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Introduction

This paper addresses the guestion what are the key param-
eters that determine the cost and effectiveness of a medical
screening program intended to discover occult cases of a disease.
The cost of the program will simply be the dollar value of the
resources it uses annually. The effectiveness of the program
will be measured by the mortality rate owing to a disease. The
lower the mortality, the more effective we will consider the
program.

To help answer this question, we have developed a model
which relates the cost and effectiveness of a screening program
to the parameters in question, and we have established the
following relations. First, we express cost and mortality in
terms of quantities more fundamental to a screening program.
These are the number of screening tests per capita per year,

N; the annual number of tests per capita that erroneously
indicate the presence of the disease, F (the false positives);
the annual number of cases per capita detected by screening, D;
and the annual number of cases per capita missed by screening,
and discovered instead in the clinic, XK. Second, we establish
relations between these quantities and a description of the
disease process, the interval between successive tests performed
on the same individual, and various other parameters. Among
these parameters are the incidence of the disease, the costs
and the effectivenesses of both early and late treatment, and
the cost and capabilities (false positive and false negative
error rates) of the screening test.

We will try to answer our question by varying each param-
eter individually, each time adjusting the interval between
successive screening tests so that a constant effectiveness
(i.e. mortality) is maintained. The effect of this change on
the cost of the program will be a measure of the importance of
that parameter. 1In addition, we will select pairs of parameters,
which we will adjust along with the screening interval to yield
a continuum of programs with constant cost and effectiveness.
This will yield curves showing parameter changes about which
one is indifferent.

Finally, we will investigate certain sensitivities of our
results. Thus, we will ask whether the parameters which most
heavily influence the cost are different for a program with



low effectiveness from one whose effectiveness is high. Another
quantity we will examine is the transit time of the disease--
that is, the length of time during which a case is occult but
detectable by screening. We ask what difference does it make if
there is a great deal of variation in the transit times of
different cases?

A problem this paper gives insight into is the guiding
of biomedical research. Such guidance is attempted by anyone
who must allocate limited resources to competing research
proposals. It is widely agreed that resources should be allo-
cated to the different proposed projects on the basis of the
relation of benefits to be expected and costs to be borne.
The results of this paper are directly relevant to one-half
of this question: how to assign a value to the expected results
of a research project. The answer we give, of course, is that
the value of a result that changes one or more of our parameters
is indicated by the money that change will save in a constant-
effectiveness screening program. For example, one of the param-
eters describing the test will be the false negative error rate,
which might be reduced by research. Another parameter will be
the incidence of the disease. A technique for preventing the
disease could be modelled by reducing the incidence. We will
also be able to model an improvement in the test that permits
detection of the disease at an earlier stage. O0Of course, it
will be easy to deal with reductions in the cost of the screen-
ing test or the cost of treating the disease in its early or
late stage, and it will be equally easy to deal with improve-
ments in the survival rates of treated patients.

Steady-State

The measures of cost and effectiveness are annual quanti-
ties. That is, they may change from year to year. For example,
the screening program may be growing, increasing N from one
year to the next. Or, the age structure, habits of hygiene,
or nutritional status of the population may be changing, thus
altering the incidence of the disease. If the screening pro-
gram is new, there may be a backlog of cases, which allows
temporarily for cases to be discovered either by screening or
clinically, at a rate greater than the incidence.

To consider such time dependencies would make the compari-
son of benefits from different research results intolerably
complicated. The cost and mortality would have to be calculated
for each of many future years, as they change owing to the
implementation of a result. Their values in each year would
depend on the implementation strategy: should we make the
change rapidly, at high cost? Should we move slowly, at little
expense? Benefits, and/or costs incurred at different times
would have to be compared, for which no uncontroversial method
exists.,

Therefore, we choose to consider only the steady-state
values of the impacts. Thus, we assume that during each year



the same number of screening tests are done, that the backlog
of old cases has been exhausted, and that the incidence of

the disease does not change from one year to the next. This
will reduce a multitude of impacts arising from a research
result--namely, the cost and mortality in each of many years--
to only two impacts. These two, of course, are the steady-
state annual cost and the steady-state annual mortality.

Homogeneity

Another simplification we will make is that we will
assume the population we are screening is effectively homo-
geneous. Thus, either all identifiable groups within the
target population have the same incidence, or any group that
does not cannot be induced to be screened either more or less
frequently than any other group. This assumption implies
that all cases of the disease are treated equally by the
screening program, whether or not these cases are concentrated
among certain individuals. By equal treatment, we mean that
each case has the same chance of being screened any particular
number of times.

This assumption of homogeneity is clearly unrealistic.
The incidence of most diseases depends on age. Cancer, for
example, is largely a disease of the old. Further, in most
screening programs frequency of participation is also age
dependent.

However, the assumption of homogeneity can easily be
relaxed should this appear desirable in any specific application.
Such a relaxation would be accomplished by partitioning the
population into homogeneous groups, building a model of the
kind we will describe for each group separately, and, finally,
adding the results of the various models together. But since
this paper describes a theoretical exercise--based to be
sure on a study of the particular disease, cervical cancer--it
Seems unnecessary to complicate the model by denying homo-
geneity.

No Spontaneous Regression

We will also ignore in our model the problem of regressive
cases. These are cases which, if left alone, would heal them-
selves rather than progressing to a clinical stage. However,
when detected by screening they are indistinguishable in their
early stage from progressive cases.

If we chose to include such cases, we could simply provide
a second model for regressive cases, similar to the progressive
case model we will describe. 1In the regressive model, however,
"clinically discovered cases, K," would become "spontaneously
recovered cases, S."



But to include such cases would reguire that we define
a new consequence of the screening program, namely, the number
of regressive cases detected and unnecessarily treated. If
some risk of death were associated with the treatment, then
the screening program would cause some to lose their lives un-
necessarily, even while others were prevented from dying. The
medical profession, whose primary ethic is "first, do no harm,"
might well value the two sources of mortality differently.

Cost and Mortality

Our model expresses cost and mortality as linear functions
of the four fundamental variables defined above. To remind
the reader, these are (all taken as annual per capita figures)
the number of screening tests, N; the number of false positive
tests, F; the number of cases detected by screening, D; and the
number of cases discovered in the clinic, K.

The annual per capita cost C of the program is:

= . + . N . s K .
C aN N Up F + ap D + aK K (1)

Here, oy is the cost of carrying out one screening test. The

cost of following up a falsely positive test with the proce-
dures that prove the individual to be free of the disease is o
This procedure may be different from the one used for screen-
ing--e.g. a biopsy following a Pap smear in screening for
cervical cancer--or it may simply be a repeat of the screening
procedure. The cost of confirming the presence of disease,
given that the screening test has indicated that it is present,
plus the cost of treating the disease in its early stages is a

The cost of diagnosing and treating a clinical case--that D
is, a case of the disease in its later stages--is Opes
Mortality owing to the disease is a linear combination
only of cases detected by screening and cases diagnosed in
the clinic. That is,
:-.{... 2
M= ¢, D+ ¢, *K (2)

Here, the coefficients ¢D and ¢K are probabilities that a

patient will die if he has the disease. The probability if
the case was detected by screening, and therefore in an early
stage, 1is ¢D’ and ¢K is the probability if the case was dis-
covered clinically, and hence in a late stage.



The Disease

We wish to determine how the number of screening tests, N,
will influence the number of cases detected by screening, D.
For this, we must have a precise description of the disease
and the manner in which it can be detected in an early stage.

We conceive of the disease as passing from an initial
point, through a development phase, to a terminal point. The
initial point represents the earliest point at which the screen-
ing test can detect the disease. The terminal point represents
the instant at which the disease would be detected in the
clinic in the absence of any screening.

The time between these points is called the transit time.
This is the time during which screening iz expected to uncover
some cases, to the benefit of the patient or the doctor. Not
all cases will have the same transit time. Some will pass
very rapidly through the development phase, and others may
linger. Mathematically, we express this by means of a distri-
bution G(T), which gives the fraction of cases with transit

time no greater than T. The associated density function is
(r) = 8
g aT

In addition, we define an incidence I, which is the fraction
of the target population we can expect to contract the disease
each year. Ordinarily, we would have to specify whether we
meant the number of cases that became detectable during a year,
or the number of cases actually discovered. But because we
are considering a steady state situation, these numbers are
the same.

The Screening Test

Our model supposes there is a screening test which can
detect the disease during its development phase. The test
might measure the size of a tumor (e.g. by x-ray), the con-
centration of some substance (e.g. sugar concentration in
urine), or the existence of abnormal cells on a microscope
slide (e.g. from a Pap smear). There are, of course, additional
possibilities.

The test cannot be perfect. On some occasions, it will
fail to detect the disease when the disease is present. These
are the false negative tests. On other occasions, it will
indicate the presence of the disease in an individual without
it. These are the false positive tests. Both sorts of errors
could be owing to contamination of samples or laboratory
chemicals, observer error, or failures of administration and
record keeping.



We can partition all tests into four categories according

to two criteria. First, we may consider whether a test is
positive, indicating the presence of the disease, or negative,
indicating its absence. 1In addition, we may note whether

the test was carried out on an individual with the disease,
or without. Table 1 below pictures this categorization.

Table 1. Table of test results versus true outcomes.

True State of Individual

Diseased Healthy

it a
Result Positive aPD PH

of
Test

i a a
Negative ND NH

The entries in the table symbolize the numbers of tests in each

category. For example, app is the number of tests that had

positive results that were done on diseased individuals. Simi-

larly, avg is the number of tests with negative results that

were done in healthy individuals. According to our definitions

above, then, anp is the number of false negatives, and Ay the

number of false positives.

It seems reasonable to suppose that the number of errors
of a given kind will be proportional to the number of oppor-
tunities to make that error. That 1is, the number of false
negatives, axp’ will be proportional to the number of tests

done on diseased individuals. Similarly, the number of false
positives will be proportional to the number of tests done on
healthy individuals. Mathematically, then, we can define a
false negative error rate "p," a false positive error rate "q,"
and write

(3)

o]
Il
Q
o))
+
o]

(4)



Participation in the Screening Program

We will assume that the interval between successive
screening tests is a constant, o. Clearly, this assumption is
unrealistic. HNot everyone will attend a real screening program
with the same frequency. WNor will most individuals attend with
perfect regularity. Instead, attendance will be irregular and
nonuniform. Moreover, this lack of regularity may have a consi-
derable impact upon the effectiveness of the screening program.
For example, if all cases of the disease had a transit time of
one year, and if everyone were tested at constant intervals (as
we have assumed), we would have to screen the population an
average of once each year in order to be certain of subjecting
each case to at least one test. If some people were tested
with no more than half the average frequency, we would have
to test people at an average frequency of twice a year in order
to be sure of testing each case at least once. However, this
study is intended to be illustrative, not definitive, and we
feel that this simplifying assumption will not dilute that goal.

Detecting Cases

A case will be detected if at least one screening test is
done during the development period of the case, and if not all
of those tests are falsely negative. Conversely, the case will
be missed by screening, and therefore detected in the clinic,
if every test done on that case is a false negative.

Consider, then, a case with transit time T. Suppose that
the first test on this case occurs at time 1 after its incep-

tion, and that further tests occur at time 17 + o, T + 20,...,
T + no. Since we are assuming a constant interval ¢ between
successive screening tests, we must have o < 1 < ¢. Clearly,

the probability of missing such a case is

1 1f T < 7

o if

~

<T <71+ 0

p- if

~

+ 0 < T < 1T+ 20

pn if 1 + (n - 1o f T < T + no

Integrating over the distribution of transit times g(T),
we obtain the probability of missing a case, given that the
first test occurs at time 1 after its inception. Integrating
the result over all admissible values of 7(0 < 17 < 0 ), we
obtain the unconditional probability of missing a case, as a
function of the screening interval ¢, and the false negative
rate p. This, after some manipulations is:



Vir,p) = LBl 7 g G (T)dr (5)
n

where G(T) is the cumulative transit time distribution, defined
by

To find the number of cases missed per capita, we merely
multiply *(g,p) by the incidence I. That is

K=19+ A(g,p) . (6)

In our model, cases are either discovered in the clinic, or
detected by screening. There is no other possibility. Thus,

False Positives

The number of false positive test results is equal to the
false positive rate, g, multiplied by the number of tests done
on healthy individuals. The number of tests done on healthy
individuals is the difference between the total number of tests,
and the number done on diseased individuals. Thus, to calcu-
late the number of false positive tests, we must first calcu-
late the number of tests done on diseased individuals, U.

To calculate U, we note that a fraction of p of these
cases must be falsely negative, and the complementary fraction

1 - p must be truly positive. But each true positive test
will detect a case. Hence
D= (1 -p) - U

Therefore, we can calculate the number of false positive tests
as




The Model

What we have done so far permits us to express the cost
and effectiveness of a screening program in terms of a variable
that research might influence. These are such things as the
false negative and false positive rates of the screening test,
the interval between successive tests on the same individual,

the incidence of the disease, etc. These relations are obtained
by substituting eguations (6), (7), and (8), into equations (1)
and (2). The result is
_ 1 OLF - q
C <1N + Op q) 5T + (aD T = p) I
. (1 - A(o,pv + Op * I+ MA(o,p) . (9)
M = ¢D - I - (1 - X(o,pv + ¢k « I « X(o,p) . (10)

In these equations cost and mortality are expressed as
annual quantities in per capita terms. Further, we have taken
our unit of time to be T, the average transit time. Thus o
is the number_of average transit times between successive
screenings; oT_is the years between screenings. Accordingly,
the factor 1/0T in the first term of eguation (9) is the number
of screenings per year per capita.

An Example: Screening for Cervical Cancer

In using this model we chose as an example the screening
program described by the parameters shown in Table 2. These
values were obtained from the literature, and are appropriate
for a hypothetical program for screening for cancer of the uter-
ine cervix. Schneider and Twiggs [9] provide most of the cost

factors, including the cost of a test1 (aN = $5), the cost of

In screening for cervical cancer, the test is called
the Pap smear. It involves scraping cells from the surface
of the cervix, placing them on a glass slide, and staining
and reading them. The costs of all these operations, plus
administration costs, are included.
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a false positive test (aF = $460), and the cost of a case
detected early2 (aD = $460). The cost of treating a clinically
discovered case was obtained by weighting the costs of treating
the disease at different stages (from Schneider Twiggs [9])

by the probabilities of discovery at those stages (from

Campbell [4]). The result is o = $2,670.

The false positive rate (p = 0.25) was obtained using a
method in Bigelow and Ellis [2] applied to data of Dunn et al.

[5]. The false positive rate (g = 3.0 x 10_5) was taken so
that 10% of the positive smears would be falsely positive,
this being the figure quoted by Schneider and Twiggs [9].

Mortality among cases detected and treated early is
very low, as shown by Boyes et al. [3]. Thus we have used a
mortality rate among early cases of zero (¢g = 0.0). Campbell
[4] on the other hand, reports a mortality among late cases
of about 50% (¢k = 0.5).

The incidence we have chosen (I = 27 cases per 100,000
population per vear) is taken to be the incidence of clinical
cases among the unscreened population of British Columbia
(Fidla et al. [6]). This figure seems typical of many areas
of the world.

There is considerable controversy concerning the average
transit time of cervical cancer. Figures as low as 4.5 years
and as high as twenty years have been proposed (see Green [7]).
We have chosen T = ten years, although we will later investi-
gate the effect of different choices.

Choosing Base Cases

We will examine screening programs, using the values in
Table 2 for the parameters, under a variety of circumstances.
Thus, we will consider screening programs which aim at only a
moderate 40% reduction in mortality from the uncontrolled
value, yielding eighty-one deaths annually per one million
population; and other, more ambitious programs, which reduce
mortality by 90% to 13.5 deaths annually per million people.

2The cost of determining that a test was falsely positive
is the same as the cost of treating a case detected by screening.
This is so because the procedure is the same in both instances.
A cone is cut around the opening of the cervical canal, and
then examined. If no cancer is found, the test was falsely
positive. 1If cancer is found, but is confined in the epithelial
layer of tissue, the case is deemed to have been treated. More
advanced cases we include with clinically detected cases, since
it is likely that in the absence of screening most such cases
would be discovered almost immediately.
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A final quantity that we require is the transit time dis-
tribution. We assume this distribution to be log-normal, which
implies that only two parameters are needed to specify it. We
have already taken the mean T of the distribution to be ten
years. As our one remaining parameter we choose the distri-
bution's coefficient of variation.

To determine whether the coefficient of variation is truly
important, we have calculated the cost of a program with each
of our target mortalities as a function of that parameter. The
results appear in Figure 1. From these results we can conclude,
first, that the cost of the program rises as the target mor-
tality falls, and second, that the cost (at constant mortality)
rises as the coefficient of variation rises. These two results
should be expected, and that they are predicted merely increases
our confidence in the model.

A third conclusion is that the more one wishes to reduce
mortality, the more important is the coefficient of variation.
Illustrating this conclusion is the fact that if the target
mortality is eighty-one deaths per million people, the cost of the
program rises only 6% as the coefficient of variation goes from
0.1 to 1.0. If, however, the target mortality is 13.5 deaths
per million people, the same change in the coefficient of
variation doubles the cost of the program.

This conclusion is still further buttressed by Figure 2.
There we have shown the change in the cost of two programs as
a function of the mean transit time. The upper curve gives the
cost of a program whose target mortality is 13.5 deaths per
million people. The low curve is for a less effective program,
with a target mortality of eighty-one deaths per million people.
Not only is the cost of the low-mortality program uniformly
greater, but it also varies more startingly over the range of
uncertainty of mean transit time {(approximately 5 to 20 years).
Thus, the cost of the high-mortality program over that range in
T varies from 0.616 to 1.02, a ratio of 1.66 while the cost of
the low-mortality program ranges between 0.638 and 2.0, giving
a ratio of 3.13.

In general, then, we can support the conclusion of Knox [8].
This conclusion is that if one wishes a program of only moderate
effectiveness, then ignorance of the precise nature of the
disease is not too important. But, "...the cost of ignorance
rises with the investment, and justification for research to
resolve uncertainties must also mount as the investment mounts" [8].

Accordingly, for each target mortality, we will carry out
our analysis for two coefficients of variation, one low (CV = 0.1),
and one high (CV = 1.0). These two distributions are shown in
Figure 3. This gives rise to four base cases, with different
combinations of target mortality (high and low) and coefficient
of variation (high and low). These four cases we described in
Table 3. All figures in this table are per capita per year.
Thus the "number of tests" is the amnual number of tests per
person. All costs are given in US dollars.
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Discussion of Base Cases

Looking at Table 3, we can make the following observations.
First, regardless of which case we consider, there are never
very many false positive tests, and their cost is never signifi-
cant. They would have to be much more likely (increase g) oxr
much more costly (increase aF) to change this.

Second, if the target mortality is low {(Cases 1 and 2),
the major portion of the cost is for taking tests. This
suggests that the parameters of greatest importance in deter-
mining the total program cost will be those which primarily
influence the cost or number of tests. This conclusion is
even stronger if the coefficient of variation is high (Case 2)
than if it is low (Case 1).

On the other hand, if the target mortality is high {(Cases 3
and 4), the major part of the program cost is incurred in
treating late (clinical) cases. Thus one would expect that
measures reducing the cost or increasing the effectiveness of
late treatment would most effectively reduce the program cost.

Finally, we note that when the target mortality is high
(Cases 3 and 4), the coefficient of variation makes no important
difference in any of the cost elements, and, alone (as we know
already) it makes no difference in the total cost. It would
seem, therefore, to be unnecessary to further analyze the
influence of the coefficient of variation upon low-mortality
screening programs. Therefore, we will drop Case 4, and do
our further analyses on Cases 1, 2 and 3 only.

Sensitivity of Cost to Selected Parameters

The total cost of a screening program will, of course,
depend upon the various parameters describing the program. 1In
this section we explore some of these dependencies. We shall
also examine the sensitivity of these dependencies to changes
in the target mortality and changes in the coefficient of
variation of the transit time distribution.

The first parameter we look at is o, the cost of treating
the disease in its late, clinical stage.” In Figure Ua, we see
that when the target mortality is high, total program cost is
very sensitive to Qg This should not surprise us, as such a

large percentage of cases are treated late (see Table 3).

Conversely, when target mortality is low, Oy has relatively

little influence on total program cost. Figure 4b shows that
the sensitivity of total cost to a, is not affected by changes
in the coefficient of wvariation.

The opposite is true of the sensitivity of total cost to

o the cost of a screening test (see Figure 5). 1In Figure 5a

NI
we see that the cost of a program with a high target mortality
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is very great indeed. Again, this should not come as a surprise,
since a program with a low target mortality requires that many
more screening tests be performed than a program with a high
target mortality. Figure 5b demonstrates that changes in the
coefficient of variation affect the amount of money that a
reduction in Uy might save, but not the percentage of total
program cost,

In Figure 6a, we see that if target mortality is high,
total program cost is insensitive to the false negative rate
of the screening test. The explanation is that since a pro-
gram of this kind uses relatively few screening tests, the
precise description of the test--including its cost and error
rates--should not strongly influence program cost. On the other
hand, we would expect, and we do in fact observe, that the
cost of a program with low target mortality depends markedly
on the false negative rate. Figure 6b shows that changes in
the coefficient of variation influence the amount of money
that a reduction in "p" might save, but not the percentage of
total program cost.

The results shown in Figure 7 are somewhat counterintuitive.
Figure 7a assents that if the target mortality of a program is
high, then changing ¢_, the proportion of people with late-
stage disease who die, should have virtually no affect on total
program cost. But because the treatment of late-stage disease
forms such a large part of a program with high target mortality
(see Table 3), one would naively expect ¢K to strongly influence

program cost--more strongly, in fact, than if target mortality
were low.

The explanation of this phenomenon is that we are con-
sidering programs which maintain the same mortality rate even
as ¢K is changed. Thus, changes in ¢Y must be counterbalanced

AN

by an increase in the fraction of cases treated in their late
stage, and hence by a reduction in the number of screening
tests given. Those two factors--the increase in late-~stage
cases, and the decrease in screening tests—--have opposite
effects on total program costs. When target mortality is high,
the two factors almost exactly offset each other. When target
mortality is low, the cost of screening tests is a much larger
part of the total cost, and hence the reduction in this factor
outweighs the increase in the cost of treating the late-stage
cases.

We account for the result shown in Figure 7b by carrying
this explanation still farther. From Table 3 we find that as
the coefficient of variation rises, so does the importance of
the cost of screening tests. Thus changes in this cost will
outweigh changes in late-stage treatment cost more heavily,
the larger the coefficient of variation.
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Perhaps the most satisfying result we have obtained is
illustrated by Figure 8. This shows the effect of changing
the incidence of the disease on total program cost. In this
instance, as throughout this section, we are considering
programs whose mortality is constant. Thus, the changes in
incidence contemplated in Figure 8 are counterbalanced by
changes in the number of screening tests, and hence changes
in the fraction of cases that are treated in their late,
clinical stage. What Figure 8 shows is that regardless of
the coefficient of variation, a given reduction in incidence
will permit the same percentage reduction in total program
cost.

Trade-0Offs Between Parameters

It should be said that changing the incidence of a disease
is not possible. For example, the incidence of cervical cancer
is correlated with the rate of vaginal infections (e.g. see
Beral [1]). 1If the rate of infections rises, so will the rate--
some years later--of cervical cancer. It would seem, therefore,
that an educational program that taught principles and practice
of good hygiene might well reduce the incidence of cervical
cancer.

Indeed, all of the parameters considered in the last section

might be changed by appropriate action. The case Oy of late-

stage treatment might rise, or the mortality ¢K among the late

cases fall, if a new treatment technique were perfected. A new

test might have a different cost ay or a false negative rate
n "
pP.

However, it seems more likely that such action would re-
sult in changes in two parameters simultaneously, rather than
only one. Thus a different test would have both a different

cost Oy and a different false negative rate p. A different

late-stage treatment would have both a different cost Ay and
a different mortality rate ¢Y'

In this sectionn, therefore, we will examine trade-offs
between selected pairs of parameters. The trade-off curves
we obtain map out the different values that the pairs of para-
meters may assume, and--with proper choice of an interval bet-
ween screening tests--still yield a program with the same cost
and mortality.

The curves presented in Figure 9 give the trade-off bet-
ween the false negative rate and the cost per test. Each
curve depicts the trade-off between the two parameters for a
program with different target mortality and coefficient of
variation. Thus, the left hand graph shows the sensitivity
of the trade-off curve to changes in target mortality, while
the right hand curve shows the effect of changing the coeffi-
cient of variation.
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A new screening test is represented on this graph by
a point, whose coordinates are that test's false negative
rate p and cost O If this point lies below a particular

trade-off curve, then the new test will permit one to improve
the associated program, either by lowering the cost while
maintaining the same mortality, or by lowering the mortality
without raising the cost.

From Figure 9 (left) we note that the lower the target
mortality, the more one is willing to pay for a test with a
smaller false negative rate. This is especially true for
large reductions in "p". From Figure 9 (right), we conclude

that the trade-off between oy and p is unaffected by changes

in the coefficient of variation, unless very small values of
"p" are considered. Such values of "p" are worth more if the
coefficient of variation is low than if it is high.

To motivate our next trade-off curves, between the false
positive rate "g" and the mean transit time T, we have in-
cluded Figure 10. Here, the progression of the disease 1is
indicated by the rise in a quantity to be measured by the
screening test. This is shown by the solid heavy line. The
lowest level at which the quantity in question is deemed
abnormal is termed the threshold for early detection. The
level at which this quantity becomes clinically obvious--or
the level of this quantity when the disease manifests itself
some other way--is called the threshold for clinical discovery.
The time required for this quantity to rise from the first
threshold to the second, is the transit time.

The region we have denoted as the normal range is not,
of course, the range into which all healthy people will fall.
Some people will have unusually high values of the measured
quantity even though they are free of the disease. Thus some
healthy people will yield a falsely positive result on the
screening test. Lowering the threshold for early detection
will increase errors of this kind.

On the other hand, if this threshold were reduced, then
the transit time would increase. Thus there will be a trade-
off between the mean transit time T and the false positive
rate q. Figure 11 shows that the contemplated change in
threshold would be worth making if the point described by

the new values of g and T lay above the trade-off curve.

An interesting feature of this trade-off is its indepen-
dence from changes in target mortality and coefficient of
variation. Another interesting feature is the relatively large
increase in "q" one is willing to suffer for only a moderate
increase in T. Thus one is willing that "g" should increase

from its nominal value of 3 x 10_5, to 1.2 «x 10_3, a fourty-

fold increase, merely to increase T from ten to eleven years.
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We should point out that at least in programs that screen
for cervical cancer, distinctions are made among degrees of
positiveness of screening results. There are not only the

two results "healthy" and "cancerous." Rather there are many
intermediate results such as "mild dysplasia," "severe
dysplasia,” and "borderline carcinoma in situ.” (Different
screening programs give these results different names.) And

for intermediate results there are intermediate responses,

the usual one being to take the next screening test sooner

than ordinarily. Thus one should accept our trade-off bet-
ween T and g with a grain of salt.

Figure 12 trades off the mortality among late cases, ¢K'
and the cost of late treatment Oy In Figure 12 (left),

we see that if target mortality is high, we are indifferent
to changes in ¢K (as we found earlier, see Figure 7), and only

count a late stage treatment as preferable if it costs less.
If target mortality is low, however, we are willing to pay
more for a more effective treatment, up to a point.

Beyond that point, one is willing to pay progressively
less and less for a better and better treatment. This seemingly
contradictory result occurs because, when the cost of late
treatment, aK, is sufficiently high, and when the number of

tests done annually is sufficiently low, total program cost is
a locally decreasing function of the number of tests per year.
That is, if the number of tests is increased by a small amount,
the savings owing to treating a smaller number of cases in
their late stage is greater than the money required to detect
and treat those cases early.

Of course, this holds only for small increases in the
number of tests. If the number of tests is increased enough,
total cost will eventually rise.

How this phenomenon explains the anomalous portion of the

¢K versus oy trade-off curve can best be seen by considering

the scheme used for calculating that curve. This is illustrated
in Figure 13. Thus suppose we are now at the initial point

in the curve, with ¢K = 0.5 and Og = 2,670, corresponding to

¢K = 0.45. The first step is to reduce ¢K from 0.5 to 0.45,
represented in Figure 13 (left) by the horizontal, left-printing
line labeled "1, reduce ¢K." The result of this, as shown in

the figure, is to leave total program cost constant while
reducing mortality.

Because we are looking for a program with the same mor-
tality as the base-case program, we must take steps to increase
the mortality. This we do by reducing the number of screening
tests N. In this particular region, cost "C" is an increasing
function of "N", so that not only will mortality rise as N
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falls, but cost will fall. This is shown by the curve in
Figure 13 (left) labeled "2 reduce N."

Finally, we are obliged to increase the cost from its
new value to the original, higher wvalue. This we do by
increasing the cost of late treatment, Oprs as shown in Figure

13 (left) by the line labeled "3 increase aK."

However, if cost "C" increased in step 2 as N was reduced,
rather than decreased, we would have the situation pictured
in Figure 13 (right). This is in fact the situation that
would occur if one started at the point ¢K = 0.2, aK = 6,800,

and wished to compute the value of o, corresponding to ¢K = 0.15.

K
As before, reducing ¢K would leave the cost constant while re-

ducing mortality. But while reducing N would increase mortality
again, it would also increase the cost. This would necessitate
a reduction in o as the third step in computation rather than
an increase.

It is quite clear, therefore, that no real program should
lie on the anomalous part of the ¢K versus o, trade-off curve.

If such a program existed, it could be improved by increasing
the number of screening tests. Not only would this lower the
mortality, but it would reduce the cost as well.

Our final observation of this section concerns Figure 12
(right). We note that if the coefficient of variation is
high, one is willing to pay more for a given reduction in
late stage mortality.

Conclusions

Clearly, our model of a medical screening program is in-
complete. We have assumed a constant interval between succes-
sive screening tests. We have assumed that no case of the
disease spontaneously disappears. We have assumed that only
a very few options are available to the medical system, that
(for example) observation without treatment is not possible
for cases whose tests return an equivocal result. Thus our
conclusions cannot be accepted without reservation. We believe,
however, that these conclusions are at least reasonable, and
should not be discarded without good reason.

Our conclusions are the following:

1) Regardless of how effective one intends his screening
program to be, and regardless of the precise nature of the
disease, it is always worthwhile to reduce the disease inci-
dence. Because it is often very difficult and costly--or
even impossible due to lack of data--to estimate the transit
time distribution, this suggests that public health efforts to
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link diseases with environmental and hereditary factors be
encouraged.

2) 1If one's screening program aims at only a moderate
reduction in mortality, the best way to reduce costs appears
to be making late treatment less expensive. This is even
worthwhile at the expense of making the treatment less effec-
tive, since the cost of such a program appears to be largely
independent of ¢K'

3) 1If one's screening program aims to reduce mortality
to very low levels, it is important to have a very good
screening test. Thus reducing the false negative rate p on
the cost of the test . will reduce total program cost signi-

ficantly. It is also important to have an effective late stage
treatment (i.e. a low ¢K). It is less important, however,

to have an inexpensive late stage treatment.

4) 1If one's program consists largely of late stage treat-
ment, and very few tests or early detections, one should con-
sider whether increasing the screening component will not de-
crease both mortality and cost. This will especially be true
if the cost of late treatment is very high.

5) If one's screening program aims at a large reduction
in mortality, the cost of the program will depend heavily on
the nature of the disease--i.e., the transit time distribution.
If the disease has a short mean transit time, or if its transit
time is highly variable, the program cost will be much larger
than if the disease is less rapid or less variable. This means
that the marginal effectiveness of further investment in
screening is highly uncertain, unless the disease is well under-
stood. Better economic decisions could be made in a more
certain situation; therefore, when it is possible, it will be
desirable to discover more of the nature of each screenable
disease.
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