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1. INTRODUCTION

Finding the optimal decision x* when the objective function (cost function,
performance criterion,...) 1s available explicitly, say given by a function f(x),
boils down to minimizing (or maximizing) f on Rn, i.e., x* must satisfy the rela-
tion

(1.1) x* e argmin f = {x | f(x) <inf f} .

There are no real conceptual difficulties here. The only question is to find a
procedure that yields x*. In fact there is a rich collection of methods available
for deoing exactly that, depending only on the possibility of calculating at small
cost either the function values and/or its gradient, or still better second order
type information.

On the other hand when optimal decisions must be reached in an environment
beset with uncertainties, not only does the formulation of the decision model
demand a deeper probing of the aspirations criteria in order to give to the optimi-
zation model its appropriate form, but usually significant computational obstacles
must be overcome to calculate optimal decisions. Let us suppose we have a cost

function given by
(x,£) = £(x,£): RTxE>R

where £ are some random parameters whose real values will only be revealed after a
decision x has been selected. By Z (usually a subset of a finite dimensional space
RS) we denote the sample space of £, by which is meant the set of possible values
of the random variables. The function f is finite valued which implicitly implies
that it has been possible to attach to each combination of x and £ a precise cost
f(x,£). If the decision maker is indifferent to risk, then the optimal decision is

reached by minimizing the function
x = F(x) = E[f(x,8)] = J f(x,£)P(dE)

on Rn, where P is a given probability measure. It is assumed that E{f(x,£)} is
finite for all x, a harmless restriction in practice. Thus, in this case we have

to find x* that satisfies

(1.2) x* e argmin(F=E[f(*,£)])

In theory every procedure developed to solve (1.1) could be employed to solve
(1.2). However, the implementation of these methods demands easy access to func-
tion values and gradients, and even to Hessians. Given the limitations of multi-
variate calculus, these quantities can very often only be obtained numerically and

if a high level of accuracy is required, the cost of calculating F(x) = E[f(x,&)]



for any fixed x may by far exceed the gain one may derive from knowing the optimal
solution! It is thus imperative to develop solution methods that do rely on approxi-
mates, even on very rough estimates.

Solution strategies for solving (1.2) are studied later on. Before we do so
however, let us return first to the premises that led us to (1.2). In order to ac-
cept F as the objective function of our stochastic optimization problem, we had to
assume that the decision maker was indifferent to risk, i.e. his preference relation-
ship between two risky events is totally and uniquely determined by the expectation
only if

of their cost or return. In particular x, is preferred to x

1 2

E[£(x),8)] < E[£(x,,8)] ;
for example, he equates the events:

cost $10 with probability 1
and
cost $1,000 with probability 1/100 .

In general decision makers do not exhibit such indifference to risk and one should
take into account their attitude toward risk. Depending on the context he may be
risk averse or risk seeking. This is usually dealt with through a utility function
which is used to rescale the cost functional so as to make it conform to the deci-
sion maker's attitude. Let u: R—-R be such a utility function. The problem be-

comes then: find x* that satisfies
x* ¢ argmin E[u(f(-,&))]

Although, for decision purposes there may be significant differences between (1.2)
and this problem, as far as the development of solution procedures are concerned,
these two problems are of the same type and henceforth we shall simply assume that
if the utility function is anything else than linear (risk indifference) it has been
incorporated in f, i.e. f=u(cost), which allows us to think of (1.2) as the proto-
type for this whole class of problems.

Sometimes it may be necessary to rely on a formulation of an objective for the
stochastic optimization that does not easily fit in the framework provided by (1.2).

Two examples of this type are:

find x ¢ R such that E{f(x,w)} <o

and variance [f(x,w)] is minimized,
or
find x ¢ R such that prob. [f(x,w) 2M] is minimized.

Both formulations reflect also a certain attitude towards risk of the decision

maker. In the first one he is indifferent to all risky events that do not exceed



an average cost of o, and among those he prefers those that deviate as little as
possible from their expectations, in a least square sense. In the second problem,
he exhibits a high level of risk aversion in the sense that only the tail of the
distribution is of real concern to him; he seeks to avoid costs exceeding M as often
as possible, Actually both objectives can be modeled through a utility function
but this utility function is discontinuous. Formulating a stochastic optimization
problem in this fashion might be appropriate in some very specific instances, but
generally such an approach is fraught with pitfalls and should only be used when
there are no alternatives available, typically only when more detailed description
of the attitude towards risk is beyond our modeling capabilities. 1In such cases a
careful analysis of the sensitivity of the solution to modeling parameters should
accompany any assertion about ''solutions.'" In the rest we shall only be concerned
with problems of the type (1.2). This paper specifically deals with F finite
valued; stochastic constraints present conceptual challenges that we shall not face

here.

2.  SOME PROPERTIES OF F
Let us refer to F=E{f(*,£)} as an expectation functional. We shall study some

of its properties, when it is viewed as a map defined on R, 1i.e.

x+ F(x): R" > R .
We limit ourselves to those properties that may be useful when designing algorithmic
procedures for solving (1.2). Let ZcR® be the support of the distribution P of the
random vector ', i.e. the smallest closed subset of RP of measure 1. We think of =

as the set of ''possible'" values of £.

2.1. PROPOSITION. Suppose x= f(x,&) is convex for all & in Z, (or for P-almost all

£ in Z). Then F 18 convex, in which case we have
(2.2) dF(x) = ¢l J 3f(x,E)P(dE)

where 9 denotes the subgradient set, cl is closure and the [ in (2.2) is to be under-

stood as the set-valued integral of the multifunction Ew 3f(x,E).

The proof of formula (2.2) is quite technical and may be skipped without the
risk of losing the continuity of the arguments that are to follow. In general the
integral of a measurable multifunction is not a closed set, even if the multifunction
is a subgradient multifunction; that is why closure should appear in the right-hand

side of (2.2). However, the proof actually shows that the hypotheses on F,



in particular F finite, imply that J 3f(x,£)P(df) is automatically closed. In fact

it is compact.
PROOF. Convexity simply follows from integrating both sides of the inequality
£:,8) < (1-0£60,8) <1 £, E)

We have assumed that F is well-defined, in fact finite on Rn, which implies, among
other things, that f is finite valued on RnIxE, and &~ f(x,£) is measurable while
x~ f(x,E) is continuous (convexity). All this implies that the subgradient set

of (x,£) is a compact convex set given by
3f(x,8) = {v | vx-f(x,8) 2 sup [vy-£(y,E)]} .

The function £+ g(y,£&) =supy[vy-f(y,£)] is measurable since it is the supremum of a

collection of measurable functions. From this it follows that the multifunction
£ 3f(x,8) = {v|vx-g(v,&) 2£f(x,8)}

is a compact-valued measurable multifunction. Let v: =+R" be any summable selec-

tion of 9f(x,+). In particular we have that for every ye Rn,

£(y,€) - £(x,E) 2 v(E) (y-x) ,
which after integration on both sides yields
F(y) - F(x) 2 v(y-x)
where v =/ v(£)P(df). This shows that
() < [ a£0x,E)P(E)

(Since 9F is closed, the inclusion would remain valid if we close the term on the
right.)
To complete the proof of (2.2), we now take ¥V in 3F(x) and show that there

exists v a selection of 3f(x,+) such that v = S v(§)P(dE). To do this we must follow

a circuituous route. Let us consider the following optimization problem:

find x ¢ L: = Lm(E,P;Rn) such that x(+) is constant
and If(x) = J f(x(§),E)P(dE) is minimized.
The problem consists of minimizing the integral functional If over the subspace of

@ . 3 .
constant functions of Ln. A constant function xo(-) optimal if and only if there

exists an Li function u: S-R" such that J u(£)P(d) = O and



xo(g) eargmin[f(x,£) - u(g) x | X € Rn] , a.s.

This follows from Fenchel's Duality Theorem [1], we note that the "constraint quali-
fication" is satisfied since f is finite on R" xZ and summable for all x ¢ R". We
can naturally identify the constant functions with points in R®. Thus from what
preceeds it follows that a vector X minimizes F on R" if and only if there exists

a summable function u(+) such that
J u(g)P(dg) = E[u(g)] = 0
and a.s. (almost surely)

x, eargmin[f(x,&) -~ u(&)x | x e R™)

0

or equivalently,

u(g) e Bf(xo,g) a.s.

Now V ¢ 3F(x) if and only if 0 e 3[F(x)-v(x)], i.e. x minimizes [F-¥+]. 1In view of
the above this can occur if and only if there exists a summable u(+) with E[u(g)] =0

such that a.s.

u(g) e 3[f(x,€) - ¥x]

Let v(§) =u(&)-v. The function v(+) is a measurable selection of 3f(x,-). This
completes the proof of (2.2) since it implies that to every v e 3F(x) there corres-

ponds a summable selection of 3f(x,+) whose integral is v. [J

2.3. COROLLARY. Suppose xw f(x,£) 18 convex for almost all E. Then X, minimizes
F on R® 1f and only if there exists a summable function V: >R such that

E[v(£)] =0 and a.s.
V(E) € 3F(xy,E)
or equivalently

0e€argmin[f(+,£) - v(E)~]

2.4. COROLLARY. Suppose xv f(x,&) 1s convex for almost all &, and either f(+,E)
is differentiable at x for almost all E or {E | 3f(x,E) = singleton} has measure 0.
Then F is differentiable at x. In particular if P is absolutely continuous and f
18 of the form

(2.5) f(x,8) = £°(L(E)x+2(&))

where L(*) 18 a random matrix and 2(*) a random vector, them F is differentiable.



PROOF. The first assertion follows directly from formula (2.2) and the fact that a
finite convex function is differentiable whenever its subgradient set is a singleton.

If £ is given by (2.5), then actually we have that

9f (x,€) = 3f°(L(E)x +R(E)) * L(&)

The map
X # 9% (x)

is not a singleton at most on a set of Lebesgue measure 0. Since P is absolutely
continuous (with respect to the Lebesgue measure) it follows that for every x,

9f(x,+) 1s not a singleton at most on a set of P-measure zero. The above then in
turn implies that for all x, 9F(x) is a singleton from which follows the differen-

tiability of the convex function F. [

Corollary 2.4 can easily be generalized. Rather than having f given by (2.5)
consider the case when f(x,£) = f°(G(x,£)) with G(+,&) sufficiently smooth.

3. APPROXIMATIONS AND ERROR BOUNDS

Except when f possesses separability properties, it is usually quite difficult
to compute very accurately the value of F, or a subgradient of F. One must very
often content oneself with a numerical scheme that approximates F(x), or any other
quantity required to calculate the iterates of the minimization algorithm. Given
that in order to solve (1.2), approximations are a fact of life, one is naturally
led to two main strategies. The first one is to develop approximation schemes that
yield upper and/or lower bounds through the careful choice of approximates for the
function f or the measure P. The second one is to accept at each iterative step,
approximates with statistically independent errors that, in a probabilistic sense,
will cancel each other out when the number of iterations is sufficiently large.
The methods described in this section rely on the first type of approximations, the
subsequent section exemplifies the second strategy. We shall not consider the case
when f is approximated, this is best done in a context when f is further specialized
and exhibits specific structural properties.

We begin with a general approximation result,

3.1. THEOREM. Suppose {Pv, v=1,...} 18 a sequence of probability measures converg-

ing (in distribution) weakly to a probability measure P, such that for v=1,...

FL(x) = J £(x,E)P, (dE)



F(x) = [ £(x,£)P(dE)

are finite for all x ¢ R, where £: R" x0+R is convexr (and thus contimuous) in x and
continuous and bounded in & on an open set 0 with Sc0cR’. Then the Ffunctions

{Fv’ v=1,...} converge pointwise to F. Moreover, 1f there exists a bounded set D
such that

argmin FvnI)zQ
for all v sufficiently large, where

. n .
argmin F = {xeR |Fv(x) 51nf'Fv} ,
then
lim inf F. = inf F
Vo v

and the minimun of F is attained at some point in the closure of D.

PROOF. The pointwise convergence of the F, to F follows from the assumption of weak
convergence (in distribution) of the Pv to P since the function E£w f(x,£) is bounded
and continuous for all x e R" [2, Portemanteau Theorem]. Since the Fv and F are
finite convex functions as follows from Proposition 2.1, we have that the functions
Fv also epi-converge to F [3, Corollary 2A], this means that [4, Theorem 9]

Lim sup argmin F < argmin F ,
Vo0 v

i.e. if {xk, k=1,...} is a sequence such that

k .
X € argmin FV

k
for some subsequence {vk, k=1,...}. The assumptions, viz. argmin F\)nl)z # for some
bounded D for all v, imply that there exists a bounded sequence {x", v=1,...} with

Y .
X € argmin FvnD .

. A% .. .
Thus there exists a convergent subsequence {x k, k=1,...} whose limit point

- v
X = lim x ¥ is such that
ko
X € argmin F ,

and then

13 Vs _ - .

im Fv (x *) = F(x) = inf F .

k

There remains only to argue that the entire sequence {inf Fv’ v=1,...} converges

to inf F. But this simply follows from the observation that the preceding argument

applied to any subsequence yields a further subsequence converging to inf F. [J



This theorem takes care of the case when the function ww f(x,w) is bounded or
when O is bounded, the continuity of f(x,+) on O implying automatically boundedness
in such a case. However many applications do not satisfy such a set-up. A signifi-
cant number of applications have f(x,+) unbounded. It is often a positively homo-
geneous function that tends to « as ||w|| tends to+o, i.e. it is an inf-compact func-
tion, see e.g. [5] and the examples mentioned there. And the probability measure P
does not necessarily have bounded support, for example P could be a multivariate
normal. In such case, some care must be given to the choice of the approximating
sequence {PV, v=1,...}. The situation to avoid is typified by the following

example.

3.2. EXAMPLE. Let g(t) =t° and

1-v71 if 0eA but Vv¢A ,

=yl if v’leA but 0 ¢A .

1l

P,(A)

Then {Pv, v=1,...} converge in distribution to P with

P(A)

]
—

if OeA ,

n
(@]

otherwise .

However [ g(t)PV(dt) =V does not converge to S g(t)P(dt) = 0.

3.3. THEOREM. Suppose {Pv, v=1l,...} 18 a sequence of probability measures con-
verging weakly to a probability measure P all defined on QcR®, such that for any
fixed x ¢ R" and € >0 there exists a bounded set ScR® and Ve such that for all
E

(3.4) J |f(x,w)|Pv(dw) <€ .
Q\S

and the expectation functionals, for v=1,...
Fv(x) = J f(x,w)PV(dw) and F(x) = J f(x,w)P(dw)
are finite on Rn, with the function f conmvexr in x and continuous in w. Moreover

1f there exists a bounded set DecR" such that

argmin erwD =

for all v sufficiently large, then

1im inf F = inf F
V0 V

and the minimim of F is attained at some point in the closure of D.



PROOF. The arguments are the same as those used to prove Theorem 3.1, except that
we can no longer deduce the pointwise convergence of the {FV, v=1l,...} to F from

the weak convergence of the probability measures. For a fixed xe¢ Rn, let

glw) = f(x,w)

From (3.4) it follows that there exists a bounded set ScR® such that for all

v2V
- lg@) [P, (dw) <€
§AS

Let M€ =supwes|g(w)|. We know that ME is finite since S is bounded and g is con-

tinuous. Let gE be a truncation of g defined by
(
gw) 1if g(w)SMe s

giW) = ¢ M if g@)>M_,

-M€ if g(w) <M€ .
The function gE is bounded and continuous and we have that for all we Q

EXOIERFIO]
and thus we have that

(3.5) lim Bi = J g ()P (dw) | = J ¢F WPw) = 8%,
0
and also & {
J g [P () <€,
Q\s

for all \>2v€. Now let

8, = F,(x) = J g()P (dw) + J g(W)P(dw)
S Q\S

We have that for all \>zv€

8,-85] = ]J (g(@)-g" ()P, (dw) | < 2¢

Q\S
and also that

|B-BE| < 2¢ where B'=F(x)

Combining the two preceding inequalities with (3.5) shows that for every € >0 we

can find Ve such that for all Vzv, |Bv-8|<<6€, i.e.

lim F (x) = F(x) . [



The two preceding theorems essentially imply that any reasonable type of ap-
proximation scheme will yield the sought for convergence of the infima and of the
solutions. The appropriate choice of the approximating sequence however can pro-
vide upper bounds and lower bounds on the solution as we show next. In [6, Sec-
tion 3] we have reviewed the bounds that can be derived when the function we f(x,w)
is convex -(or concave). Here we study other types of approximating schemes based
on stochastic ordering [7, Chapter 17].

Let <. be a partial ordering induced by (the closed convex cone) C on R, i.e.

C
s . . .
we refer to a vector t e R™ as preceding t, e R® with respect to :E if
t2 —tl eC ,
in which case we write
t, St
17°C "2

A random vector £.: Q-R® is said to stochastically precede the random vector £
1 yp 2

with respect to :E if

P{w | £ (W SC gz(w)} =1 .

Note that this condition is stronger than the possibly more natural condition that

for all t eRS
= =
P[g1 = t] < P[g2 = t]

In fact the above implies this last inequality, as can easily be verified.

We say that ¢: R® >R is an order preserving function with respect to :E if

_< - -
tl ~c t2 implies ¢(tl) < ¢(t2)

With ¢ such an order preserving function and 51(-) z% gz(-) we have

Plo(E) <0(E)] = 1,

and thus

E{9(E)) < E(6(E) ) .

This means that order relation is preserved by taking expectation (of order pre-
serving functions).

Now returning to the problem at hand, let us suppose that for all fixed x e R"
~ _ oS
Ev f(x,8): Z<R >R

. . . . s .
is order preserving with respect to a partial ordering z& on R°. Then an appropri-

ate choice of probability distributions to approximate P 1is to create a sequence



{Pv’ v=1l,...} such that the {Fv’ v=1,...} converge monotonically from above, or
from below, to F. In the process, when solving the approximating problems, we ob-
tain upper and lower bounds on the infima of F.

Again let Zc R> denote the support of the measure P. Suppose <. is a partial

C

ordering on R® and oy is a lower bound of = with respect to 5C’ by which we mean

-
Ay ~c z for all ¢tCe

[n

and let Bu be an upper bound of =, i.e.

(1]

z t% B, for all tze

Let us define

I
—

PQ(A) if GQEA”

0 otherwise ,
and
PU(A) =1 if BueA,
0 otherwise .

Then with the above, we have

A

Fo(x) = J £(x,€)P (dE) < F(x) j £(x, )P (&) = F (x)

and in particular
inf F, < inf F < inf F
2 u
It is easy to see how to sharpen these inequalities. Suppose C is such that

.= s —< ~<
D := {zeR |al~c < B}

is bounded. Let y be any point in D and let us define Pll’ a discrete probability

measure, as follows:

= ~

Pﬂl(al) =1 - Pll(Y)
On the other hand let

Py =Pl [ o= v},

Pa(B) =1 -P (¥

ul
With

Fi(x) = J f(x,&)Pi(dg) for 1i=f,u,21l,ul ,

we get



IA

FR(X) < le(x) < F(x) Ful(x) < Fu(x)

and thus in particular

inf F’Q < inf F21 < inf F < inf Ful < inf Fu .

It is now easy to see how to construct sequences of probability measures

{PQV’ v=1,...} and {Puv’ v=1,...} that in turn yield sequences {sz, v=1,...} and
{qu, v=1,...} converging monotonically to F. In particular, if C is a simplicial
cone, then it is possible to tessellate RSIDE, and assign the probability of each
cell to its lower vertex (preceded by all others) to determine sz and to 1ts upper
vertex (preceding all others) to determine Fuv' If C is not a simplicial cone, we
can still proceed in this fashion, replacing :E by the ordering =<' induced by a sim-
plicial cone C' contained in C, since tl <! t2 then implies tl :E tz. The figure

below illustrates such a construction.

u,vtl

/

A/ P
é uv
/P(SV) -
PQV '

b

3.6 Figure: Construction of sz’ Puv'

It might appear that the existence of a partial ordering :E with respect to

which f(x,+) is order preserving, is a somewhat artificial hypothesis that only will
be satisfied in a very limited number of cases. To dispel this impression we con-
sider one class of function f that is common in stochastic programming [6].

Let W,T and q be (fixed) matrices of appropriate dimensions, and define
(3.7) f(x,8) = c(x) + infy€Rp[qy | Wy=E-Tx, y=20] .

Without loss of generality we may assume that q=0. If not, we know from the theory
of linear programming that, unless the linear program is unbounded, there exixsts a

vector m such that



The original problem is then equivalent to

F(x) = TE{E} +c'(x) +E{inf[q'y | Wy = E-Tx, y 20]}
where

c'(x) = c(x) -7Tx .

Thus we may assume that q =0. By pos W we denote the convex cone generated by

the columns of W, i.e.

n' j
os W==<t]|t=), Wy., ¥y.207 .
P { | ZJ=1 Y5773 }

!
Let {tze Rm \ 2=1,...,k} be a subcollection of the column-vectors that determine a

frame for pos W, 1i.e.
pos W = {t =ZEF1 aztz, aQ’ZO}
and none of the t2 can be obtained as a positive combination of the others.

3.8. PROPOSITION. Suppose f is given through (3.7). Suppose moreover that for
all vectors {tz, 2=1,...,k} that belong to a frame of pos W, the function

Aw £(x,E¥AtY): R, > R

18 monotone decreasing. Then Ew f(x,E) is order preserving with respect to the

partial ordering = induced by the closed convex cone pos W.
PROOF. It suffices to prove that if El = 52 then

£(x,E) £ £(x,E%)
Since by assumption f(x,gl) is finite we have that

1 1
f(x,€7) = c¢(x) +qy
where

wyl = elox,  ylzo.

Since gl :fgz we have that

2 2

_owol k
E7-Tx = Wy™ + ZQ;l azt
for some GQIZO. Proceeding now one tk direction at the time we get
1 1 1 1 2 '3 1 k L
Fx,E7) € £(x,Evayt) < £0,E +05 ; opt) < oor £ FOGE ] ) apt™)

which yields the desired inequality. [



4. A STOCHASTIC QUASI-NEWTON METHOD

Rather than first designing a careful approximation to P, that will be appro-
priately refined when the need arises (i.e. when the calculated error bounds exceed
a certain level) we could take a '"stochastic' approach to solving (1.2). By this
we mean that each step is calculated by relying on a stochastic approximate of the
quantities involved. More specifically, let €1,€2,...,€k be a finite (unbiased)

sample of the random variable £. Let

ky o glgk

o[£, E%, .., E) i TO,ED)

This quantity can be viewed as a stochastic approximate of the value F(x). It has
two basic properties
(i) if the size of the sample is increased, the value of ¢(x lgl,...,gk)

tends in probability to F(x), and

(ii) if we have an algorithmic procedure that relies at each step on an inde-
pendent set of samples then the errors caused by this approximation tend

to cancel each other out.

The method of stochastic quasi-gradients [8,9], a generalization of the method
of stochastic approximations, relies on (ii) combined with an appropriate choice of
step-size to obtain the convergence of the method. When errors, e.g.

F(x) - ¢(x |£1,...,£k), are viewed as noise then increasing the sample size will de-
crease the effect of noise in the calculations and if the steps of the algorithm
are such that the effect of noise goes to 0 (in probability) with the iteration
count, then property (i) is used to give us the convergence (in probability) of the
method [10]. We only sketch out here a second-order method (of the Quasi-Newton
type), details and further developments will appear elsewhere. We assume that the
functions f(+,£) are differentiable and we rely on Proposition 2.1 for the calcula-

tion of the gradients of F.

Step 0. Select x1 eRn, H1= I(nxn) and set v=1. Choose a sample (gl,...,gk(l))
and set
1 1 k(1) 1 .2
g - k(l) 22=1 Vf(x Jg ) )
Step 1. Set
v+1] vV AVERY:
X =x -p Hg .
v
(Here the o, are nonnegative scalars.)
Choose a sample (gl,...,gk(v)) and set
v+1 1 k(v v+l L
gt = ©) vextt et

k(v) & 2=1



Step 2. Update H: set

Y vV, T
H\)+l -y . (v-H"d) (v-H"d)

(v-Hd) T+d
where
v+ vV
Vv = X - X
V+1 vV
d =g - g

and T denotes transposition.

This is a rank one update of H; other updates such as that corresponding to
the BFGS update for example, can also be used. There are two basic differences with
the standard Quasi-Newton procedure as it would apply to F. First the gradient of F
at x’ is estimated rather than actually calculated, gv is only a stochastic approxi-
mate of VF(xv). And second, rather than performing a line search to find the minimum
of A++F(xv-legv], we rely on a step size determined by a scalar o, The basic

reason being that a line search would be prohibitively expensive (if not impossible).

To obtain convergence in probability results one relies on one hand on having

k(v) # = as v goes to =, and on choosing the step size p, SO as to guarantee suffi-
. . % . . .

ciently small changes in the x . Repetitious sampling guarantees the cancellation

of estimation errors.

REFERENCES

[1] R.T. Rockafellar, An extension of Fenchel's duality theorem for convex func-
tions, Dual Math. J. 33(1966), 81-90.

[2] P. Billingsley, Convergence of Probability Measures, J. Wiley, New York, 1975.

[3] G. Salinetti and R. Wets, On the relation between two types of convergence for
convex functions, J. Math. Anal. Appl. 60(1977), 211-226.

[4] R. Wets, Convergence of convex functions, variational inequalities and convex
optimization problems, in Variational Inequalities and Complementarity Pro-
blems, eds. R. Cottle, F. Gianessi and J-L. Lions, J. Wiley § Sons, New York,
1980. 375-403.

[5] K. Marti, Computation of descent direction in stochastic optimization problems
with invariant distribution, Tech. Report, Hochschule Bundeswehr Minchen, 1982.

[6] R. Wets, Stochastic programming: solution techniques and approximation schemes,
in Mathematical Programming: The State-of-the-Art 1982, Springer-Verlag,
Berlin, 1983.

[7] A. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Appli-
cationg, Academic Press, New York, 1979,

[8] Y. Ermoliev, Stochastic quasigradient methods and their applications to systems
optimization, Stochastics, to appear.

[9] H. Kushner, Stochastic approximation algorithms for constrained optimization
problems, Annals of Statistics 2(1974).

[10] RBR. Poljak, Nonlinear programming methods in the presence of noise, Mathematical
Programming 14(1978), 87-97.



