 
the population. Most of  the examples and terminology of  this report were drawn from the 
study of human mortality, but the mathematics can be applied t o  various kinds of hetero- 
geneous populations for such purposes as explaining population patterns, making inferences 
about individual behavior, and predicting or evaluating the impact of  alternative control 
mechanisms, policies, and interventions. 

Among the interesting results discussed in this study are: 

Individuals age faster than heterogeneous cohorts. 
Observed mortality convergences and crossovers, both between populations and 
between causes of  death, may be  artifacts of  heterogeneity. 
Progress in reducing mortality at younger ages or from some causes of death may 
increase observed mortality at older ages o r  from other causes of  death. 
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Slow but accelerating rates of  mortality progress in old age may be an artifact of 
heterogeneity, with a significant consequence: the elderly population may be 
substantially larger in the future than currently predicted. 
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APPENDIX 

A1 . Proof of Equation (6) 

Let f ( z )  be the probability density function of frailty z  and let T be the random 
death time. Denote by 9 ( t  1 z )  the conditional probability density of death time T when 
frailty z  is given. Note that 

t 
9 ( t 1  z )  = z p ( t )  exp - z  j p(x)  dx [ 0 1 

where p(x )  is the age-specific death rate for the standard individual with frailty z  equaling 
one. Using the notation g( t , z )  for the joint probability distribution functionof death time 
T and frailty z  we get, multiplying f ( z )  and cp(t I z ) ,  

According t o  the definition of F(x) 

where h(x)  is the probability density function for death time T. 
Note that 

Using the expression for rp(t I z )  we have for F(x)  

Noting that according to  the formula for 9 ( t  I z )  

P ( T > x l z ) =  exp [ - z  l p ( t )  d t ]  

the formula for P(x)  may be rewritten as follows 
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Denoting by fx(z) the conditional probability density function of z when event 
{ T  > x )  is given and noting that according to Bayes formula 

we have for P(x) 

completing the proof. 

A2. The Competing Risk Case 

Let frailty be the vector z = (z, , z ,  ,..., z,). Denote by Ti the random death times 
caused by frailty z i ,  where i = 1,2, . .  . , n ,  and let T = rnin{Ti, i = 1 , 2  ,..., n ) .  Let the 
density function of T when frailty z is given be 

Note that from this formula it follows that 

As in the scalar case note that 

Denoting by f(z) the density probability function of vector z = (z, ,..., z,). we have 
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or using the formula for cp(t l z )  

p i ( t )  d t ]  f ( z )  dz 

Noting that 

where f,(z) is the conditional probability density function of vector frailty z = ( z ,  ,. . . , z n )  
when the event { T > x }  is given, we get for P(x)  

P(x)  = C p i (x ) i i (x )  

where 

It is very important to  know when i i ( x )  coincides withZi(x), where Ti = E{ziI Ti > x )  is 
the conditional frailty that was defined before. For this purpose note that the random 
event { T > x )  may be represented as 

The equality i i ( x )  = Zi(x) means that 

The last equality may take place only in the case when frailty zi for any i does not depend 
o n q , w h e r e j Z i , a n d i , j =  1 , 2  ,..., n. 

A3. The Proof of the Formula for ( x )  

Assume that the following representation for the age-specific mortality rate p ( x , z )  
is valid 

where g(x)  is some integrable random function that is independent of z  and takes values 
on  the real line. According to the definition of E(x) 
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dP(T > x)/dx E (x) = - 
P ( T  > x )  

Let the symbol EQ denote the operation of averaging with respect to  measure Q ,  
which is defined in the space of functions g(x). Then for E(x) we can write 

where f(z) is the probability density function of z. 
It is not difficult t o  see that 

Since variables z and g(x) are conditionally independent, the formula for F(x) may be re- 
written as follows: 

or using the previous notation 

A4. Frailty as a Solution of Stochastic Differential Equations 

Assume that frailty z(t) is governed by the following stochastic differential equation 

where z(0) does not depend o n  w(t) and 

The solution of  this equation may be found in the following way. Apply the sto- 
chastic differentiation formula (Ito formula) to the function y(t)  = In z(t) (Liptzer and 
Shirjaev 1977), which yields 
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and consequently for z(t) 

Denoting by g( t )  = exp [Ji b(s) dw(s) - (%) J', bZ(s)  ds] and recalling that p ( x , z )  = 
z(O)g(x)p(x),  it follows from section A3  that 

P(x)  = ?(x) i (x )  P(X) 

where 
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