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FOREWORD 

Contributions to the Metropolitan Study: 2 
The project "Nested Dynamics of Metropolitan Processes and Policies" was initiated 

by the Regional and Urban Development Group in 1982, and the work on this collabora­
tive study started in 1983. This paper deals with one of the central theoretical issues in 
the project: the relation between different scales of aggregation of urban dynamics. 

An important aspect of many urban modeling situations is to ascertain the ways in 
which interactions at the level of individuals are combined to produce observable global 
spatial and/or temporal patterns. Of equal interest is the inverse question : given an ob­
served global pattern, classify all local interactions of choice processes that could give rise 
to the specified patterns. 

Such questions form an important part of the Metropolitan Study inasmuch as they 
involve the development of housing, employment, and economic patterns in time as func­
tions of individual choices. This paper provides the systems-theoretic background needed 
to investigate the evolution of such patterns and the bifurcations that generate a shift from 
one pattern to another. 

A related theme of interest is the stabilization of a derived pattern by means of 
social policies. The paper shows that stabilization questions are bound up with the twin 
problems of adaption and anticipation in the policy-making process, and several sugges­
tions for accommodating these features into the mathematical model of the process are 
discussed. 

BORJE JOHANSSON 
Acting Leader 

Regional and Urban Development Group 
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In thb papcr we con~id e r the com plementary quest ions: in what sense do local dynamic~ prc.;;cr ibc globa l '\patial patterns 
and to \\ha t extent docs a global pattern impose constrain ts on local interactions. From the standpoin t of results from 
mathematica l S)Stem theory. it is argued that a modeli ng approach starting from obsen-cd pattern s and passing to local 
dynam ics is \<tstly to be preferred to proceedi ng in the opposite direction. the usual approach mimicking the procedure 
follm\cd in the physic31 sciences. The paper co ncl udes with a discussion or the rule or anticipatory decision making and 
adaptati on in the stabiliza tion of certain properties of dynamical spatial processes. 

EME RGENCE OF FORM 

One of the most vex ing questions in a ll of bi o logy 
is the determination of the mechanism whereby new 
··forms·· sp ring-up into ex istence a lmost overni ght , 
seemingly with no direct connection to previous 
lines of development. Such a discont inuo us mor­
phogenesis is often termed "emergent novelty" in 
theoretical bio logy a nd its presence is certainly o ne 
of the strongest arguments against the classica l 
Da rwinian theory of evoluti on. In more general 
sys tem-theore tic terms , the problem of emergent 
novelt y may be re-stated in the following manner: 
under what circumstances do " small " changes in the 
st ruct ure of a system result in "large" changes in the 
pattern or fo rm of the observed output? Despite 
the obvious vagueness of thi s problem sta tement , 
the relevance to spatial choice models is fairly clea r, 
since in spatia l choice phenomena one of the key 
issues is to what ex tent the microbehaviour of 
individua ls influences the overall spatia l pattern. We 
are also interested in the converse question: in what 
fashion does a global spatial pattern constrain the 
local act io ns of individuals. To deal with these 
questions in more speci fic terms, we must exam ine 
the relationship between local and global models 
a nd spati a l patterns. 

For us. a spa tial pattern will consist simply of a 
distribution of population throughout some 
predefined spatia l region . If we describe the popu­
la tio n density at a point (x, y) at time 1 by a (x , y, t ), 
then a local model for the change of pattern wi ll 

t Work partially 5upported by the National Science Founda­
tion under Grants # CEE 8110778. " Modern Stability and 
Numerical Concepl s in Water Reso urce Management •· and 
# CEE 8 100491. ··Global Swbility Analysis o f Environmental 
System s" 
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consist of a descripti o n of how the population a t 
(x. _r) interacts with that at nea rby points (x ± L'n. 
y ± ~y) and the manner in which thi s inte ract ion . 
together wit h the external influences through the 
boundary r' Q determines the densit y at time I + ~t. 
Usuall y this loca l descriptio n is g iven by a partial 
differential equation o f diffusio n-t ype. For example 
we could use the equa1i o n: 

aa , , a,= a[f(p) - aJ?(p)] + D , V-a - D, V- p, (!) 

where p (x, y) is the "a flinit y" of the point (x. y) and 
f and g are functions specifying the effect of p on 
the stimulati on a nd inhibiti on of proliferation. Here 
the basic mechanisms accounting for the change of 
spatial pattern are proliferat io n, diffusion and 
environmenta l affi nit y, with diffusion acting to 
homogenize the pattern, whi le proliferation and 
affinity tend to make the pattern more hetero­
geneous. The net effec t of these co unteracting fac­
tors is determined by the particular fu nctions f and 
g. and the parameters D, and D, . 

Equation (I) is a typical example of a local model 
in that the only interactions utili zed in the formu­
lation of the model a re those in an arbitrarily small 
neighborhood of the point (x. y ). These local inter­
actions are dictated by the choice off g, D , and D, 
with the hope that if the select io n of these elements 
is made judiciously, then the glo bal spatial patte rn 
and it s dynamics can be determined from Eq. ( I). 
Such a ··bo ttom-up' · approach is, o f course. very 
familiar from class ica l phys ics and form s the ma th­
ematical modeling manifestatio n of a part of the 
reduction ist view of nat ural phenomena. In the next 
section we shall consider in more detail some of the 
pitfalls inherent in such a " myo pic" view of system 
modeling. Here we only note that the credibility of 
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any such local model is totally dependent upon 
whether or not the basic ingredients (the elements/, 
g, D, and D2) can be accurately determined from the 
spatial process and the available data. In physics the 
approach works (usually) since we have the luxury 
of basic "laws" to fall back upon and such laws can 
be invoked to give precise structure to the model 
elements. In the social sciences no such laws exist 
and, as a result we are on much more shaky ground 
when it comes to choosing the necessary com­
ponents of the local model. This point has been 
extensively pursued in reference I, so we shall not 
belabor it here , other than to say that the absence 
of natural laws in the social sciences casts a shadow 
over any modeling effort relying upon detailed 
knowledge of the form of local interactions. With­
out further effort to discover such laws (if indeed 
they exist, at all), the "physics-envy" of the social 
scientist has basically the same degree of substance 
as the smile of the Cheshire cat. 

If we accept the position that local interactions 
are unknown, then the only recourse is to a " top­
down" modeling effort in which we attempt to 
construct the local interactions on the basis of the 
observed temporal evolution of the spatial pattern. 
In other words, we seek to deduce the laws of 
microbehavior from the observed pattern. This ap­
proach is more in line with the classical tradition in 
experimental science, where a controlled experiment 
is performed, the data is analyzed and a theory 
(read: model) is constructed to explain the experi­
mental evidence. The essence of such a " top-down" 
view of modeling is to regard the experimental data 
(the system inputs and outputs) as constituting the 
observables of the process and to consider the local 
interactions as taking place through the system 
states, which are constructed from the input/output 
data . What is important to note here is the idea that 
the sta te variables are not given a priori ; they have 
no intrinsic physical significance and are inter­
pretable only through their effect on the observed 
outputs and by the way they interact with the 
applied inputs to produce outputs. In short, the 
states only exist at the microlevel and cannot, in 
general , be seen as part of the system " pattern." 
Diagramatically, we have the following situation: 

n r 

\I 
x 

Here Q is the collection of actions (inputs) to the 
system, r is the set of observed patterns (outputs) 

and f is the observed input/output relationship. The 
set X represents the microstates of the process, with 
g and h being the system input and output maps, 
respectively. The general modeling problem is then: 
given n, rand/, find X, g and h such that the above 
diagram commutes. 

The overall problem of pattern dynamics , and 
especially the phenomenon of emergence, is now 
easy to interpret: under what circumstances can the 
dynamics in r change discontinuously as a result of 
changes in n, X, g and/or h. Obviously this is a very 
general statement of the problem and we shall 
take-up special cases later but it is already clear that 
the phenomenon of emergence is not dependent on 
any one factor. It is a complicated interplay between 
the internal dynamics in n and X, as well as the way 
in which these dynamics impose dynamics in r. 
Furthermore, since the sets Q, X and r are, in 
general, quite distinct we see that it is necessary to 
account for the possibility of several different time 
scales in the process, at least one for each of these 
sets and maybe more if the basic sets themselves are 
stratified in some way. 

A simple illustration of how emergent phenomena 
can arise is provided by some empirical work done 
by Schelling2 on the problem of choice in the overall 
racial integration of urban neighborhoods. The 
approach involved dividing the population into two 
discriminatory groups (blacks and whites) and to 
impose a rectangular cellular grid upon the neigh­
borhood. Each grid cell represented one urban 
dwelling and was either occupied by a black ( # ), 
a white (0) or was vacant. The local dynamics were 
defined by the simple principle that each racial 
group would prefer to have a certain percentage of 
its immediate neighbors being of the same group 
and, if this was not the case, then that party would 
move to the nearest grid location where the per­
centage of like neighbors was acceptable. In order to 
have a reasonable choice of where to move, it was 
empirically observed that around 25%-30% of the 
grid locations should be vacant. Starting with the 
initial distribution of Fig. I, the steady-state pattern 

0 # # # # 0 0 0 0 # # 0 0 
0 # 0 0 0 # # # # 0 
# # 0 0 # # .u. 0 # # # T 

# # # 0 .u. .u. # 0 0 ...,. ~ 

0 0 0 # # # # # # 0 0 
# 0 .u. 0 0 # 0 0 # # ...,. 

.u. 0 0 # 0 0 0 # # # 
0 # 0 # # # 0 0 0 .u. 

0 # 0 .u. # 0 it ...,. 
0 0 # 0 # 0 0 0 0 # # 

0 # # 0 0 0 0 0 # # 0 # " .u. 0 # 0 .u. 0 0 .u. 0 # 0 0 ~ 
...,. 

0 0 0 it 0 'T 0 0 0 .u. ~ 

FIG U RE I Initia l distribution . 
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I# # # # # # # # # 0 0 
# # # # # # # # # # # # # 0 0 
# # # # # # # # # # # # # 0 0 
# ######## # 0 0 
0 0 0 0 ####### # 

0 0 0 0 0 # # # 0 0 # # # 
0 0 0 0 0 0 0 0 0 0 0 ## 

0 0 0 0 0 0 0 0 # 
0 0 0 # 
0 0 0 0 0 0 # # 

0 0 0 0 0 0 0 0 # # 
0 0 0 0 0 0 0 

0 0 0 0 0 0 0 # # 

FIG URE 2 Steady-state distribution when a t least half o f the 
neighbo rs are the same. 

of Fig. 2 was obtained under the assumption that at 
least half of one's immediate neighbors be of the 
same color while when the demand is only at the 
level of l /3 of one's neighbors be of like color, the 
pattern of Fig. 3 emerges. 

Many other variants of the basic parameters are 
reported _in (2]. with the general conclusion being 
that no simple correspondence of individual incen­
tives to the final collective pattern could be dis­
cerned . Exaggerated patterning and separation re­
sults from the dynamics of movement and that the 
overall pa ttern did not in general allow any infer­
ences to be drawn concerning individual motives. 
Such a conclusion, while somewhat pessimistic from 
a sociologist's vantage point, has a rather straight­
forward interpretation and explanation when 
viewed in the light of mathematical system theory. 
We shall take this point up in Section III. For now 
it is sufficient just to note the main moral of 
Schelling's work: local dynamics cannot be uniquely 
inferred from observed patterns. However, in Sec­
tion Ill we shall show that the non-uniqueness can 
be removed by imposing some very reasonable 
natu ra l conditions on the local model. 

0 0 0 0 0 # 0 0 0 0 0 0 
0 0 0 0 # # 0 0 0 0 0 
0 0 # # 0 0 0 # # 0 0 0 
# # # 0 0 0 # # 0 0 0 # 0 
# #### # ## # 

0 0 # # # # 0 # # 
# 0 0 0 # # 0 0 0 # # 
0 # # # # ### 0 0 # # # # 
0 # # 0 0 0 0 0 0 # 
0 # # 0 0 # # 0 0 0 0 0 

0 # # # 0 0 # # 0 0 # 0 # # 
0 0 # # 0 # # 0 # # # 

0 0 ## # # ## ## 

FI GU RE 3 Steady-sta te distribution when at least 1/3 of the 
neighbors are the same. 

II MICROBEHAVIOR TO GLOBAL 
PATTERNS 

In order to study the effect of microbehavior 
upon global patterns of development, we shall con­
sider various cases of the dynamical system (N) 

X = J (x, U ) , X (0) = X 0 

y (t) = h(x, u), 

where xis an n-dimensional vector of microstates 
y is a p-dimensional vector of observed outputs, ~ 
is an m-dimensional vector of control actions (in­
cluding environmental parameters) and f and h are 
functions defining the internal dynamics and out­
put, respec_tively. Usually in "bottom-up" modeling, 
especially in the social sciences, it is assumed that 
h =identity, implying tha t what we can actually 
measure 1s the m1crostate itself. Actually, the situ­
ation is somewhat worse since in most local models 
the microstates are de.fined to be those quantities like 
population for which da ta is available. Since one of 
our principle points is that it is important on 
system-theoretic grounds to distinguish between 
variables which can and cannot be measured di­
rectly , we shall insist upon not confusing the con­
cept of system state with that of measured system 
output, a confusion which is inherent in implicity 
taking h as the identity function . 

Now let us see the "kinds" of patterns which can 
arise in simple local models by examining a few 
cases from the litera ture. Our objective will be to 
sho_w by concrete illustration that seemingly minor 
vanat10ns on the assumptions defining the local 
behav10r can genera te global patterns which have 
no apparent relations to each other. 

Ex ample I: The development of socioeconomic 
inequalities ' 

Here we consider a model proposed to explain 
how inequalities can a rise and be maintained in a 
given social system . Let the population be divided 
into n subgroups and define the variables 

a,(t) =self-enhancing advantage for subgroup i, 
(e.g. generalized " weal th" ), 

s,(t) =resources available to subgroup i, (e.g. 
energy, manpower, etc.) 

p(a,, s,) =production of advantage for group i, 
r (a,, s,) =removal of advantage from group i, (by 

depreciation and consumption), 
Du(a,) =re-distribution of the overall advantage 

to group i (e.g. taxation), 
q(a,, s,) = depletion of resource by subgroup i. 

Under the assumption that there is a uniform 
availability of limited resources and a depletion 
effect q proportional to production p , the following 
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F IGU RE 4 Pattern when d,, = 0 and there is a uniform initial 
1:1dvantage. 

local model for the change of advantage is proposed 

da, ais v 

dt = p, + I + a,/ A - a; 

- da (a - ~ J, a} (t) 

where p, is a small basic production term, A is a 
sa turation constant , v is the overall societal wealth , 
d,, is a parameter reflecting re-distribution of a ' a is 
a parameter representing "reinvestment" of advan­
tage for future generation and 

s = const / (L: ________!!!__/ ) . ; I +a1 A 

In order to see how differential advantages de­
velop, consider Figs. 4- 6. which show the results of 
integrating the model (tl with n = 17 groups, 
v = 0.5 for various values of re-distribution d,, . 
Figure 4 shows the pattern tha t develops when there 
is a near uniform initial advantage with d,, = 0. A 
similar pattern arises in Fig. 5 if the initia l advan­
tages form a shallow gradient while, finally , Fig. 6 
shows that for a sufficiently dominant d,,, the in­
equa lity generating mechanism is qualitatively 
changed . 

The above example shows the sensi tivity of the 
global pattern to a change in only a single problem 
parameter. Since such parameter values can seldom 
be determined with a degree of accuracy anywhere 
nea r what is needed to lend credibility (and stability) 

FIG U RE 5 Pattern ford,.= 0 with a non-uniform initial advan­
ta ge. 

FIGURE 6 Pattern fo r dominant d,. 

to the model 's output, the potential pitfalls of basing 
policy on such a model is obvious. Our next example 
shows that such a situation is not at all " excep­
tional" in the modeling of social phenomena. 

Ex ample 2: Dynamics of urban residential structure 

The basic objective of this model is to describe the 
dynamics of residential attractiveness as a function 
of travel costs from one neighborhood to another, 
employment factors for each region and average 
household size. If we let 

H;(l) = the residential attractiveness of zone i, 
Tij (t) =the number of people in zone i who work 

in zone j, 
a= employment multiplier, 
b =average household size, 
<J = rate of response parameter 

and set 

Tij (t) = BAHi exp (-/Jcij), 

where 

with 

Ej =number of persons working in zone j , 
f3 = travel impedance parameter, 
y =residential attractiveness parameter, 

c;; = cost of travel from zone i to zone j, 
i,j = 1, 2, ... , n, 

then the postulated dynamics are 

H;(l + !) = H;(t) + <J [~ ~ Tij(t)- H;(l)J H;(t). 

Using the above model to study the rise and decline 
of neighborhoods as a function of the travel param­
eter {3, it was seen in reference 4 that, generally 
speaking, two distinct patterns could emerge: for 
small f3 ( ~ 0.1) the population tended to cluster in 
the central a rea, while for large f3 ( ~ 1.0) the popu­
lation was distributed throughout the suburbs as 
well as in the central area. 
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For us, the important feature of the above model 
is that it is a quadratically nonlinear difference 
equation. A simple example of such a function 
which captures all of the essential features is the 
logistic equation 

x(t+l)=µx(t)[l-x(t)], µeR'. 

It is well known that for values of µ <; 3.58 the 
oscillations of definite periods between the steady­
states of the logistic equation cease and the oscil­
lations become aperiodic, i.e. chaos sets in. 

In the "chaotic" regime, the dynamical behavior 
is characterized by the three properties: (I) an 
infinite number of periodic trajectories; (ii) an un­
accountable number of nonperiodic trajectories; (iii) 
the instability of all trajectories. On the other hand, 
for 1 ~ µ ~ 3, there is a single stable trajectory (fixed 
point at x* = (µ - 1)/µ). For 3 < µ ~ 3.58, x* be­
comes unstable, but new stable steady-states come 
into existence. The point is that totally unexpected 
and qualitatively different patterns may emerge as a 
result of minor (unmeasurable, even) changes in 
basic parameters. 

However, by regarding µ as a randomly 
fluctuating environmental parameter, an entirely 
different global pattern may arise as our next 
example shows. 

Example 3: Nonequilibrium transitions induced by a 
noisy environment 5 

Consider the logistic equation 

dx I 
dt =1-x+Px(l-x), 

where P is a parameter representing the state of the 
operating environment. Assume that pis a random 
variable with EP = p, var p = rr 2 and that the cor-

0 

relation time for p is much less than the macro 
time-scale of x. This allows us to regard Pas a white 
noise fluctuation affecting the system. lfwe let P,(x) 
represent the stationary probability density for x , an 
easy consequence of the Fokker- Planck equation 
shows5 that the extrema of P,(x) are given by the 
roots of the equation 

1/2 -x* + Px*(I - x*) 

- (1 / 2)rr 2x*(l - x*)(l -2x *)=0. 

This is a cubic polynomial in x * whose roots are 
depicted in Fig. 7 as a function of P and rr 2/ 2. Thus, 
with regard to the extrema of P,(x) we have a cusp 
catastrophe in the (/1, rr 2)-plane with the cusp point 
at (0, 4). 

The conclusion is that new transition phenomena 
can be induced by external fluctuations in the envi­
ronment; the extrema of P.(x) are essentially 
different from those of the deterministic case. Hence, 
it makes a difference in our interpretation of the 
model whether we regard the parameter p as un­
known, but deterministic, or as a random variable. 

The purpose of introducing the above examples is 
not to discredit the utility of the particular models 
themselves, but rather to call attention to some of 
the inherent potential pitfalls that lurk in the wings. 
All of the types of pathologies sketched above have 
a single root source: an instability in the observed 
output pattern as various features of the model are 
changed. Unless we understand why. how and when 
such instabilities arise , we are " whistling in the 
dark" as far as being able to place any real faith in 
the conclusions drawn from the model. This prob­
lem is particularly acute in the use of such models 
in the social sciences, including spatial choice situ­
ations, since the underlying microinteractions are 
poorly understood. What is needed are results which 

x 

FIGURE 7 Roots x* as a function of f3 for various values of a 2/2. 
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enable us to assert that a particular observed output 
pattern is stable (persists) over some range of local 
interaction hypotheses. Such results require a "top­
down" approach to modeling to which we devote 
the next section. 

III LOCAL MODELS FROM 
MACROPA TTERNS 

If we renounce the modeling scheme based on 
deducing global patterns from assumed microbe­
havior, the only alternative is to construct models in 
which the observed micropattern imposes a class of 
local dynamics. A basic question , of both theoretical 
and applied concern, is to what extent the macro­
pattern dictates a unique local dynamics. As we shall 
see in a moment , mathematical system theory has a 
rather definitive, clear-cut answer to this question: 
up to an irrelevant labeling of the internal state 
variables, there is a single "good" local model for 
each observed pallern. Now let us explain this result 
and its underlying assumptions in more detail. 

We are concerned with the existence of " good" 
local models of the form 

dx 
dt = f(x, u ), x(O) = x 0 , 

(N) 

y (t) = h (x, u ), 

when given the observed pattern consisting of the 
input u(t) and the output y(t), 0 :5 t :5 T. In other 
words, given the input/output pair (u (I), y (t )), we 
consider the following basic modeling questions: 

(i) under what circumstances can we construct a 
state space X and functions f and h such that (N) 
displays the same input/output behavior as (u, y ); 

(ii) if such a construction is possible, is it unique 
in any sense, and what are the structural features of 
X, f and h; 

(iii) if the construction is not unique, what addi­
tional " natura l" conditions must be imposed in 
order to remove the non-uniqueness. i.e., how do we 
find "good" models; 

(iv) how can we make the construction of good 
models computationally feasible from given experi­
mental data. 

There is, as yet, no complete answer to these 
questions. A reasonably complete theory does exist, 
though, if the input/output relationship is linear6

. In 
this case, it is known that a "good" model is unique 
up to a choice of the coordinate system in X, where 
"good" here means that dim X is minimal. If the 
input/output relationship is nonlinear, then we must 
be content with studying special classes of nonlinear 
relationships to achieve specific results (e.g., bilin­
ear, polynomial , et.:.). However, as far as the condi-

tion as to what constitutes a good model goes, the 
result from the linear case comes over to the general 
case almost without change. Thus. if there are two 
local models N and N' which both ··explain" the 
same observed pattern, then these two models are 
isomorphic in the sense that there exists a 
diffeomorphism </>: X -+ X ' such that under </>, 
f-+ .f ' and h -+ h ' . In other words. N and N ' differ 
only through a smooth coordinate change in their 
state spaces. It is important to observe here that 
since the state space X is a mathematical construc­
tion obtained from the pattern . there is no possibility 
of ever determining from the pattern alone what the 
internal coordinatization of X will be. Thus, the 
above result is "best possible" in that once the 
coordinate system in X is chosen, then the local 
model is uniquely determined from the observed 
pattern. Many more details and additional results 
may be found in the survey paper. 7 

One of the main difficulties in carrying out the 
general modeling program discussed above is that of 
determining in what class of functions we should 
seek f and h. A hint as to how to proceed is provided 
by results from the theory of singularities. together 
with the above theorem stating that any two good 
models must be equivalent through a smooth coor­
dinate change. Let us look at this idea in more detail. 

Suppose that the global pattern is described by an 
equation of the form 

f(y,,y 2, ... ,y,,; u, , u2 , .... u,,,) = 0, 

where f(') is some smooth function relating the 
inputs {u,} and outputs {y,}, i.e., I is the 
input/output relation. For simplicity. we assume 
here that f is scalar-valued. The vector-valued case 
can also be treated at the expense of substantial 
additional mathematical sophistication and no­
tat ion. According to the basic theorems of Mather, 
Thom and Arnol 'd, the form of/ in a neighborhood 
of any point (y. u) is determined by two integers. the 
codimension and corank off. These numbers can be 
computed directly from f by linear al?,ebraic means 
and , once they a re known , the theory of singularities 
assures us that there exist coordinate systems in 
(y, u )-space such that I assumes one of a small 
number of sta ndard forms. the particular form 
depending upon codim f and corank I What is 
important here is that all of these forms are low­
order polynomials in y and linear in 11. This result 
strongly suggests focusing attention upon the class 
of polynomially nonlinear systems in any efforts 
directed toward modeling local dynamics in spatial 
choice situations. 

As an indication of how the ideas from singularity 
theory shed light on the development of spatial 
patterns, consider the continuous mapping </> of the 
x - y plane to it se lf 

"' (x,y)-+ (u(x,_v), v(x,y)). 
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FIGURE 8 Lip events. 

The singular points of <P are where the system 
Jacobian a (u, v )/a (x, y) = 0. These singular points 
form smooth curves in (x , y )-space called fold lines 
which contain special points called cusp points. The 
folds and cusps have the important character that 
they are stable features not destroyed by small 
perturbations of¢. Intuitively, we can imagine that 
(u , v) represents the velocity of a flow (of people, 
resource, etc.) at the point (x, y ). If we plot the 
velocity at (x, y) as a dot at the point (u (x, y ), 
v (x , y )) , we would see the density of dots being very 
high along the fold lines and even higher at the cusp 
points. That is, the velocities are " focused " at the 
singularities. 

Now imagine that the velocity field evolves in 
time, i.e ., <P = ¢,. The pattern of folds and cusps will 
change in a continuous way, except that at certain 
times the folds and cusps will interact to produce an 
event. To see what might happen, consider now the 
map 

¢, 
(x,y , t) --> (u, v, r) , (r=t) 

In general maps from R3 ---> R3
, the generic, stable 

singular sets are folds , cusps and swallowtails. How­
ever, this particular map has the property that t = r 
and it turns out that this imposes certain restrictions 
on the orientation of the singular sets in 
(u , v, r )-space. The successive planes r =constant 
cut through the singular sets to produce two sorts of 
events as seen in (u , v ): (a) when r =constant cuts 
a singular point (a fold), then a swallowtail type of 
event occurs; (b) when r =constant is tangent to a 

F IGURE 9 Beak-to-beak events. 

rib (the locus of a cusp in (u, v, r )), then only 
"beak-to-beak" and "lip" events occur. These are 
the only types of generic events that can occur 
in a freely evolving flow field. Basically, these 
events correspond to the way an entire line of 
cusps can be sectioned by a plane in R3 (see 
Figs. 8- 9). 

The implications of the foregoing result for spatial 
modeling is quite profound . Basically, it says that 
regardless of the assumptions concerning the micro­
dynamics built into the map ¢ , the global pattern 
that emerges can have singularities of only a very 
limited type. So, if our interest is in how and where 
the flow field can exhibit discontinuous changes in 
behavior (unbounded velocities), only a small num­
ber of situations need be considered and only a 
handful of inequivalent geometries can occur. In 
fact, we can be a bit more specific about the local 
structure of <P and state the following weak form of 
Whitney's Theorem:' 

Whitney's Theorem . Let p be a singular point for 
the map ¢. Then smooth coordinate systems (x' , y' ) 
and (u', v') may be introduced about p and </J(p) such 
that <P takes the form 

(a) u ' =x'2
, v ' =y ', ifp is afoldpoint; 

(b) u' = x 'y ' - x '3
, v' = y ' , if p is a cusp point. 

Furthermore, the set of smooth maps ¢: R' ---> R 2 

having only fold or cusp singularities is dense in the 
set of all smooth maps R 2 ---> R 2

• 

Thus, almost any local dynamics, when viewed in 
the " righ t" coordinates looks like either (a) or (b) of 
Whitney's Theorem near the singular points. (Note 
that if p is a regular point, then locally <P takes the 
form u' = x ', v' = y ' .) . 

Whitney's Theorem is another illustration of the 
point made earlier in the section to the effect that the 
global pattern actually induces a microdynamic that 
is unique, up to coordinate change. This result adds 
further strength to our earlier claim that "top­
down" modeling is the preferred direction to go for 
characterizing situations in which there is no local 
" law" to fall back upon for choice of the micro­
dynamics. 
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JV ANTICIPATION, ADAPTATION AND 
MONITORING 

So far we have totally ignored the question of 
decisionmaking. or control, in the spatial choice 
modeling process. One might say that we have 
considered only the so-called .. free dynamics" of the 
process from the point of view of passive observers. 
Now we wish to become activists and consider 
certain aspects of the modeling operation associated 
with management and control of spatial choice 
processes. 

Let us assume then that we have a working model 
for the free dynamics of the process given by 

dx 
dt =f(x), 

y(t) = lz(x). 

Here xis the microstate and y is the observed output 
pattern. Suppose that the model predicts future 
outputs that are in some way undesirable and, as a 
result, we wish to introduce an input into the 
dynamics to move the system back ·'on course." 
Thus, we now have the dynamics 

;( = g (x, u ). 

where u(t) is the decision function. We note that 
choice of u(t) is dependent upon a prediction of y at 
some future time I> t made by the original model. 
This is an example of anticipatory decisionmaking, 
a point we shall return to later. 

There are many results in the system theory 
literature concerned with the way in which a feed­
back control u = u(x) can be used to modify the 
original dynamics. Our concern here is with the fact 
that in most spatial choice phenomena, the micro­
state x(t) needed to construct the feedback action 
u(x) is not available. We have at our disposal only 
the macropattern y(t) = h(x). This situation creates 
a monitoring problem: can we determine the micro­
state x from the macropattern y? The answer de­
pends upon many factors, most importantly the 
function h, which specifies the manner in which the 
microstates are combined to form the pattern. Issues 
of this sort form the basis for the theory of obser­
vability which is well-documented in the literature. 9 

Another important aspect of the overall mon­
itoring question is the following: is it necessary to 
actually construct all of x from y in order to form 
a "good" control law approximating u(x) or would 
only a small subset of " essential" variables in x 
suffice? Leaving aside the issue of what constitutes 
a "control approximating u(x)," this question re­
volves about the issue of whether or not we can find 
a coordinate system in the x-space, such that in this 
system only a small number of original components 
of x appear in the feedback law. Problems of this 

sort were considered in reference 10 but much 
additional work remains. We note that the Splitting 
Lemma of singularity theory8 should prove to be a 
va luable tool in addressing the foregoing questio n. 
The interested reader can find a more detailed 
treatment of many aspects of the monitoring ques­
tion in the context of natural resource sys tems in the 
paper. 11 

Returning now to the issue of anticipatory deci­
sionmaking, we have the following general situation: 
a model M predicts the future pattern J'(T) of our 
spatial process al some time T > t. On the basis of 
this prediction, a decision u(t) is taken which 
modifies the behavior of the system and the process 
unfolds to time T al which point the actual pattern 
y(T) is observed. At this point the prediction 
Y(T) and realization y( T) are compared and a 
judgment about the credibility of the model M is 
made. If II y(T) - y(T) II is sufficiently small, Mis 
left unchanged. If this difference exceeds some 
threshold, the model is modified on the basis of the 
new information y (s ), I :s; s 5 T. This process of 
modifying Mis what we usually term adaptation and 
is, as we see, intimately connected with the ideas 
of prediction and observation. Under various 
hypotheses it can be expected that as t --> CXJ , the 
difference II y(t) - Jl (t) II --> 0, or at least can be 
reduced to some acceptable level. 

An important point to note in this context is the 
role played by the decision u(t ), which is based not 
only upon the past observations y(s), s 5 t. but also 
upon the future observations as predicted by M. In 
effect, the action u(t) is acting as a "probe" as well 
as a "controller." The probing has t.he effect of 
modifying the behavior of the system in order to 
learn about its structure. The knowledge gained by 
probing is then employed in transforming M --> M '. 
Details of how this adaptation is carried out in 
various settings may be found in reference 12. 

As a final example, let us consider in detail a 
particular anticipatory system of the type alluded to 
above in order to exhibit the manner in which such 
systems act to stabilize properties of given processes 
without the use of feedback loops. Consider first the 
chemical reaction sequence depicted in Fig. 10. 
FIGURE 10 Chemical reaction sequence. 

where the k, is the reaction rate for the i th reaction. 
Further, we assume there is a forward activation 
step in this sequence. so that the concentration of A0 

serves to activate the production of A,, , i.e. the 
concentration A0 (t) predicts the concentration 
A,, _ ,(t + h) at a later time t + lz. Thus, we choose 
k,, = k,,(A 0) to embody the forward activation step of 
the system. All other reaction rates k, are constant, 
i = 1,2, ... , 11 - I. 
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With the above hypotheses, the rate equations for 
the system are 

dA , 
di = k ,A,_ , - k;+ I A,, 

dA ,, dr = k ,,(A 0)A ,, _ ,. 

i = 1, 2, . . ,n - 1. 

Let us assume that the purpose of the forward 
acti vation step is to prevent accumulation of An_ , 
in the face of ambient fluctuations in the initial 
substance A0 . In fact, we shall take this requirement 

b dA ,, _ , 0 . f 
to e that ----;Jf = , mdependently o A0. Thus, 

from the rate equations we require that the equa li ty 

k,, _ ,A,, _ , = k ,, (A 0 )A ,,_, 

hold. We shall attempt to achieve this condition by 
choosing the functional form ·of kn, which will then 
embody the predictive model implicit in the forward 
loop . 

It is easy to see that 

A,, _ ,(!)= f:K 1(1 -s )A0(s)ds, 

A,, _ 1(1) = f: K, (l - s )A 0(s) ds, 

where K 1 and K, are function s determined entirely 
by the rate constants k;. These expressions show 
explicitly that the value of A0 at a given moment 
determines the values of A,, _ 1 and An - > at later 
instants. 

The control condition above now becomes 

_ rt K 1(1 - s)A0(s) dsl (*) 
k ,,(A o)-kn- 1 f ' , 

0 

Ki(t - s )A0(s) ds 

i.e. , the reaction rate k. at any time t is determined 
by the value of A0 at a prior instant t - h or, 
equivalently, the value of A0(t) determines kn at 
some future time t + h. Thus, we see the manner in 
which the initial substance A0 serves to adapt the 
pathway so as to stabi lize the condition that 

dA ,, _ 1 = O 
dt . 

Finally, we observe that the homeostasis main­
tained in the pathway is obtained entirely through 
the modeling relation between A0 and A, - 1> by 
virtue of the relation ( *) which links the prediction 
of the model to the actual rate k,. That is, the 

KVt1J2 ] (' 

homeostasis is preserved entirely through adapta­
tion generated on the bas is of a predicted value of 
A,, _ 1. In particular, there is no feedback in the 
pathway and no mechani sm a vail a ble for the sys tem 
lo " see" the value of the quantity which is in fact 
controlled. 

While we shall not pursue the point here, it is 
worthwhile to note tha t the anticipatory linkage 
between A0 and A ,, _ 1 will be adapti ve onl y as lo ng 
as the relation (*) holds, i.e., only as long as the 
linkage " wired in" by the forward activati o n step 
and the actual linkage dictated by the chemical 
kinetics remain the same. If there should be a 
departure, then the rate change given by (•) will 
become maladaptive to a degree measured by the 
magnitude of the departure. Since such deviations 
can always be expected to occur in rea l processes. we 
conclude that a fo rward activation step of the above 
type can retain its adaptive character only for a 
characteristic time dependent upon the nature of the 
larger system within which it is imbedded and upon 
the character of its interactions with that larger 
system. This phenomenon may be termed temporal 
spanning and has no analogue in non-anticipatory 
systems. It is our contention that thi s property may 
allow us to more deeply understand in a unified way 
many puzzling features of biological , social and 
behavioral processes. 
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