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PREFACE

The main theme of this paper is that Nash Equilibria
of games with smooth payoff functions generally tend to
be inefficient (in the Pareto sense).
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INEFFICIENCY OF NASH EQUILIBRIA
BY

PRADEEP DUBEY

1. Introduction. The main theme of this paper is that Nash Equilibria

(N.E.) of games with smooth payoff functions are generally Pareto-inefficient.

Suppose that a strategic game with n players is given by n maps

u1 : Sl X, ..X L— R,
i=1,..., n, where s is the strategy-set and ul the payoff function
of player i . Our result states that if the functions u’ are C2 , then
generically (for an open dense set of payoffs): (a) the set of N.E. is

finite, (b) if an N.E. is efficient, then at least one player is on a vertex
of his strategy-set, (c¢) if an N.E. is strong, then at most one player is

off a vertex of his strategy-set. Note that (b) implies generic inefficiency
if the strategy-sets are vertex-free (e.g., manifolds) or if vertices can

a priori be ruled out of N.E. in the given case. The result applies to the
multi-matrix games of Nash (section 4). Here a vertex corresponds to a

pure strategy and, given the special structure of payoff functions, (c)

can be strenthened to: if an N.E. is strong every player is using a pure

strategy.

That the outcome of noncooperation (N.E.) is generally incompatible
with cooperation (efficiency) has been part of the "folklore" of Game
Theory as exemplified in the paradigm of the "Prisoner's Dilemma". The pur-

pose of the paper is to put this on a rigorous footing.

This paper is a rewrite of an old version [2]. It is a pleasure to
thank J.D. Rogawski for several comments, and in particular for the example

in section 3, which is due in its entirety to him.



2. The Main Theorem

Let N={1,..., n}, n=22, be the set of players, and st ¢ Rk(l)
k(i) 2 1 , the strategy-set of player i . Here S1 is the unit simplex,
1 ki) | KD
ie., S = {x € R, L x,.S1} . (For more general strategy-sets,
j=1
1 n

see Remark 1.) Fix neighborhoods Vi of Si and put V=V XxX,,.xV

Let U be the linear space of all 02 functions from V to the reals
endowed with the Cz-norm, i.e., for alll) a in U,

full = suplllu¢s)ll , lIDus)ll , HDzu(s)H : s gV} . Our space of noncoopera-
tive games will be (U)n ; for any u = (u1 yeeos un) e‘(U)n R ui is the

payoff function of player 1

For any s = {s" : 1 eNle$S = S1 x...x 8", TCN, and

e={e' :ieTle X s, let (s|e) denote the element of S obtained
ieT | .
from s by replacing st by e’ for each 1 erT.

Assume u = (u1 ,...,‘un) e,(U)n is fixed. A point s € S 1is called

(1) T-efficient if there does not exist any point e € X S* such that
ieT
i i. .
u(s|e) Zu(s) for all ieT

uJ(s\e) > ul(s) for some j e’

(2) a Nash Equilibrium (N.E.) if it is T-efficient for all subsets T

consisting of one element
(3) efficient 4if it is T-efficient for T =N

(4) a strong Nash Equilibrium if it is T-efficient for all subsets

TCN.

1)

i.e., it is required that the norm |lull of u be finite in order that
u€ U . (The case when u 1is required to be defined only on S 1is

more natural, but will follow from the current case--see Remark 2.)



Let N(u) , E(u) , G(u) denote the sets of Nash, efficient, strong Nash

points of the game u .

Theorem There is an open dense set U0 of (U)n such that, for u g UO

(a) N(u) is a finite set

1 .

(b) if s = (s ,..., sn) € N(u) N E(u) , then at least omne s is a
vertex

(¢) if s = (sl ye oy sn) e G(u) , then at most one s} is not a vertex.

. i, . . .
Proof First we focus on the case when s is in the interior of

Sl(i=l yees, ) . Let r(j) = £ k(i) . Then V may be viewed as a
i (n)
subset of the Euclidean space R* '™ of dimension r(n) . For

1

s = (s ,..., sn) eV, s1 gives the first k(l) coordinates of s , 32

the next k(2) coordinates, i.e., the coordinates from r(l) + 1 till

r(2) , etc. Consider the derivative map

M x v _D . Rn><r(n)
given by:
1 1
Ju Ju
" (s) ,..... > (s)
1 r
D(u,s) = ) : > n
n n
du (s) ,.o.... , Ju (s)
axl ox J
NN -
r = r(n)
where u = (u1 yeens un) . For fixed u ,
Du nxr (n)

vV —— R

is the map obtained by restricting D



D (s) = D(u,s)
u

nxr(n)

We define two subsets of R that help in the analysis of N(u) ,

E(u) , G(u)

Aij =0 for r@(i-1) +1<ji<r@)},

. . th .th ,
where Aij denotes the entry in the 1 row and j column of matrix

A, i.e., AeN if it has the form

— —

L [0 ..... O]-J

k(1) k(2) k(n)

. 1 n - . .
It is clear, since s € Int S° X...x Int § (Int = interior) , that

(1) s € N(u) = s e.Dl_ll (N*)

% nXr(n)

Also define E = {A e R the rows of A are linearly dependent} .

Then, as pointed out by Smale in [5] (see Appendix):

(ii) s € E(u) *sea D:l1 (E*)

From (i) and (ii), we have

1

(1i1) s g N NE@W) = se€ D N NEY

% nxr (n)

One can easily check that N is a submanifold of R of codimension

% % % %
r(n) ; and N NE is a finite union of submanifolds H1 yeeees Hp of

nXr(n)

R each of which has codimension 2 r(n) + 1



L . . .
Fix compact sets V ,..., XP such that 8§ C Int_y_1 Cv' . Let M

nxr(n)

be any submanifold of R We claim

(*) There is an open, dense set UM of (U)n such that, if u ¢ U, ,

. . 1
then Du is transverse to M at every X in V=V X, ,.X vt

(*) will follow from the Transveral Density and Openness Theorems (see

Appendix) if we can show:

(*%) D 1is tranverse to M at every x g V .

_ , . nxr(n) .
Let y be an arbitrary vector in R and consider any

1
n .
(uO , so) € (U)" XV . Construct the smooth path (ut , st)|t=O in

(U)n X V as follows:

St T %
i i r=r(n)
= + =
up (x) u (x) = tyij XJ
j=1
Then
p——
ty11 yeoaean s tyizj
D(ut,st) = D(uo,so) +
Y g 2o > BY .
— —
d RN § I %
Therefore D(u_,s.) =y, verifying (**%), and hence (%).
dt t’ 't
t=0
Consider the open dense sets UN* s UH* s e ey UH* given by (*) for the

1 P

1)

That the inverse image of D splits follows trivially from the

finite~dimensionality of the range.



b

- o * N, 0 ... N
submanifolds N , H1 . HP . Put U = UN* UH7i< .o UHg . Then
*
U is also open dense in ()" . Moreover it follows from (*) that, for
%
uel ,
-1 % *
codim Du (N) = codim N = r(n)
-1 * *
codim D (H,) = codim H, > r(n)
u J J
1 % -1

- %
But dim V = r(n) , hence dim Du (N) is zero, i.e., Du (N) 1is a

discrete set. Then S N D;1 (N') must be finite since S is compact.

By (i), N(u) C (s N D;l (N)) , so N(u) is also finite (for u e UN)

%
Next consider that the set N(u) NME(u) for uegU . By (iii), it

P _ * - %
is contained in U D 1 (Hj) . But codim Du1 (Hj) > r(n) =dim V ,

*»

so the sets D;1 (Hj) are empty. This concludes the proof of the theorem
for s € Int Sl X...x Int ST .

In general, take any s = (s1 seens sn) & S . Go through the same

argument replacing Si by the face of Si which contains s:.L in its
relative interior. If, for some subset R C N , the si are vertices for
i € R, then look at the subgame among the remaining players in T = N\ R .
The argument shows that for an open dense set of payoffs, if s is an
N.E. of the subgame, then it is not T-efficient (and, also, that such N.E.
are finite in number). Let U0 be the finite intersection of all these

open dense sets.

Q.E.D.



Remarks

(1)

(2)

(3)

We took strategy-sets to be simplices because they occur for many
classes of games (see, e.g., [4], [6] that have traditionally been
examined. But, in general, the Si could be a finite union of sub-
manifolds of some Euclidean space (contained in a compact region).

The theorem clearly holds. (A vertex would now mean a zero-dimensional
piece in this union, when the union is expressed minimally.)

Define a fupction us: S —R to be C2 if it can be extended to

a C2 function on some neighborhood of S . Let U be the space of

all C2 functions on S endowed with the norm
lulg = supdllu(s)ll , IDu(e)l , D%l : s g S} .

It is more natural to consider (g)n , rather than (U)n , to be the
space of games. However, our theorem holds for (Q)n also. For any
u é_(U)n let u_ be the member of (g)n obtained by restricting

u from V to S . First note that

i < e =l <
(iv) ([ ull € ”dr”S €

. , i ,
Also, it is well known that--if the S~ are "nice" sets, e.g.,

simplices, spheres--

(v) There exists a K > O such that: for any u e QDII with

“E“S < e, we can find a u e_UDrl with [lull < K e and u. = u .

By (iv) and (v), if U0 is open dense in (U)n , then so is

90 = {ur tu €,Uo} in (g)n

Let U be any submanifold of (U)" which satisfies the foliowing

transversality condition:

~ X
(T.C.) Themap U X V D gT (1)

is transverse to every

submanifold of Rnxr(n)

n

Then, clearly, our theorem holds with G in place of (U) If



U= ﬁl x...x U" and each U' has the following property:
(T.C.)* for any y € Rr(n) and x €& V , there is a smooth path u,
in Ut , 0<t <1, such that :ﬁ?—(D(ut,x) =y

then U will satisfy the T.C. condition. The next two sections

provide instances of this.

(4) Consider the set Uc of (ul se s e un) for which each

R », SEV,

given by u:(t) = ul(s|t) is strictly concave. Then Uc is open in

n

(U)

As is well-known N(u) # ¢ if u g Uc . This shows that our

result is not vacuous.

3. An Example

We present the following example because it is particularly simple

and illustrates all of the features of the general case.

Consider a game with two players where the strategy-set of each
player is the interval [O0,1] . The payoff functions are then functions
on the square [0,1] x [0,1] , which we call X ; a point in X is de-

noted by (xl, x2) where xj is the jth player's strategy choice.

For each point P = (a,b) e,R? , let u, be the function
2 2
up(x,y) = -[(x-a)" + (y-b)7]

i.e., uP(x,y) is the negative of the square of the distance from (x,y)
to P . Let U be the set {uP : Pe Rz} of all such functions. Then
U is a submanifold of CZ(RZ) and is isomorphic as amanifold to R2 itself.

We want to examine that the Nash and efficient sets of the games where

each player's payoff function is selected from U . A game of this type

is determined by assigning a point P = (a,b) to player 1 and a point



Q = (c,d) to player 2, so that their payoff functions are respectively

u, and uQ . We denote this game to be (P,Q)

To find the Nash equilibria of the game (P,Q) , note that player l's
best response to any strategy choice of player 2 is the point in [0,1]
closest to a ; thus his best response is a if ag[o0,1] , 0O if

a<0,and 1l if a > 1. Similarly player 2's best response to any

strategy choice of player 1 is the point in [0,l] closest to d .

* Q= (c,d)
R = (a,l) In the figure on the left, the point
(0, 1) - .
R 1is the Nash equilibrium of the
game (P,Q) . In particular, we
eP =(a,b

see that every game (P,Q) has a

unique Nash equilibrium.

(0,0 (1,0)
To describe the efficient set of the game (P,Q) , denoted by

E(P,Q) , we need a definition. Given any closed convex set C C R2

and a point M € R2 , there is a unique closest point to M in C

We denote this point by rC(M) and call it the retraction of M into C
Thus
Distance (M, rC(M)) = min (distance (M,P))
PeC
and I, defines a continuous map of R2 onto C such that rC(P) =P
if PecC .

Lemma 1: For all P, Q € R2 , E(P,Q) 1is equal to the retraction into X

of the line segment joining P and Q . In other words, if L(P,Q) is
the line segment joining P and Q , then E(P,Q) = rX(L(P,Q))

Proof: We leave this as a simple exercise for the reader. Note that for
all xg X , a point y 1is a Pareto improvement on x if y 1lies on

the perpendicular drawn from X to the line through P and Q
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Examples: (i) if P and Q both lie in X , then E(P,Q) is L(P,Q)

(0,1)

(0,0) (1,0)

(ii) if P and Q 1lie outside of X , then E(P,Q) may look like the

following (the bold line is E(P,Q) ):

(0, 1) (0,1)

(0,0) ¢ (1,00  (0,0) (1,0)

In the examples (i) and (ii), the point R 1is the unique Nash equilibrium

and in both cases it is inefficient.

Lemma 2: Let R be the Nash equilibrium of the game (P,Q) where

P=(a,b) and Q = (¢,d) . Then

(a) If R does not lie on the boundary of X (that is, if neither player
is on a vertex of his strategy-set at R ), then R 1is efficient if
and only if a = ¢ and/or b =d . The Nash equilibria of nearby

games are generically inefficient.
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(b) In the figure below, consider the three games (P,Q) , (P', Q') ,
and (P", Q") , with Nash equilibria R, R' , and R" respectively.
In these three cases, the Nash equilibrium is efficient and the Nash

equilibria of all nearby games remain efficient. In all three cases,

at least one player is at a vertex and in the game (P', Q') , the

efficient set is reduced to a point.

Pl
—————————
] i
| l /
'
« | T
1 / -~
| ! / e
t / ”
| 1

-7
(O,l)_.E‘—h-1 ﬂ‘é

Rll

(0,0) (1,0

Proof: This is easy to check using Lemma 1.
This example illustrates the following main points of the general

theorem:

(1) Nash equilibria are finite in number and vary continuously in u .
(1) Efficient Nash equilibria at which no player is on a vertex of his
strategy-set are not robust.

(1iii) Robust examples exist of efficient Nash equilibria where at least

one player is on a vertex of his strategy-set.

Note that the submanifold of functions U satisfies condition
(T.C.)*, as is easily checked, and hence the above results are a

consequence of the theorem plus remark (3).



~12-

4., Multi-matrix Games

These were introduced by Nash in [4]. Each player i has a finite

set K, of "pure strategies'" which we number for convenience as follows:

K, = {1,..., k(}
K, = {k(i-1) + 1 ,..., k(1)}
K = {(k(n-1) + 1 ,..., k()} .

Each Ki is now enlarged to a set X of "mixed strategies', which are
simply probability distributions on Ki

K.
Xi={xeR1 I x.=1, x, =0}
jéKi J J
Ki
By R we mean the Euclidean space of dimension card(Ki) whose axes

are indexed by the elements of Ki . We identify Ki with the set of vertices
K.
. : . R R 1
of Xi by associating j € Ki with the point (0 ,..., 0, 1, 0 ,...,0) € R
,th
j 'place
Let K = K1 Xou.X Kn . A multi-matrix game is specified by payoffs:
ale RK,...,aneRK. For any k € K , ai’( is the payoff to i 4if the
n-tuple of pure strategies given by k are used. Given a1 yeeay a" we
now define the payoffs I AR I n °on X = X1 X, . .X% Xn as the expecta-
a a
K11
tion of the purestrategy payoffs. Let Zi =-{x e R P < I X,
jek, 3
i
1 Ky
< 17?’ |xj| < 2}' i.e., Zi is an open set in R ~ which contains the
simplex Xi . Put Z = Z1 X, oaX Zn . For ae RK , define Ha :Z+R by

I(x)= I x.a
a KEK k 'k
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where X denotes xj(l) X, . .X Xj(n) for k= (GQA) ,..., j(n)) . Then
if a+ e RK is the payoff of i in the pure~strategy game, Il i restricted

a
to X gives his payoff in its "mixed extension.”

To apply the Theorem to this context it will suffice to check that

[em]
il

{Ha tae RK} satisfies the (T.C.)* conditionforany =z € Z . Put

L = K, U...U Kn ={l ,..., k(n)} . For any j €L, let

-3 _ . .
K K. x...% Ki—l X Ki+1 XX Kn where i is such that j e_Ki .
(Since L is a disjoint union, this is well-defined.) Also for any

q = (1) ,..., 2(@i-1), 2(i+1) ,..., &(n)) inmn K3 , denote the element
(2(1) ,..., 2(i-1), F , R(i+1) ,..., 2(n)) of K by (q,j) . With this

oll
a

0%,

notation, we see that (z) = Z z a ) where
q"(q,3)

qeK 3

zq = 22(1) X,,.X zR(i—l) X zR(i+l) X ..o X zQ(n) for

Q= (8Q1) ..., 8(i-1) , L(i#1) ,..., 2(n)) . Take any v € R" .

For each j =1 ,..., k(n) there is clearly a q(j) &€ K_j such that z

'l
t't=0
a

q(j) #0

Now consider the path I where

a, + (tvj/zq(j)) if k= (q() ,

K otherwise

Then —%E-((DH t)(z)) = v . This shows that U satisfies (T.C.)* at any
a

z eZ .

K
By the Theorem there is an open dense set V of (U)n = (R )n such that

1
if (al son ey an) =aeV then (a) the N.E. of Ha = (I

1 Il

p o T
a a

are finite in number, (b) if an N.E. of Ha is efficient, there is at least
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one player who uses a pure strategy, («) if an N.E. of Ha is strong,
then at most one player's strategy is possibly not pure. To sharpen (c),

let V., be the subset of (U)n given by

2
1] ]
V2 = {(a1 y oo s an) € (U)n:ai # ai, if either 2 # & or k # k'} .
V2 is open and dense in (U)n . Moreover if x = (x1 s ey xn) e X is
an N.E. of Ha for a e_Vz , and if all but one of the players use pure

strategies at this N.E., then clearly so does the remainding player. Let

V = V1 N V2 . We have proved

Theorem (Multi-Matrix): There is an open dense set V of (U)n such

that, if a €V ,

(a) the N.E. of Ha are finite in number®

(b) if an N.E. of Ha is efficient, then at least one player uses a pure
strategy

(c) 1if an N.E. of Ha is strong, then each player uses a pure strategy.

5. Generalizations

Consider a strategy-to-outcome map ¢ : S —— Y , with player 1i's

utility ui defined on Y , and his payoff given by ui(é(s)) , (i=1 ,..., n).
(Our theorem focused on the special case when ¢ is the identity map.)

If dim S = dim Y and ¢ has full rank, then it is clear that our theorem
continues to hold by the same proof. However, if dim S > dim Y then

N(u) will no longer be a finite set for generic u , but instead a finite
union of submanifolds of positive codimension in S . Thus N(u) will

not "miss" the efficient set E(u) . But it seems probable that (for a

generic choice of u and ¢ ) the two sets N(u) and E(u) will have

*
Finiteness--indeed oddness--of the mixed-strategy N.E. was established

by different methods in [3].
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transversal intersection. Therefore the efficient N.E. will constitute
submanifolds of positive codimension within the N.E. manifolds, and the
general feature of inefficiency of N.E. will still be maintained. We

have not worked out the details of this picture.

APPENDIX
We recall the results used in this paper.

Part 1 (the quotation is from [1])

"Let X and Y be C1 manifolds, f : X+ Y a ct map, and W CY
a submanifold. We say that f is transversal to W at a point x € X ,

in symbols: fI\x W , iff, where y = f(x) , either y¢ W or y€ W and

(1) the inverse image (Txf)_l(TyW) splits, and
(2) the image (Txf)(TXX) contains a closed complement to Tyw
in TY.
y
We say f 4is transversal to W , in symbols: fAw, iff f,Rx W for

every x ¢ X .

et A, X, and Y be Cr manifolds, Cr(X,Y) the set of C©
maps from X to Y, and p : A~ Cr(X,Y) a map. For a € A we write
P, instead of p(a) ; i.e., pa :X~+Y isa C° map. We say p 1is

T ; . .
a C representation iff the evaluation map

ev. :t AXX-»Y
P
given by
evp(a,X) = p_ (%)

for a €A and xeX is a ct map from A X X to Y,
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r
Transversal Density Theorem. Let A, X, Y be C manifolds,

o A~ Cr(X,Y) a cf representation, W €Y a submanifold (not
necessarily closed), and evp : AX X—>Y the evaluation map. Define

A, CA by
AL = {a eA|paﬁ(W} .

Assume that:
(1) X has finite dimension n and W has finite codimension
q in Y ;
(2) A and X are second countable;
(3) r > max(0, n-q) ;
(4) evp]\ W

Then Aw is residual (and hence dense) in A .

Openness of Transversal Intersection. Let A, X, and Y be Cl

manifolds with X finite dimensional, W CY a closed Cl submanifold,
K € X a compact subset of X, and p : A - Cl(X,Y) a Cl pseudo-

representation. Then the subset A C A defined by
AKw = {a e A'paacx W for x € K}

is open. This holds even if X 1is not finite dimensional, provided that

. 1 ,
p is a C  representation."

For our purposes, it is enough to note that every C1 representa-
tion 1is a C1 pseudorepresentation. Also va is the tangent space to
W at vy ; Txf : TXX - TyY is the derivative map of f at x . See [1]

for detailed definitions.
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Part 2 (the quotation, with minor modifications, is from [6]

"Let u> : W~ R be smooth (i.e., ct , r=1) functions
(i=1,..., n) where W 1is a manifold in some finite dimensional
Euclidean space. Assume that dim W 2 n throughout. Consider u = (ul seey un)

u:w-==Rr". At any x& W , the derivative of u at x , Du(x) , is a

linear map from wa to R (made up of Dul(x) : wa -R,i=1,..., n)

Proposition. Given W and u as above, x @ W 1is an efficient point of
u iff T A, =20, i=1,..., n, not all zero with
-1 i
n

= 1
iEl}\iDui(x) 0 for all x e wa .
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