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FOREWORD

Contributions to the Metropolitan Study:3

The Project "Nested Dynamics of Metropolitan Processes
and Policies" was initiated by the Regional & Urban Development
Group in 1982, and the work on this collaborative study started
in 1983. The series of contributions to the study is a means
of conveying information between the collaborators in the net-
work of the project.

This paper by Paul Lesse deals with the relationship
between dynamic economic changes at the microlevel and equili-
brium descriptions applicable at the macrolevel. 1In this way
the present contribution focuses on one of the basic theoretical
issues in the Metropolitan Study: the possibility of relating
effects observed on the aggregate level to the actions of
people and economic agents whose individual decisions produce
these effects. Thereby it also relates to the problem of mul-
tiple dynamic changes at the disaggregated level and the
resulting static equilibrium at the global level.

The outcome of the approach is an aggregate equilibrium
statistical representation in the form of an entropy maximizing
probability distribution based on characteristics of the dynamic
equations. The approach also makes it possible to relate entropy
maximizing models to behavioral models based on cost minimizing
or utility maximizing assumptions with reference to logit and
probit types of models.

B8rje Johansson

Acting Leader

Regional & Urban Development Group
ITASA

Laxenburg, September 1983
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THE STATISTICAL DYNAMICS OF SOCIO-ECONOMIC SYSTEMS
P.F. Lesse

Division of Building Research,
Highett, Victoria, Australia

Motto:
"One interested only in fruitful statics must study dynamics"
P.A. Samuelson: Foundations of Economic Analysis

SUMMARY
The paper deals with the following problems:

- relationship between the dynamic changes observed in an
economic system at the disaggregated level and, equilibrium
description applicable at the aggregated scale.

- relationship between entropy maximizing models and behavioral
(cost minimizing, utility maximizing) models.

- the answers are provided in terms of an entropy maximizing

probability distribution based on topological characteristics
of the dynamic equations (Lyapunov functions).

1. INTRODUCTION

There exists a counsiderable body of literature dealing with socio-
economic and urban planning models using entropy as a suitable concept

and Jaynes’ (1957e«,b) principle as & handy Locl fur obleining the vaiues

t

of variables at an acgresgated level. Hocst of thesa papers can be tracad

back to wilson (1866, 1970, 1374, and papers cited in Lhe munogreplis:



who has shown that the empirical gravity model can be derived by
entropy maximization. Application of thig approach led to a large
number of planning models, many of which have been widely used in
practice, The entropy method is thus theoretically sound and successful
in practice: nevertheless, there appear to be a few aspects of it which

are felt Lo be in need of further develoupmenti.

One such aspect is the relationship between the effects cbserved on the
agygregated level and the actions of peuple whuse individual decisions
produce these effects. Another is the problem of the relationship
between the multiple dynamic changes al Lhe disagyregated (ﬁicro) level

and the resulting static equilibrium at the global level,

Both these problems have been identified by numercus writers and treated
from different angles, The former problem can be seen as a problem of
aggregation; the latter as & search for a felationship between
descriptive and causative or behavioural models. In this sense, it can
alsoc be interpreted formally as the problem cof relating the models besed

on maximization of entropy with those based on utility.

Utility is generally gccepted as a behavioural concept well defined in
‘terms of individual preferences over the set of socio-economic states
(Papageorgiou, 1977). The proublem of aggregation of the individual
utility functions and the relation between the entropy and utility-based
models is rather complicaled and has been reviewed by Wilsoun (1973). An
aggregated utility function was, in many cases, derived by the theory of
random utility (four analysis, see Manski, 1977) whouse relation to the
entropy-based models was pointed out by McFadden (1574) and Cochrane

(1975). The relalionship belween enlrupy meximizing models and random
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Qtility based models was explained by Anas (1982). Among those who have
nontrivial reservations about the entroupy maximizing technique, and whou
demand that a link coﬁnecting the behavioural and descriptive mcdels
should be established, belungs T. Smith (1978). T. Smith formulated an
alternative theory beased on the observation that the high cost trips are
in general less probable than thuse with lower cust (cust efficiency
principle), In a similar spirit entropy has been treated as a measure
of accessibility by Erlander (1977, 1980). Bouyce and Jansen (1980) see
entropy as a concept related to spatial interaction among traffic flows
and used as a smouoting device (1981). The various aggregated forms of
wtility or cbnsumer benefit were studied by Williams (1976, 1977).
Wiliams and Senior (1977) have studied the appropriate measure of the
consumer benefit in the field of locational analysis. The dual
relations between models based on various utility-like furnctions and
those maximizing entropy were explored by Wilson and Senior (1974) and
Coelho and Wilson (1977). The cummon feature of these papers is the
derivation of an aggregate measure of benefit (usually related to
individual preferences) which attains its maximum ‘at certain values of
parameters describing the state of the system. Identical values are
then shown to be obtained by meximizing entroupy subject to certain

constraints,

The derivation of the aggregate utilities is in general static, i.e. the
dynamic natu}e of the decision making process is seldom tackled,
Recently Bertuglia and Leonardi (1979) have published a dynamic model
based on the theory of Markov processes. Wilson (1978) suggested using
the Lheoury of optimum control fur this purpose and briefly oullined a

way how such & result could be achieved.




In this paper | propose a theory capable of at least partly explaining
the relationship between the utility meximizing or cost minimizing |
dynamics observed at the micro eéonomic level, and the static entropy
maximizing models describing the aggregate behaviour, The theory is
based on a new approach to large dynamic models of socio-economic
systems (e.g. Isard and Anselin, 1980: Kohno, Yoshida, HiLomo, 1981:

Kohno, Higano, 19382).

The method is based on & very simple idea:

The equations describing the dynamics of a complicated economic systems
contain two kinds of informalion: (i) ‘ephemeral’ informdtiﬁn which
affects the system’s behaviour only for a short time (ii) ‘essential’
or important informétion which qualitatively determines the behaviour of

the system,

The former is of little importance to the behaviour of the system as a
whole and can be expected to be "aggregated out’ in a corresponding
macro model, The latter determines the system’s overall behaviour and
is to be retained in the macro description. The aggregated model is
thus a picture of reality which cancels cut the ephemeral changes
observed at the micro-level and retains the results of the.essential

changes.

Mathematically, the ephemeral information in many cases includes the
initial conditions; the essential comprises topological characteristics

of solutions such as Lyapunov functiong and constants of motion.

We shall distinguish three basic descriptions of a dynamic system:

i) The ordinary dynamnic descriplion of the system’s behaviour which is



2)

3)

w

oblained by solving Lhe dynamic equalioung for a particular set of
initial conditions and hence does not distinguish between the
ephemeral and essenlial, This categury alsu comprises the models
vf optimal growth using the theory of optimal control, differential
games, etc.

The slatistical description which uses the essential information
for construction of a probability distribution. The probability
distribution is defined in a space of the system’s variables and
regards the nonessential information as a random influence.

The macro (aggregated, or phenomenological) description in terms of
quantities which are averages and higher momenta of the
microvariables, The averaging process uses the prubability
distribution provided by the statistical description to suppress

the ephemeral information and to highlight the essential. An

~outline of this approach has been given elsewhere (Lesse, 1982).

In the following I shall construct the statistical descriptions

corresponding to several classes of dynamic models.

2.

2.1

EQUILIBRIUM STATISTICAL REPRESENTATION OF LARGE DYNAMIC SYSTEMS

A few remarks on stability and boundedness of differential

equations

The following elementeary facts can be found e.g. in Hirsch and Smale

(1979) or Varian (1981).

Remark 2,1, Consider a socio-econumic system which can be modelled by a

set of integrable difrferential eguations



g =f (x), £C0) =0, x (0) = x_ (2.1
vhere x ¢ ® ¢ R, ¢ is a coumpact subspace.

This system is stable at the origin x = 0 if there exists a positive
definite function V( ) (Lyapunouv function): ¢ & R which is
nonincreasing along the paths generated by (1), i.e. which has the

property
V= Vvix) £(x) £0 (2.2
If -Q is negalive definite the stability of the origin is asymptotic.

By removing the condition £(0) = 0 in (2.1) we obtain a more general
dynamic system with the equilibrium point not necessarily at the origin.
In such a systém the existence of a Lyapunov function implies that the
solutions are uniformly bounded, i.e. for any a > 0 there exists a
constant g > 0 such that Ix ! £ a implies that the solutions of (2.1)

are bounded: !Ix(t, to' XO)' < B for all Lt > to'

Remark 2.2
If the system (2.1) is linear the Lyapunov function is a positive

T

definite quadratic form V = x° Hx with nxn matrix H which is a solution

of a matrix equation
A" H + HA = -G (2.3)

where G 1s any nxn symmetric positive definite matrix and A is the
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operator defining the linear system:

% = Ax, x(0) = X, - (2.4
The existerice of the pusitive definite malrix H satisfying (2.3) is both
sufficient and necessary for the asymptotic stability of (2.4) (Siljak,

1978,

Remark 2.3
¢ being compact, V: ¢ > R is bounded, i.e. there is a constant M such

that V(x) £ H, ¥x ¢ ¢

2.2 The prubability distributions associated with dynamic systems
Definition 2.1:
The probability that a differential neighbourhoud of an arbitrary point

X, € ¢, 1.e. the interval [xa, Xq * dx], contains a solution of the

system (1) irrespective of initial conditions is

P(x) = exp [Q - A V(x)] (2.5)
where 2 = - log l exp [- A V(x)] dx (2.6)

xtd

and k‘satisfies

l P(x) V(x) dx £ M * (2.7)

XEd
We observe thal the prubabilily distribution (2.5) maximizes Shannon

entropy subject to the usual normalization condition and to (2.7). The

virLlue of Shannun enlrupy es e proubability estimator rests on the well
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known arguménts of Jaynes (1957a,b).

Definition 2.1 haé the following significance: If the system (2.1) is
too large and/or if the initial conditions are not known and therefore
if the solution cannol be oblained, Definition 2.1 paves the way to~g
stétistical description of the dynamic system. This description is tihe
indepedent, Lherefoure it may be called the eguilibrium stalistical
representation (ESR) of the dynamic system. The notion of equilibrium
whose meaning has often been discussed in econumic literature in the
past (e.g. Samuelson, 1948; Hicks, 1939), and at present (Andersson and
Persson, 1980: Erlander, 1982) is Lhus given a new, and I believe & more
precise meaning: An equilibrium is that statistical description of a
dynamic (micro) economic system which is based on the knowledge of
Lyapunov function(s) only. This definition generalizes that used in
physics (Katz, 1967). In addition the definition resolves the old ard
veginq question whether an economic system at a particular time is, or
can be, at equilibrium. The answer is thal no system can ‘be at
equilibrium’ in this sense as equilibrium is not a property of the
system but refers to a given descriptign which in turn depends on the
state of our knowledge. However, it is legitimate to ask when the

equilibrium descriplion of a system is adequate for a given purpose.

This question in effect tests the reliability of the ESR and therefore

il is important both from Lthe philosophical and practical point of view.

2.3 Reliebility of ESR
ESR is based on the maximizalion of entropy and hence any investigalion
of reliability should start with the appraisal of this method for

assigring probabililies. However, so wmuch has been written on Lhis
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subject in recent years tha£ only a quotation should be sufficient:

"The Principle of Maximum Entrupy, like Ockham, Llells us to refrain from
inventing Urn Models when we have no Urn" (Jaynes, 1978). The reader
who has reservations concerning the method is referred to the excellent
éxposition from which the quotation has been taken. Alternatively,
Lthuse with allergies tuwards physical sciences can consull the

monographs by Wilson (1970), (1974) or Webber (1980) on this subject.

If Lthe maximizalion of enlrupy is accepted as a valid wmethod for

estimation or probabilities, we can seek answers to the two questions

which determine the reliability of ESR:

1) what is the significance of ESR, i.e. what kind of information does
ESR provide?

2)  how can this information be verified by data?

I shall deal with these guestions in more detail now.

Information provided by ESR
ESR is a probabilistic representation of the system obtained by

disregarding the nonessential features of the dynamics. As a
conseguence it models the system from a somewhat delached point of view,
making it possible to omit the micro level details of the dynamic
changes which do not affect the overall picture of the system. This
overall picture is obtained by using the expected (average) values of

the variables considered as interesting or important.
A simple example can serve as an illustration.

2.4 An Example
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Consider a Samuelson (1947) dynamic model of competitive market given by

the egquations

dpi
Tl ki fi(pl' e pn) i=1, ... n, (2.8
p;(0) = py

where P; is the price, f.l (pl, .o pn) the excess demand and k.l the
price adjustment coefficient of the i-th commodity. Following the usual

linearization procedure (Siljak, 1978) (2.8) can be Lransformed into

dp _
at - 2

Il

(2.9

ko
o >
™
o]

where p = p - p* is Lhe excess of the price vector p cver the

equilibriuﬁ price p*, and A is a stable Metzler nxn matrix.

It can be seen that (2.9) is a special case of (2.4)., 1f p(0) is not
known the classical analysis does offer very little beyond the
determination of the equilibrium price p* towards which the system

tends.

In contrast, the statistical approach makes it possible to determine the
positive definite matrix H from (2.3) and also the corresponding ESR

which has the form:
P(p) = exp [2 - p' A H pl. (2.10)

The multiplier A can be determined using (2.7) if there is a suitable ¢

and if sup BT Hp =H# can be fourd.
pe?d

ESR makes it possible Lo answer the foullowing type of questions:
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1) If prices are confined to a subspace ¢, what is the expected

average deviation of price from the equilibrium price, <p>?

The answer is, of course

"~

<> = l P(p) p dp (2.11)
ptd

2) How much does p deviate frum <p>? The devialion is measured by

the variance

var {p} = <p pT> - <b><p>T, (2.12)
where <p p'> = l P(ﬁ) pp dp (2.1
pe¢ .

We can make the fullowing observations:

1) ESR of a stable linear dynamic system is a normal (Gaussian)
probability distribution with zero mean and a variance matrix Q
determined by the Lyapunov function H and by the Lagrange

multiplier XA Q!

= AH). Conversely, equilibrium probit models can
be viewed as ESR’s generated by stable dynamic linear systems

describing the changes at the micro level,

2) Using equation (2.3) it is possible to find a number of Lyapunowv
matrices H corresponding Lo a given dynamic operator A and
generated by various G. Obviously, those H leading to sharper
probability distributions are Lo be preferred. It is possible to
formulate a problem of finding the optimum Lyapunov function which

yields a probability distribution (2.10) with variance in soume
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4)
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sense minimal,

For a given H the definilion of Lhe feasible domain ‘¢ delermines

the upper bound H and, finmally A. It can be seen that the smaller

M the sharper the probabilily distribulion will be. This is in

agreement with common sense, of course, as M in general decreases
with decreasing size of Lhe feasible domain which in Lurm reflects

a more constrained (i.e, more predictable) behaviour of the system,

The amounl of infourmation provided by ESR can be measured by
inserting the probability distribution into the definition of

Shannon entropy.

The result is an estimate

with @

SSAH-2Q

—logﬁl exp [~ pL A H pl dp .
[+]

The bilinear form on the r.h.s. can be seen as a basislfor the

macroscopic (phenomenological) description of the system (Lesse, 1982),

The larger Lhe S the less information is inhereni in the corresponding

ESR.

2.5 Verificalion of ESR

In Lhe forequing section it was shown Lhat ESR can provide some

information about the behaviour of the system even under conditions

which make the use of olher modelling methods impracticable, for

example, when the state of the system at present 1s unknown. However,
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the question remairs how this information, e.g. the values <;>, <B
513 provided by (2.11), (2,13), could be verified by Lhe dala or

observations,

Lel us assume that there are some quantities depending on Lthe stale of
the socio-economic system whose values can be observed. Referring to
the example 2.4 une such yuantity can be “the price of a standard basketl
of goods’ defined by n = Z q4; P, where q; is an arbilrarily delermined
guantily of commodity 1 u;ich forms & partl of the basket. The
equilibrium price p* being known, it is possible to calculate

Rz q; pf =Ry, i.e, the difference belween the price of a standard
bask;t at a given time and that al equilibrium., Repeated observalions
of R, can Le cousidered as a stochastic process RA(L), i.e, as a family

of random variables X indexed by L. The index L is Lo be interpreted

as Lhe Lime when the oubservaliun was made,
Let us introduce a few auxiliary definitions
Definitioun 2.2: The function R(A) defined by
R(X) = < Cx, (L+d) = < Ry (L+X) > ]EAA(R)- <.RA (X)>1 >
is called covariance of the stochastic process nA(L).
The sign < > denoteé, as before, the expected value (c.f. (11)), We

shall occasionally refer {o this expected value as Lo the ensemble

average.

Definition 2.3: The random variable x,(T) defined by n (1) =

A (L)Y ¢, 7T

[T n
o
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is called the time average of the stochastic process KA(L). T is Lhe

averaging time.

The inlegruls of slochastic proucesses are Lo be underslood as limits in

the mean here.
Definiliun 2.4: A slochastic process nA(L) salisfying

| _
lim == (T - 1A1) RCAY dA = 0
Lz )

is called slrongly ergodic in Lhe mean.
Now we can state the following broposition:

Proupusilion 2.1:

~

If a stochastic process nA(t) is strongly eryodic in the mean Lhen ZA(T) = <p

with probability 1,

A

i.e. (1) < ZA (T) > = <p> (i)
and
(ii) lim < ;IA (T) - <p>> =0 . (ii)
T

The prouf of Pruposilion 2.1 1s elemenlary ard can be found in textbocks

on stochastic processes, e.g. Melsa et al. (1973).

The asserlion cuntained in Lhe propusition is worlh examining i delail,
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The most important outcome is the connection between the estimate <;>
provided by ESR (cf. (2.11)) and the observed values nA(L). According
to (i), (ii) the estimates <p> are unbiased estimators of the time
averages. of observed values n (L). This makes it possible tu verify the

validity of ESR in any given case,

The premise of the pruposition requires Lhat the observed quantities
should behave as a strongly ergodic process. Using the Definition 2.4
il is possible Lo inlerprel Lhis requirement in practical terms as a
prohibition to use ESR for predicting the values of those system’'s
characteristics whose measurements ‘do nol foryel past history”’. This
is a sensible limitation: If we are interested in those properties of
the system which are determined Ly history and this dependence on
history dves not fade away with passing time then the knowledge of the
initial state of Lhe'system is anAessenLial desideratum and ESR is
clearly inadequate. On the other hand, if the behaviour of the system
can be described for a given purpose in Lerwms of quantities which
ultimately become independent of the past, the equilibrium

represerilat.ion can be useful.

It:is perhaps nul necessary Lo remark Lhal while Lhe use of ESR has been
demonstrated using the Example on a particularly simple (linear) systen,
the method is applicable to dyneamic sysiems of considerably wider

generality. The following section should justify this essertion.



3. SOME OTHER DYNAMIC SYSTEMS AND THEIR EQUILIBRIUM STATISTICAL

REPRESENTATIONS:

3.1 Differential games

A few resulls from Lhe field of uptimuwm control and differential cames
are needed. The standard monographs such as Isaacs (1965), Friedman
(1971), Inlriligator (1971) should be cunsulled for wore detailed
information. More advanced reviews include Varaiya (1971) and Gupta

(1981).

Lel there be a sel of differential equaliouns

dx _
it - f(x,ul,...,uN.L) (3.1)
with initial considerations x({0) = xU; with the state vector x e RK and

control vectors ui(t),uz(t),...,uN(t) being measurable functions of time
with values up € Ql' u, € QZ""' uy € QN ghere the conlrol sets Qk
(k=1,...,N) are compact subsets of some Euclidean space with appropriate
dimensions. The funclions £( ) are assumed to satisfy the standard

conditions of integratility for any up € Qk'

Further, let there be a list of N functions hk(xi,ul,...;uN,t)
continuous in all arguments in the sets defined above and another list
of functions gk(Lf,x(Lf)) which are bounded for Lf,x(tf) from a closed
terminal set F:[0,T] xRK. The cust function of Lhe i-th player

Jk(ui""'uN) is defined as

L

_ oL £, o
uN>-gk<tf.x<Lf>)+£ hy (. u o L) At €3.2)

(k=1,...,NJ.




The equations (3.1), (3.2) together with a criterion of optimality

define a differenlial game.

If the equalions (3.1), (3.2) do nol deperd on Liwme explicitly the game

is called aulonvmous.

The must frequenlly mel criteria of ouplimalily are
(a) Pareto optimality
(b) securily pay off

(c) Nash equilibrium

. . . Vo i v v <

The Pareto optimal stralegies Uy salisfy Jk(ul"" uN) < Jk (ul, ces QN)
¥ u € Qk k=1, ... N

The Parelo optinal slralegies correspond Lo a situation when all
participants cooperate to achieve a minimum cost solution.

The security pay off strategies Gk salisfy

I (Ty, Ugyeeuly,...ly) = max .. min L., max o go(u,,...up...u)

k "1 2 k N ulsQ1 ukeQk UNEQN k 1 kU

Thgée strategies minimize the damage to the k-th player caused by a

cuncerled action of the rest of the players,

Nash equilibrium strategies u, are defined by



18

The Nash equilibrium strategies characterize a state which is stable in
the sense that any player deviating from Lhe equilibrium strategy is

penalized by an increesed cost.
The solutions of these games can be oblained in the following way:

A differential game optimal in the Pareto sense can be reduced to

solving & simple dynamic oplimizalion prublem with Lthe objeclive

(Friedman, 1971).

A securily pay off differenlial game can be sulved as a sel of N zero
sum gamés each played by a single player against an aggregate opponent

formed by all the remaining participants.

Nash equilibrium solution can be obtained by using the following theorem

(Friedman, 1971):

Theorem 3.1.

If the functions £( ), gk( ), hk( ) are continuously differentiable in
all their arguments and if the equilibrium strategies Gk are Lipchiti
continuous then there exists a vector valued function Wk(t,x) satisfying

on the boundary of the terminal set szgk, and in Lhe set [0,T] x rK X

Ql X .. QN the equalions
W . aW
__k min ) _k
at * uber (Elx, L, Yy Yk UN) ax *

+ hk (x, Ui one U, onaly, Ly =40 (3.3)
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The function f (x, t, uy, ... uN> Pt hk (x,u1 cooou, )= Hy (x, L, P Yy
is called the hamiltonian of the k-th player.

aW
The new variables Py~ ix

ax
are Lhe shadow prices corresponding Lo Lhe slate variables x and

associated with the k-th player.

Differenlial yames are & nalural generalicalion of Lhe optimum growlh
models (e.g. Intriligator, 1971; Isard et al., 1979) and hence their ESR
can be of considerable praclical inlerest.

The functions wk can be relaled Lo Lyapunov funclions:

Theorem 3.2 (Stalfurd, Leilman, Skowronski)
Consider a two person zero sum game, i.e. N=2 with player no.1
Cminimizing, and player no.2 maximizing J. Let there be a continucusly

differentiable Lyapunov function
V(x,L) : & » R wilh the follouwing properties:

a) a (Il x 11) £ V(x,t) £bCit x 11)

b

aVv aV * *
— —_— S—
3t + ™ f(x,t,ul, u2) £ -h (x,t,ul, uz)
for all Us € 92, x €0, L 20
oV aV * *
A 8y P
c) at + ™ f(x,t,ul,uz) 2 h(x,t,ul,uz)
for all u, ¢ 2

1 1 un € Qz xed, Lt 20

where uI € Ql' u; € QZ' and aCltl x 1t), b(li x 1) are posilive,

conbinuous and increasing functions,
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If the conditions a), b) and c) are satisfied then u: = Gl' Uy = G,
i.e,
* * * *
< <
J (ul, u2) < J(ul, u2) < J(ul, u2)
Proof is easy and follows the ideas of Stalford and Leitman (1971), and

Skouwronski (1977). A generalization Lo N-persun differential games is

available (Stalford and Leitman, 1973).

We observe Lhat accurding Lo b) and ©)

v 3V * * * L
3t + 3x f(x, t, u,, u2) + h(x, L, u,, u2) 0 (3.4)

The following proposition follows immediately from (3.4) and from Remark

2.1:

Proposition 3.1
Let there be a function V(x,t) salisfying the corditions. of Theorem 3.1

* *
and let h(x,t,ui,u2

of Lhe differential system (3.1) are bounded.

)20, xe ®, t 20, Then the optimal trajectories

3.2 Equilibrium statistical representation of some games
The ESR corresponding to a set of autounomous differential equalions wiilh
bounded trajectories has been introduced in Section 2. Proposition 3.1

makes it possible to Lreal certiain differential games in the same way.

Definition 3.1
The equilibriun statistical representaliun of suclu-ecuncimic system
whose dynamics is described by an autonomous optimum growth model or by

an aulonumous Lwo persen zero sum gane and which salisfies Proposition
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3.1 is given by the following equations
P(x) = exp [Q ~ A V(x)] (3.5

P(x) V(x) dx £ M
xed

max V(x) = M
xed
Interpretatlion
a) Lyapunov function
The inlerpretalion of Lyapunov function in the conlext of differential

games is of special interest.

We observe that the solution of the equation (3.4) corresponding Lo an
autonomous system in general has the form V(x,t) = Et + V(x), where E is
an arbitrary constanl whose magnilude does not change the character of
the dynamic equations. The function V(x) thus coincides with‘V(x,t)
either if E=0, or if t=0, and hence V(x.t) and V(x) can be identified by
an appropriate choice of the time scale. The function V(x,E) is to be
inlerpreted as the present value of cost corresponding to the initial

state, and accrued along the optimum path:

t
Vix,t) = [ £ hex,L,uf,up) dt;
dv *  *_ .
we observe that at = - h(x,t,ul,uz) in agreement with (3,4)

The Lyapunov function V(xX) is then the present value of minimum/optimum
cousl (i.e. of the cust accunulaled along the oplimum path) evalualed al

t=0.
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b)  Probability distribution

It can be seen that the ESR given by Definition 3.1 assigns highest
probability to the path with minimum cost. This is certainly reasonable
from the common sense point of view and perhaps it can be interpreted as
cost effiency in the Smith (1978) sense. This cost efficiency is
contingent upon the nonnegativily of Lhe Lagrange multiplier X,

However, Lagrange multipliers corresponding to the minimization of real-
valued convex funclionals on convex subsets subject to inequality
constraints G{x) £ 0 are nonnegative provided that G(x) is convex (e.q.
Luenberger, 1969, p.213ff). These requirements are not difficult Lo
satisfy as the negative entropy functional is convex and the condition

a) in Theorem 3.2 makes V(x,t) bounded by two convex functions a(l1 x

1), bCri x 11),

3.3 An Example

Lel there be a large number of firms each attempting to follow a planned
path. For simplicity I shall assume that the plannéd growth of the i-th
firm can be described in terms of a single economic indicator ni(t).

The actual growth is given by §i(L).

§, ()= 0 (L)
The growth flgctuatlon is x; (L) = 'f“;;?[;‘

The fluctuations have a dynamics

wiiere u; is Lhe counlrol variable available Lo Lhe firm four stabilizalion

of fluctualions, and w, is the lumped effect of exogenvus destabilizing
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factors. 2Assuming thzt the deviatiuns froum the planned path are small
we can linsgarize and oblain

dxi
—== a4 x. + bu. + w. (3.6
i 1 1

dt
where Lhe coefficientls a, b are assuwed to be identical for all firms,

The cust of stabilization is assumed to be

i Eqx?+ruf-swldl (3.7
1 1l 1

where tf, q, r,s>0, r<s b2. The firm seeks a pulicy g minimizing
the cost irrespective of the influence of the exogenous factors. The
problem can be Lreated as a zerou sum game played by the firm against

nature,

The hamiltonian is

- dv 1 - 2
Hl = dxi (a x. + bu, + ui) *5 (q x7 + r u; s wi).
The optimum controls are
av._b . _ 38V 1
U, = - T =y, = — =
1 éx. r " 1 X, s
i b
The optimum hamiltonian becomes
HOpt - l (* - b_2. )(dl)z + di + =
i 2 r 'dx ax dx, T 2 9%

To obtain the oplimal path we shall not follow the usual procedure of

solving the canunicel egualions, instead, we shall seek Lhe Lyapuiov
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function in the form

_ 1 2
V=3

The equalion (3.4) is now

2
1 ,r=sb 2 2 .2 1 2 .
5 ( s ) K x; + & K X; v 5 ax; = 0

which can be sclved for K.

The pusitive ruul 1is

K=—5%r[a~ D3 (3.9
sh™-r

2
D = a2 , {sb-rig

rs

We observe that

dav _ _ 2
at = TB . K xi

and hence V qualifies as Lyapunov function

The oplimum stralegies

K x°, where K > 0 is Lu be determined,

(3.8



with trajectories

xi = xio exp (- TB b) (3.10)

where Xio &Le Lhe initial flucluations,

If Lhe number of firwms is very larye Lhe cosl of coullecting Lhe dala on.
Ko nay be excessive. Therefore, unless we use ESR, the only pracltical
conclusions we can draw from (3.10) are

(1) the fluctuations tend to zeru,

(ii) the halftime of stabilization is t, . = iD2

i 172 TB_
(halftime of stabilization is a time required for reducing the initial
fluctualion Lo half of ils size), and hence afier aboul 10.t1/2 the

system will be practically stabilized.

Tou demonstrate Lhe counneclion between dynamics and ESR we shall consider
the initial fluctuations as random and equation (3.10) as defining a

stochastic prucess
x(t) = x_ exp (- {D ©) (31D
where X is a random variable uniformly distributed in some interval ¢,

IL is pussible Lo show that Lhis process is strongly ergudic in the mean
in the sense of Definition 2.4. Proposition 2.1 indicates that for such
a process Lhe Lime average of x(t) (cf. Definitioun 2.3) equals Lhe
ensemble average <x> with probability one. Therefoure, the expected

value uf x correspornding Lo all pussible reslizaliung of Lhe syslem
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irrespeclive of initial cunditions is an unbiased estimator of the time
average, The ensemnble average can be cblained, s in Seclion 2, using

the probability distribution

P(x) = exp (2 - A V(x)], (3.12)

where V(x) = % K x2,

A is Lo be determined from

exp (2 - % K x2] % K x2 ds £ M
Xed
max % K x2 = M,
xed

and X Is given by (3.9).

The example should illustrate the following points:

In largye systems the variasblies may be‘aggregated by considering them as
stochastic processes. For example, the equations (3.10) have been
replaced by the equalion (3.11), The time averages of Lhese processes
sometimes (cf. Proposition 2.1) can be replaced by ensemble averages,
i.e. by averages laken ouver all pussible realisalions of the system.

_ The curresponding probability distribution is obtained from the
essenlial fealures of Lhe wmicrodynamics as represented by Lyapunov
functions, and from sume pre-estimates of the system’s behaviour (M, &),

The Lyapunov function is inlerpreled as the minimum or oplbimum cusi.

The cost minimizing microdynamics thus forms a natural basis for the

descriplive slalistical representalion,




4, Discussion

The palienl reader will have realized Lhat Lhe underlying Lhewe of Lhis

paper is simple to the point of triviality: Take a set of dynamic
equalions, exlrucl whalever inforwmation on Lhe behaviour of Lhe solulion
can be obtained from the structure of the equations, and use it for
eslimaling Lhe proubabilily Lhal the neighbourhood uf a poinl in a
suitably defined space is a part of some trajectory., If the information
describing Lhe system’s behaviour is Lime independent, Lhe probabilily
distribution is stationary and the corresponding statistical model

corresponds Lo equilibrium,

This recipe makes il necessary Lo use cerlain ingredienls: Lhe
behaviour of a dynamic system is qualitatively analyzed in terms of
Lyapunov functions. The probability estimalion procedure musl be
sufficiently general to adimit Lyapunov functions preferably without any
further ad hoc considerations. This poinls to the Principle of Maximum
Entropy. Indeed, the feature of entropy maximization which is sometimes
crilicized as ils wedakness, namely, ils leck of behavioural meaning, is
turned here into a strength: the behévioural characteristics of the
statistical mudel are supplied by Lhe person formulating Lhe behavioural

microdynamics, not by the statistician.

The flavuur of Lhe producl is, of coﬁrse, lu a larye deyree delermined
by the ingredients. However, the formal mathematical considerations
yuiding Lhe construction of Lhe Lheory lead to resulls with an
interesting economic interpretation. This was illustrated by the
exanple in Seclion 3.3, where a prubabilily dislribulion was derived
vhich depended on the cost function in a sensible wenner. O0f course,

Lhis is due Ly Lhe fecl Lhel sume Lyapunov functions have reasuncble



econumic interpretations; e.g. as valuation functions, cost functions,
elc, As a consequence, Lhe cosl funclion, ur, in a complementiary
furmulation, utility, enters the probability distribution neither by
design nor by accident: it is Lhere by mathemalical necessity, because
it is an entity defining the character of the optimal trajectories at

Lhe micru level,

We have seen Lhal Lhe Lyapunov functions associaled wilh Lhe dynamics
lead to reasonable results. However, it may be that there are sume
ulher characteristics which can alsu be used for eslimating
probabilities, In this context it is instructive Lo explore the
possibilily of relaxing Lhe requirement that ESR should bLe based on
Lyapunov functions and replace the cost function by the total utility
flow/tolal expenditure flow, i.e, by the hamiliounian (cf. equation
(3.3)). This pussibility is rather seductive for several reasons:
Firstly, the hamiltounian (or the total expendilure fiow) H unifies bolh
aspects of the optimization process i.e, the optimum allocation of the
state vector x and the oplimum valuation as represented by the shadow
prices p. As a consequence, it is an important characteristics of the
dynamics. "We find the geowelry of the hamiltonian function to be the
fundamental determinant of the long-run behaviour of a competitive
dynamical system”™ (Cass and Shell, 1976). The solution of Parelo
optimal gameé, of two person zero sum games and, by implication, the
security pay-uff solutions of N-person yames can all be obtained (urder

certain plausible assunptions) by solving canonical eguations

dx _ aHoUL, _dp _ aHoUL

dt = &p dt ~  ax (4.1

Furlher, if Lhe game is aulonomous, Lhe hawillonian is a constanl of




motion,
i.e.
dHopt - aHopL + aHupL
dt ol dx
. dx , Moptdp
dt dp diL
aHo L
and, using (4.1), if Tt9—= 0 then
EEQE; 0 or H = consl
dt ! opt :

As a counsequernce, a probabilily distribulion P(x,p) = exp [ - X H(x,p)l]
defined over the phase space (x,pl, with A determined by

J J P(x,.p) H(x,p) dxdp = consl. appears Lu make sense, Indeed, Lhis

is Lhe type of prubabilily dieribuLion which one meels in slatislical

mechanics.

However, Lhere is an important difference belween physics and economics,
The physical hamiltonians can be ppsitive definite whereas the economic
ones are in general indefinite (Samuelson, 1972:; Rockafellar, 1973:

" Cass and Shell, 1976). Generally spesking this is due to the fact that
the physical analogy of shadow prices (linear momentum) is brought into
the mechanical hamiltonian via a positive definite guadratic form
(kinetic energy). In contrast the dependence of the (optimum) economic
hamiltonian on shadow prices is the result of interaction between the

dynamic constraints and optimal policies. This weans that the simplestl

quadratic hamiltonian in physics has the form thys = % (x2 + p2) and
in economics Hegpt = % (x2 - pz). As a consequence Lhe integral

J J exp (2 - X H(x,p) H(x,p) dxdp counveryes in physics but nol

necessarily in ecunomics. 1L appears Lhal the hamilionian is useful for
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probability estimation only so long as it retains the Lyapunov property

and hence its use 1n an economic statislical theory is of limited value.

The construction of ESR for a given dynamic system thus depends on us
finding a suilable Lyapunov funclion, According Lo Remark 2.2 for a
linear dynamic system the existence of a Lyapunov function is equivalent
to asymplolic stabilily, Therefore, an ESR of an aulonumous linear
asymptotically stable dynamic system always exists. Can we make a

similar slalemenli for a more general dynamic system?

The answer is provided by the Converse Theorems on Stability and
Bourdedness (Yushizawa, 1975)., Broadly speaking the existence of a
Lyapunov function is guaranteed if the dynamic system is locally

Lipshilzian and if il is uniformly asymptotically stable.

We thus arrive at a conclusion:

Any model of a souciov-ecounomic system (ordinary dYnamic model, welfare
optimizing model, differential game model, etc.) whose dynamic equations
are autonomous, locally Lipshitzian, and which is uniformly

asymptotically stable has an equilibrium statistical representation.

5. CONCLUSIONS

The equilibrium statislical representalion of a dynamic system (ESR) is
the probability distribution which maximizes entropy subject to an upper
bound on Lyapunov functioun associated with an autonomous dynamic systew.

ESR has the following properties.
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1. ESR is interpreted as probability that the neighbourhood of a given
point in Lhe slale (configuratioun) space belunus Lu sume Lrajeclory
of the dynamic system.

.2 The Lime averaye of an arbilrary observation made on a dynemic
gystem can be treated es a stochastic process. If this process is
strongly eryodic in the mean, i.e., vaguely speaking if Lhe systew
furgets ilks past, then Ehe ESR produces an expected value of the
observalion which is an unbiased eslimalor of Lhe time average.

3. If the dynamic system is generated by a dynamic optimization model
ur a zero sum game against nalure, Lhe Lyapunov function (if it
exists) can be interpreted as present cost/utility. The resulting
ESR Lhen salisfies the crileriun of cost efficiency poslulated by
Smith, The ESR probability distribution thus bridges the gap

belween behavivural and descriptive models.

The existence of a Lyapunov function associated with a dynamic system
implies Lhal Lhe system is stable and bourded. The Lyapunov function
certainly exists if the dynamic equations satisfy the Converse Theorems
of Stability (Yoshizawa, 1975) i.e. if the solulions are uniformly

asymptatically stable and the dynamic equations locally Lipshitzian,

It follows Lhal the microdynamic equalions must have solutions which are
at least stable (or bounded) if the equilibrium statistical
representation should exist, Conversely, if a socio—econoﬁic system has
a meaningful ESR, the stability/boundedness of the microdynamic
solutions is implied. As a consequence, the Lheury establishes a link
between the existence of a (macro-) equilibrium description and

slabilily/boundedness al Lhe micro level,
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