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PREFACE

The Adaptation and Optimization Project, part of the
System and Decision Sciences Program, is concerned with the
development of methods and algorithms for treating stochastic
optimization problems. To construct such methods and al-
gorithms, however, often requires preliminary results in
optimization theory.

In this paper, Diethard Klatte, one of the participants
in the 1983 Young Scientists’ Summer Program, studies the
Lipscnhitz behavior of (generally non-polyhedral) optimal
set mappings in certain parametric optimization problems.

He shows that, under mild assumptions, the corresponding
value functions are Lipschitzian on bounded convex sets.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences
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ABSTRACT

In this paper S.M. Robinson's result concerning the upper
Lipschitz continuity of polyhedral multifunctions is used to
study the Lipschitz behavior of (generally non-polyhedral)
optimal set mappings in certain parametric optimization pro-
blems. Under mild assumptions, the corresponding value func-
tions are shown to be Lipschitzian on bounded convex sets.



ON THE LIPSCHITZ BEHAVIOR OF OPTIMAL
SOLUTIONS IN PARAMETRIC PROBLEMS OF
QUADRATIC OPTIMIZATION AND LINEAR
COMPLEMENTARITY

Diethard Klatte

1. INTRODUCTION

This paper is concerned with certain classes of parametric
optimization problems, and in particular with the possible
Lipschitz dependence of both the set-valued functions of global
optimal solutions and the minimum value functions upon the

parameters in these problems.

We shall begin by introducing a standard parametric
quadratic optimization problem. Let A be an mxn matrix,
and let C be some symmetric nxn matrix. We consider the

problem

min (£(x,p) | x€M(b)}, (p,b)ER" x R", (1)

where p and b are regarded as parameters, M is a set-

valued function from R® to R" defined by
M(b) = {x€R" | ax < b} , beERY,
and f: R" x R® - R is given by

f(x,p) = —i‘—xTCx+ pTx; (x,p)GRn x RM



For fixed (p,b)ERn x RO , the necessary conditions for

optimality associated with (1) are

Cx + ATu + p

=0 (2)
Ax -b<oO
u =0
uT(Ax - b) =0
We are interested in the properties of some set-valued
functions (also called multifunctions) related to the para-
metric problem given above. Themultifunction‘wran x RT = Rn,
V(p,b) = {x€M(b) | £(x,p) < £(z,p) £for all z€M(b)}, (3)

assigns to each parameter vector the set of all global optimal
solutions of a (generally non-convex) quadratic optimization
problem; this is called the optimal set mapping of (l). The
function ¢: R™ x R™ = R U {-o0, 400},

¢ (p,b) = inf {f(x,p) | xEM(b)} (4)

is the <Znfimum function of (1), while the multifunction
KT: R® x R® = rR® x R®

KT(p,b) = {(x,u)€R™ x R® | (x,u) satisfies (2)} (5)

is the Kuhn-Tucker set mapping associated with (1).

We recall that problem (1) is closely related to the
problem of parametric optimization with linear complementary

constraints:

min {pTx-bTu | (x,u)€EKT(p,b)}, (p,b)ERn x R

(x,u)

(6)



Let the infimum function of (6) and the optimal set

okT
mapping wKT of (6) be defined analogously to (4) and (3),

respectively. Then a well-known result from quadratic op-

timization theory tells us that if y(p,b) # ¢ , then
wKT(p,b) # ¢ and
v(p,b) = T_(Ypn(p/b)) (7)

where T is the canonical projection from R" x R™ to RV .

Of course, in this case the optimal values ¢ (p,b) and

¢KT(p,b) coincide.

We shall now give some definitions and notation used when
dealing with multifunctions. For the main part we follow
Robinson (1981) and the monograph by Bank et al. (1982).

Let F: Y CR - R® be a multifunction. The set
graph F = {(u,x)€Y x Rs’l X € F(u)}

is called the graph of F . The effective domain of F is
dom F = {u€Y | F(u) # ¢} .

The set X C R* x R® is said to be polyhedral if it is a union
of finitely many polyhedral convex sets, called components.

F 1is polyhedral (closed, convex) if its graph is polyhedral
(closed, convex). F 1is locally upper Lipschitaian at u%ey
with modulus vy (shortened to U.L. (y) in what follows), if

for some neighborhood U of uo and all uy€U N Y ,

F(n) C F(u®) + ylu-u°1 B,

where B denotes the closed Euclidean unit ball, [I.l is the
Euclidean norm, and + represents the Minkowski sum of two

sets. We say that F 1is locally upper Lipschitzian on Y if
there exists a number Yy > O such that F 1is locally U.L.(y)
at all points uoeY . For further (semi-) continuity terminology
we refer to Bank et al. (1982), Chapter 2.



Building on work by Hoffman (1952) and Walkup and Wets (1969a),
Robinson (1976, 1981) has shown that a polyhedral multifunction
F: RF - R® is always locally upper Lipschitzian on R . It
is easy to see that the solution set mapping KT of the para-

metric linear complementary problem (2) is polyhedral.

The close connection between problems (1) and (6) suggests
that it would be interesting to explore the Lipschitzian pro-
perties of the functions ¢ and ¢ (or wKT and ¢KT) by

studying a more general parametric optimization problem of the

type

min (A"z | z€r(w)} , (A,u)€ RS x RS

Z

(8)

where [ 1is a polyhedral multifunction from R to R®

Obviously, the parametric optimization problem (6) is a special
case of problem (8). Let @ and ¢ denote the optimal set

mapping and infimum function of (8), respectively, i.e.,

¢ (A, 1)

inf ATz | zer(u)} ,

T

v, = {zer(n | ATz = 00,1 . (9)

~

The functions ¢ and ¢ are in general far from being con-
tinuous, let alone Lipschitzian. Consider the simple example

min {-u | x=p , u<1, X.u =0} where pER is a parameter.
z=(xlu)

Here we have &(O) = =1 but $(u) =0 1if p # O . Further,
P(0) = {(0,1)} but y(u) = {(y,0)} 4if u # O . Thus neither
the infimum function nor the optimal solution function is con-
tinuous at u = 0 . This example also shows that @ is not in
general polyhedral. However, the functions v, @, ® and 5

can display Lipschitz behavior in various special cases.

~

As mentioned above, ¢ 1is locally U.L. on the whole para-
meter space, assuming that @ is polyhedral. Moreover, in this
case ¢ 1is Lipschitzian on each bounded convex subset of dom @

(cf. Robinson, 1981, Proposition 4). These results can be



immediately applied to the functions ¢ and ¢ of a parametric
quadratic program of type (1) if the matrix C 1is positive
semidefinite (cf. Robinson, 1981). Under this convexity as-
sumption the set dom § of (1) is a polyhedral convex cone

(cf. Eaves, 1971, or Bank etal., 1982). When C =0 , (1)
reduces to a parametric linear optimization problem; for
analogous properties of ¢, ¥ and dom ¢y in this special

case we refer, e.g., to Walkup and Wets (1969a,b), Nozilka

et al. (1974), Kleinmann (1978) and Mangasarian (1982).

The purpose of this paper is to show which of these results
concerning Lipschitz behavior and polyhedrality are "conserved"
in a general parametric quadratic program of type (1) and in
parametric problems (8) with a polyhedral constraint set func-
tion. It will be shown that @ and $ still keep the Lipschitz
properties mentioned above when we require $ to be upper
semicontinuous rather than requiring @ to be polyhedral. This
result will be applied to the optimal set mapping ¢ and the
infimum function ¢ of the quadratic program (1). We also
provide a theorem which shows that the set dom ¢ is polyhedral.
It is worth noting here that the mapping y of (1) is not in

general polyhedral. A counterexample will be given.

2. MAIN CONTINUITY RESULTS

Throughout this section we are concerned with the para-
metric optimization problem (8):

min (ATz | z€T(u)} , (A,p)ER® x RF
z

where T 1is a polvhedral multifunction.

Let Gi c RF x RS (i=1,2,...,N) be nonempty polyhedral

convex sets satisfying

N
graph I' = U Gi . (10)
i=1

Then there exist vectors bl1, blz,...,blNi €r® and
dl1,d12,...,d1Ni GRr and real numbers a
such that

R DA
i17712’ ! 1Ni



S| ptT z <@y +a L, 312,080 ()

r
G, = {(u4,2)ER”™ x R i3

1

The decomposition (10) of graph T into its components suggests

splitting the multifunction T into the multifunctions T, , where

I, = {z€R° | (u,2)€6,}, weR™ , i€{1,2,...,N},

This leads to the following parametric linear optimization
problems:

min (A"z | zer, 0t , (,wer® x &Y, (12)

VA

or, equivalently,

min {ATz | plIT, < g1t

U+ a.. o je{1121--°INi}} ’
V4

ij

(A,u)€ER® x R

We shall use 51 and @i to denote the infimum function and

the optimal set mapping of the problem (12)i (i=1,2,...,N);

the definition is analogous to (9). Obviously, for any

(A,u)E dom & tnere is an indexset I(A,u) € {1,2,...,N}, I(A,u) # @,
such that

~

P(A,u) = U b, O,u) and Y (u) # @ if i€I(0,u)
iI€I (A, u)

Now we state the main result of this paper.

Theorem 1. C(Consider the parametric optimization problem (8).
Suppose that N is a nonempty subset of dom U and that the
infimum function ¢ (restricted to the domain A) is upper

semicontinuous on N . Then there exists a constant Yy such

that the optimal set mapping i 18 loeally U.L.(y) on A .

Proof

~

Let the sets Gi , the functions ¢i and @i and the
parametric optimization problems (12)i be defined as above.

Writing y = (A,u) , we let I(y) denote the index sets:
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I(y) = {i1€{1,2,...,N} | @&, (v) C o} , yer .

Choose any yo = (Ao,uo)EA . To show the existence of a

neighborhood U = U(yo) such that

vy C Yo b;ly) for all ye€U N4, (13)
i€I(y ™)

we assume, arguing by contradiction, that
” k >k
@ # wj(y ) N oyy™) (14)

for some jiI(yo) and some sequence {yk} Cu x A converging
to y° . 1In particular, &(y5) = $j(yk) for all k .

The classical results of parametric linear optimization
theory tell us that Ehe set dom ij is closed and 5j is
continuous on dom wj (cf., for example, NoZilka etal., 1974).
It follows that

~

b34%) # 0 and §,v°) = lim ¢j<yk)

kw00

Taking (14) and the assumption that ¢ is upper semicontinuous
into account, we thus have
¥, 0

3 (%) < $j(y°) = lim éj(yk) = lim o(v5) < 3(y

k—bOO k—»OO

)

which is a contradiction. Hence (13) is true. From (12)i we
know that each of the multifunctions wi (i=1,2,...,N) is

polyhedral, and so the multifunction

(L) (y) = U by ()
i€1 (y°) i€I (y°)
is also polyhedral. Hence, (Uwi) is locally U.L. with
i€1 (y°)

some modulus Yy oOn Rs b Rr (cf. Robinson, 1981, Proposition 1).

Then (13) and the definition of I(yo) lead to the inclusions



viy) C U @i(y) cu(y®) + yly-y° I B
i€I(y™)

for all y€A near yo . Since yoEA was chosen arbitrarily,

this completes the proof.

One consequence of Theorem 1 is that a certain Lipschitz
property of the infimum function $ of (8) can be derived by
adapting some of Robinson's (1981) results to our case. The
following corollary is a modification of Proposition 2 in
Robinson (1981). It is important in investigating the Lipschitz

behavior of ¢ over bounded subsets of parameter space.

Corollary 1. Assume that the assumptions of Theorem 1 hold, -
and that A C dom U is closed. If @ is any bounded subset
of A then

there is a constant B = B(Q) such that (15)
Uir,u) N BB # ¢ for all (A, uIEQ .

Proof

Since A 1is closed the closure of Q, clQ, is a subset of A .

As above, we construct the multifunctions Fi and @. and the
problems (12)i (i =1,2,...,N). Choose any y°=(ko,u°)€ClQ .
Under the assumptions of Theorem 1, there is a neighborhood

U = U(y°) such that (13) holds, i.e.,

~

v(y) C U ¥,(y) for all y€u N clQ
i€I(y )

Without loss of generality U may be assumed to be a compact
convex polyhedron. First let iEI(yo) be fixed and consider
any y = (A,u)€U N dom @i . Since @i(y) is the set of optimal
solutions of a linear program, it must be a closed face of the
convex polyhedron Fi(u) of feasible solutions of this program.
This means that

~ isz _ dijT

biOuu) =Ty g0 = (€T 00 | b

u o+ aij , J€J}



for some index set J C {l,2,...,Ni} (cf. (11)). Obviously
the set

W. .= 7._(C Ndom y,) N dom T,
r 1 b

i,Jd DE J

is a bounded convex polyhedron, where ﬂr denotes the canonical

projection to RY . The function

h (i) = min {lzl | z&r, _()} , ﬁEWi

iIJ 1i,J ' J !

is convex on Wi J ! and hence attains a maximum on Wi J -
’ r
If Z is the set of all those index sets J C {l,2,...,Ni}

for which wi,J # ¢ then

T. = max max h.
JEZ uEWi'J

is well defined.

Now let y = (A,u) be any element of U MNcl Q . From
the definition of U, @i(y) N @(y) # ¢ for some iEI(yO) .
This implies, in particular, that wi(y) C y(y) . Hence, there
is a point z(y)Ewi(y) satisfying z(y)€y(y) and

Nz (y)l = min {lzl | zeii(y)} .

Because @i(y) = Fi’J(u) for some J C {1,2,...,Ni} , Wwe have
Iz (y)lIl = hi'J(u) < i

Therefore

@(y) N0 (max Ti) . B#¢ for all y€U Ncl Q
i€I (y°)

and the assertion follows from the compactness of ¢l Q (we

omit this standard argument here).



-10-

A function g: Q C R" - R is said to be locally Lip-
schitzian on § if the multifunction g+ {g(gq)} is locally
U.L. on Q ; it is Lipschitzian on @ 1if there is a constant

Y such that
ig(Q') - g(q")| < Y"qv - qn" for all ql’ qHEQ .
Corollary 2. Assume that the assumptions of Theorem 1 hold

and that A C dom @ 28 closed. If Q@ C AN <Zs any bounded

set then ¢ 1is locally Lipschitzian on § (with a uniform

constant y = Y(Q)) . Further, if @ <s bounded and convex

then ¢ <s Lipschitzian on @ .

The proof of Corollary 2 is almost identical to that of
Proposition 4 in Robinson (1981l), and we will not repeat it
here. We should just mention that Robinson's Proposition 4
requires @ to be polyhedral, but this assumption may be
weakened without affecting the result. The proof actually
makes no use of the polyhedrality. condition, but only of the
following requirements which are fulfilled both when @ is

~

polyvhedral and when Y satisfies the assumptions of Theorem 1l:

~

(1) ¢y 1is locally U.L on A,
(ii) for each bounded Q C A , ¥y has the property (15).

3. APPLICATION TO PARAMETRIC QUADRATIC PROGRAMS

In this section we consider the special case of the para-
metric quadratic optimization problems defined in (1). First
we give an example which shows that, in general, the graph of

the optimal set mapping ¥ of (1) is not polyhedral.

Take the parameter vector u = (ul, Mor H3s u4) and

consider
min {x;x, | x = (xy,x)EM() ]},

where

2|

M(u) = {x€R ul <Xl <u2, u3 <x2 < U4} .
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If graph ¢y C R® were a union of a finite number of poly-

hedral convex sets then

G = {(u,x) € graph ¢
= = =
y 1, u2 0, My 1

would also have this property. It can easily be verified that
(for My =0, My < Q)

*(—1)% i -1 < u,uy

1

V=1, uy, u3) = | {<-l) (u2>} if -1 = HoHg
1/, \ug

;(uz)% if -1 > HoHg
3

and therefore

x=-1, u; =-1, uy3 S0, -1 su,u,

G ={ (4,x)ER

y =1, ]J-2>0I

G cannot be represented as a union of finitely many polyhedral

convex sets, and hence, in this example, ¢ is not polyhedral.

however, using Theorem 1 and Corollary 2, we can show
that the infimum function ¢ and the optimal set mapping
of the parametric quadratic program (1) do have certain Lipschitz
properties although ¢ 1is not in general polyhedral.
Theorem 2. The optimal set mapping Y of the parametric
quadratic program (1) is loecally U.L.on R" x " . The in-
fimum function ¢ of (1) Zs locally Lipschitzian on bounded
subsets of dom Y and Lipschitzian on bounded convex subsets
of dom
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Proof

We shall use Theorem 1 and Corollary 2 to prove Theorem 2.

If weset s =n+m r=n+m, A = (p, —b)GRn X R and
H o= (p,b)ERn X Rm , the parametric problem (8) reduces to the
special case (6). We thus have ¢ = wKT and ¢ = ¢KT .

From quadratic optimization theory we know that
-
dom Y dom wKT
and
¢(p,b) = ¢pn(p,b) for all (p,b)€ dom y

Since the multifunction M defined by (1) is lower semi-
continuous and closed on dom M , the infimum function ¢ is
upper semicontinuous on dom Y and dom ¥ 1is closed (cf., for
example, Theorems 4.2.71 and 4.2.2 in Bank et al., 1982). If

we define
A = dom Y

then Theorem 1 and Corollary 2 applyto ¢ and ¢ . This implies
that Y 1is locally upper Lipschitzianon dom Y and that ¢

has the properties specified in the theorem. If (Ao,uo)¢ dom Y
then there is a neighborhood U of (Ao, uo) such that

Y(A,u) =9 for all (A,u)€U , because dom ¢y is closed.

Hence, ¢ is, trivially, U.L. on U , and this completes the

proof.

As a by-product the preceding theorem provides a new proof
of the fact that the optimal set mapping ¥ and the infimum
function ¢ of (1) are Hausdorff upper semicontinuous and
continuous, respectively, on dom ¢y (cf. Kummer, 1977).
Theorem 2 still holds if the constraint set mapping M of (1)
is an arbitrary polyhedral convex multifunction. In fact, the
proof of Theorem 2 does not depend upon any special form of the

multifunctions M and KT
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We note that Kleinmann also postulated upper Lipschitz
continuity of ¢ (cf. Kleinmann, 1978, Satz III.2) in a
sense even more strongly than here, but the outline proof
given in his paper is contradictory and the result, in the form

presented there, is incorrect.

We shall conclude this paper with a theorem which gives a
deeper insight into the structure of the effective domain of
v . It is known that dom ¥y 1is a closed cone (Eaves, 1971),
and there are simple examples illuétrating the fact that dom Yy
is not necessarily convex (Bank et al., 1982). However,
Theorem 2 suggests that we should look for possible convex

subsets of dom Y

Theorem 3. The effective domain of the optimal set mapping Y

of (1) is a unton of finitely many polyhedral convex cones.
Proof

Eaves (1971) has shown that the parameter vector (p,b)

is an element of dom ¢ if and only if

M(b) # ¢ (16a)
Av On - vicv=o0, (16b)
€ R
vT Cv=20
<
AV ° = v® (cx +p) >0 . (16c)
A x < b

VERn, xER"

If (16b) holds then, obviously, the cone

s = {ver" | vl C V=0, Av < 0}

Df

is the set of optimal solutions of the optimization problem

min {v® C v | Av < 0}
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and hence S 1is a union of a finite number of polyhedral convex
cones. This means that there are finitely many vectors generating
S , say v1, v2,...,vN . Under assumption (16b), condition (16c)

is therefore equivalent to

= v*Ticx +p) 20 (i=1,2,...,N).  (16c')
n
X €ER

Ax < Db }
Eaves' characterization will now be used to derive the result.
If dom Yy = ¢ there is nothing to be proved. Suppose now that
dom ¢ # ¢ . Defining
iT

¢, (b) = inf {v:: C x | Ax < b} (i=1,2,...,N)

and

dom ¢, = {b€ dom M | ¢, (b) > -0} (i=1,2,...,N),

we deduce from domy # ¢ , taking (16a), (16b) and (16c') into
account, that for all i€{1,2,...,N} the set dom ¢i is non-
empty. By linear optimization theory, we thus have (for all i)
dom ¢, = {b€ dom M | ¢i(b) = min viT C x} = dom M .
XEM(b)

Since condition (16b) is satisfied independently of (p,b), we

may conclude from the foregoing that

b € dom M
(p/b) € dom ¥ g and

6, () > -pTv'

(i=1,...,N).

The Basic Decomposition Theorem of parametric linear optimization
(cf. Nozicka et al., 1974; Walkup and Wets, 1969) states that

dom M can be decomposed into finitely many polyhedral convex
cones such that ¢i(i€{1,2,...,N}) is linear on each of these

components. Therefore, the sets
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W, = {(p,b) €R" x dom M | ¢, (b) > -p" v} (i=1,2,...,N)

are polyhedral (but not necessarily convex) cones. Since

N
dom y = N W, , the proof is complete.
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