RR-75-24

SPATIAL POPULATIOM DYNAMICS

Andrei Rogers
Frans Willekens

July 1975

Research Reports are publications reporting on
the work of the authors. Any views or conclu-
sions are those of the authors, and do not
necessarily reflect those of IIASA.






SPATIAL POPULATION DYNAMICS

TABLE OF CONTENTS

INtroduction « & & o ¢ & o o o s 4 4 4 e s s s e e e e e e e e e e e
The Compcnents of Multiregional Population Growth . . . . . . . . . .
2.1 Fertility . « « v v v ¢ v v v v e e e e e e e e e e e e e e e s

2.2 Mortality . . . o ¢ v o v i e e e e e e e e e e e e e e e e e

2.3 Migration . . v . ¢ v 4 v e v e h e e e e e e e e e e

2.4 Regional Age Compositions and Regional Shares . .

The Spatial Dynamics of Stable Populations . . . . . . . « « . . .
3.1 Characteristics of Stable Multiregional Populations . . .

3.2 Two Families of Model Stable Multiregional Populations . . . . .

3.3 Spatial Impacts of Changes in the Components of
Multiregional Population Growth . . . . . . . . « « . « « . .

The Spatial Dynamics of Stationary Populations . .
4.1 Characteristics of Stationary Multiregional Populations . . . . .

4.2 Alternative Spatial Paths to a Stationary Multiregional

Population . .« « ¢ ¢ ¢ ¢ ¢« 0 4 e e 0 e e e e e
4.3 On the Momentum of Multiregional Population Growth . . . . . . .
Conclusion . . . . ¢ v o v v vt el il e e e e e e e e e e e e e e

12
14
16

23

28
32

34

37
42

46






*
SPATTAL POPULATION DYNAMICS

Kk
Andrei Rogers and Frans Willekens

1. Introduction

The evolution of every regional human population is govermed by the interaction
of births, deaths, and migration. Individuals are born into a population, age with
the passage of time, reproduce, and ultimately leave the population because of
death or outmigration. These events and flows enter into an accounting relationship
in which the growth of a regional population is determined by the combined effects
of natural increase (births minus deaths) and net migration (immigrants minus
outmigrants). This paper focuses of such relationships and seeks to identify and
clarify some of the more fundamental population dynamics that are involved.

In considering how fertility, mortality, and migration combine to determine
the growth, age composition, and spatial distribution of a multiregional population,
we address several theoretical and empirical issues already studied by Ansley Coale

(1972a) in his recent book: The Growth and Structure of Human Populations. But

Coale restricts his attention to the evolution of populations that are '"closed"

to migration, i.e., populations that are undisturbed by in- or outmigration. Since
his focus is primarily on national populations, such an assumption does not
seriously weaken the significance of his principal conclusions. Regional scientists,
however, are generally confronted by problems involving regional populations that
are very ''open" to migration. Hence they cannot successfully apply the received
body of theory of classical single-region mathematical demography. This paper

seeks to help remedy that situation by generalizing some of Coale's results to

multiregional population systems.

E
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We proceed in three stages. First, we consider several well-defined regular-
ities that are exhibited by the fertility, mortality, and migration schedules of
human populations. Next, we study some of the principal population dynamics that
connect such schedules with the growth, age composition, and spatial distribution

of multiregional populations that are subjected to them. Finally, we examine

some of the spatial implications of zero population growth.



2. The Components of Multiregional Population Growth

The proportional allocation of a multiregional population among its constituent
regions and the age compositions of its regional populations are determined by the
recent history of fertility, mortality, and internal migration to which it has
been subject. At any given moment its crude regional rates of birth, death,
migration, and growth are all governed by the interaction of its regional age

compositions and regional shares with the prevailing regime of growth that is

defined by the current regional age-specific schedules of fertility, mortality,
and migration. Knowledge of surh schedules for a sufficiently long past period of
time enables one to obtain current regional age compositions, regional shares, and
regional component rates, inasmuch as the influence of a past population distri-
bution on the current one declines over time and ultimately disappears entirely
(Coale, 1972a, Lopez, 1961). 1If the regime of growth is held fixed for a long
enough period of time, then as we shall show in Section 3, the population evolves
into a stable population with fixed regional age compositions and regional shares
and a constant annual rate of growth.

Consider a regional female population for which the annual regional rates of
fertility, mortality, and migration at age x and time t are denoted by mj(x,t),
uj(x,t), and vjk(x,t), respectively. 1If cj(x,t) is the population's age composition
and SHAj(t) is its regional share of the total multiregional population, then,

denoting the last age of life by w, we may define




© )
bj(t) = Or cj(x,c)mj(x,t)dx
w
dj(t) = OJ‘ cj(x,t)pj(x,t)dx
_ o mo P 1
oj(e) = T on(e) = X [e vy (xt)dx (2.1)
k#j k4]
] m m SHAk(t)
L0 = 5 1y = 5 EHIJ(_t) o (€
k#j k#j
r(t) = bj(t) - dj(t) - oj(t) + ij(t) )

to be its annual crude rates of birth, death, outmigration, inmigration, and growth,

respectively.

We begin
age schedules
with age that

to develop an

this section of our paper by identifying several regularities in the
of the components of multiregional population growth. The variations
are exhibited by such schedules are summarized and subsequently used

improved understanding of how changing levels and patterns of fertility

mortality, and migration influence the evolution of particular regional age compo-

sitions and regional shares in a multiregional population.



2.1 Fertility

Age-specific rates of childbearing in human populations are shaped by both
biological and social factors. The capacity to bear children generally begins at
an age o of about 15 and ends by age g which is normally close to 50. In between
these ages the fertility curve is unimodal, attaining its peak somewhere
between ages 20 and 35. The precise form of this curve depends on a number of
social variables, among which age at marriage and the degree of contraception
practiced are of paramount importance.

Figure 2.1A illustrates several fertility schedules which exhibit a general
pattern that persists across a wide variety of regional populations. 1In all,
childbearing begins early in the teenage years, rises to a peak in the twenties
or thirties, and then declines regularly to zero by age 50. A useful summary

measure of this pattern is the mean age of the schedule

B
I xm(x)dx
m=¢
B
I m(x)dx
o
The level of fertility is given by the area under the curve, which is called the

total fertility rate (TFR) if the schedule refers to live births of both sexes

and the gross reproduction rate (GRR) if to female births alone. This level may

be interpreted as the number of children an average woman would have if the
particular fertility schedule prevailed during her lifetime.

After a study of the relative age patterns of age-specific fertility rates
in 52 countries with different levels of fertility, Rele (1967) concludes that
they follow, on average, the ratio 1:7:7:6:4:1 for the six quinquennial reproductive
age groups between ages 15 to 44. Coale and Demeny (1966) go a step further and
distinguish between 4 such patterns to summarize a similar collection of published

national age-specific birth rates by means of four basic fertility schedules, each
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of which is scaled to a GRR of unity and associated with a particular mean age
m. Figure 2.1B shows the curves of their fertility schedule with a mean age of

29 as its level is increased from a GRR of unity to a GRR of 3.



2.2 Mortality

Observed age-specific death rates of both high and low mortality populations
exhibit a remarkably regular pattern. They normally show a moderately
high mortality immediately after birth, after which they drop to a minimum between
ages 10 to 15, then increase slowly until about age 50, and thereafter rise at an
increasing rate until the last years of life. Moreover, in each mortality
schedule the death rates experienced at different ages are highly intercorrelated,
because if health conditions, for example, are good or poor for one age group in a
population they also will tend to be good or poor for all other age groups in that
population. Hence if mortality at a particular age in one schedule exceeds that
of the same age in another, the first is likely to also have higher death rates
at every other age as well. Because of this property, demographers normally do
not find it necessary to use an index such as the mean age of the mortality
schedule in order to differentiate patterns of mortality (although they may group
schedules into separate "families"). Generally only the level of a mortality
schedule is defined by specifying its implicit expectation of life at birth e(o),
and it is assumed that the age pattern of the schedule follows that found in
most observed curves of mortality.

Figure 2.2A presents several observed schedules of mortality which illustrate
the normal age pattern. Mortality is high during infancy, ranging anywhere from
18 to 60 per thousand iive births; it is low between ages 10 through 15, falling
to a value in the range of 0.28 to 0.42 per thousand; it then rises, gradually at
first and more sharply after the late fifties, to values that in the late sixties
lie between 20 to 30 per thousand.

After an extensive study of national populations, Coale and Demeny (1966)
conclude that four families of mortality schedules adequately embrace the

principal variations in age patterns which they discovered:
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"One of these age patterns characterizes the mortality experienced
in Norway, Sweden, and Iceland; another the mortality schedules

of central and parts of eastern Europe; a third the schedules of
Spain, Portugal, and southern Italy; and a fourth encompasses
mortality in western Europe, northern America, Oceania, Japan,

and Taiwan,'" (Coale, 1972a, p. 9).

They designate these four families by the labels NORTH, EAST, SOUTH, and
WEST, respectively, and go on to calculate 24 '"model" life tables for each of
these age patterns of mortality at levels of mortality ranging from a life
expectancy of 20 years to one of 77.5. Figure 2.2B illustrates several typical

mortality schedules drawn from their WEST family.



2.3 Migration

As in the case of mortality, migration rates among the different age and sex
groups of a population are highly intercorrelated, with high (or low) migration
rates among one segment of the population implying high (or low) migration rates
for other segments of the same population. This association occurs because
migration often is a response to changing economic conditions, and if these are
good or poor for one segment of a population, they also are likely to be good or
poor for other segments as well.

Demographers have long recognized the strong regularities that persist among
age-specific schedules of migration, the most prominent being the high concentration
of migration among young adults (e.g., Long, 1973; Lowry, 1966). Rates of migration
are also high among children, starting with a peak during the first year of life
and dropping to a low point at about age 16. Beyond that age the curve turns
sharply upward to another peak near age 22, declining regularly thereafter except
for a slight hump around 62 through 65, the principal ages of retirement.

The empirical regularities are not surprising. Young adults exhibit the
highest migration rates because they are much less constrained by ties to their
community. They are more likely to be renters than home owners, their children
generally are not yet in school, and job seniority is not an important consideration.
Since children normally move only as members of a family, their migration pattern
mirrors that of their parents. Inasmuch as younger children generally have younger
parents, the migration rates of infants are higher than those of adolescents.
Finally, the small hump in the age profile between ages 62 to 65 describes migration
after retirement and usually reflects moves made to more sunnier and milder climates.

Figure 2.3A repeats the fundamental age pattern of migration described above
but expresses it in terms of 5-year age intervals. In consequence, the low rate

of migration at age 16 is aggregated with the substantially higher rates that
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follow it, thereby shifting the low point among teenagers to a younger age. An

analogous shift occurs with respect to the principal peak. The overall profile,

however, remains essentially unchanged, with peaks occurring at infancy, during
the young adult ages, and at retirement. Variations in the location of the
principal peak and in the levels of migration to major retirement areas indicate
that as in the case of mortality, age patterns of migration may usefully be
disaggregated into families which are distinguished by the location and relative
height of their peaks. Alternatively, such a disaggregation may be carried out,
in the manner of fertility schedules, by means of the mean age of migration
w
) of xvij(x)dx
n,, = ——
ij w
v, . (x)dx
0I +J
which readily may be used to classify migration schedules into "young'" and "old"
categories, perhaps with suitable gradations in between.
Two alternative ways of formally specifying the level of migration from one
region to another are immediately suggested by our discussion of fertility and
mortality schedules. The first adopts the fertility point of view and defines

the migration level from region i to region j in terms of the area under the

relevant migration schedule, designating it the gross migra-production rate,

GMRij say. The second adopts a mortality perspective and defines the same
migration level in terms of the fraction of an average person's lifetime that

is spent in the region of destination. Specifically,

.e.(0)
1 -
i} ie(O)

is said to be the migration level with respect to region j of individuals born
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in region i. The numerator in the fraction represents the number of years
expected to be lived in region j, on the average, by individuals born in region
i and having a total life cxpectancy of ie(O) years. We adopt the latter
perspective in this paper and in Figure 2.3B demonstrate its application by
illustrating several typical model migration schedules. These are developed

in another paper, which also deals with the important problem of disaggregating
such schedules into families containing "young'' and "old" age profiles (Rogers

and Castro, 1975).
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2.4 Regional Age Compositions and Regional Shares

The equations in (2.1) show how regional age compositions and regional shares
together with age schedules of fertility, mortality, and migration determine the
principal regional component rates of multiregional population growth and change.

A single set of such age schedules can produce quite different crude regional

rates of birth, death, and migration if combined with differing sets of regional

age compositions and regional shares. Consequently such rates may be unsatisfactory
summary measures of the components of multiregional population growth.

By way of illustration, consider the empirical age compositions set out in
Figure 2.4A. Belgium had lower mortality rates at every age in 1966 than did
Uruguay in 1963, but it had a higher crude death rate (12.14 > 11.28). Japan, on
the other hand, had lower fertility rates in 1964 than Belgium at every age save
one, but it exhibited a higher crude birth rate (17.71 > 15.86). 1In each case, the
cause of the apparent anomaly was the difference in the age compositions of the
populations compared. Belgium had a much larger proportion of its population over
65 than did Uruguay. Japan had a substantially larger proportion of its population
in the childbearing ages than did Belgium. Because these differences in age
composition occurred at ages where the respective rates in the relevant schedule
were high or low, changes in the age composition biased the values of the consoli-
dated rates in the expected directions.

Changes in regional shares have an analogous but somewhat different way of
helping to shape regional component rates. Regional shares serve as weights in
the consolidation process. Hence the same outmigration rate originating from a
region that is twice the size of another will develop twice the impact on the size
of the population in the destination region. Moreover, since any idiosyncracies
in the age profile of a sending region's migration schedule are transmitted to the

receiving region's population, large sources of heavy outmigration can have
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substantial impact on the values assumed by all of the component rates in a
destination region.

Finally, while it is important to underscore the powerful influence that
regional age compositions and regional shares have in shaping rcgional component
rates, one must also recognize that past records of fertility, mortality, aund
migration play an equally important role in the determination of present regional
age compositions and shares, inasmuch as the latter arise out of a history of
regional births, deaths, and internal migration. For example, a region
experiencing high levels of fertility will have a relatively youunger population,
but if it also is the origin of high levels of outmigration a large proportion
of its young adults will move to other regions,producing a higher growth rate in
the destination regions while lowering the average age of its own popu]ation.1
This suggests that inferences made about fertility, say, on the basis of a model
that ignores migration may be seriously in error. For example, Figure 2.4C
illustrates the significant impact on the ultimate stable age composition and
regional share of region 2 that is occasioned by a doubling and tripling of
fertility levels in region l while holding everything else constant. The mean
age of the population in region 2 declines by 5.1 and 8.9 years, respectively,
while its regional share decreases by 24 percent in the first instance and by 36
percent in the second. It is to spatial population dynamics of this kind that we

now turn in the remainder of this paper.

lThe mean age of a regional population, like the mean ages of the fertility and
migration schedules, is a summary measure of pattern and is defined as

W
I xc ., (x,t)dx
OJ
a (t) =———mmmm = [ xc . (x,t)dx .
j w 4T

I c.(x,t)dx 0
I} ]

The regional share SHAj(t), on the other hand, is a summary measure of level.
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3. The Spatial Dynamics of Stable Populations

The regional age compositions and regional shares of a closed multiregional
population are completely determined by that population's recent history of fer-
tility, mortality, and internal migration. A particularly useful way of under-
standing the evolution of such age compositions and shares is to imagine them
as describing a population which has been subjected to fertility, mortality,
and migration schedules that have remained unchanged for a long period of time,
say a century. The population that develops under such circumstances is said
to have been subjected to a fixed regime of growth and is called a stable multi-

regional population. TIts principal characteristics are: unchanging regional age

compositions and regional shares; constant regional annual rates of birth, death,
and migration; and a fixed multiregional annual rate of growth that also is the
annual rate of population increase in each and every region.

A frequently raised objection to the use of stable population theory is the
implausibility of the assumption of an unchanging regime of growth. Such an
objection confuses projection with prediction., No one truly believes that fer-
tility, mortality, and migration schedules will remain unchanged for a prolonged
period of time; yet our understanding of current demographic rates can be sub-
stantially enhanced by a projection of their long-run consequences. Keyfitz
(1972, p. 347) has likened such projections to "microscopic examinations' because they
magnify the effects of differences in current rates in order to more easily iden-
tify their true meaning, Others have called them '"speedometer readings' to empha-
size their monitoring function and hypothetical nature (Coale, 1972a, p- 52; Rogers,
1971, p. 426). But perhaps the most vivid interpretation of the role of infinite

horizon projections was offered by Gale (1967, p. 2) in the context of economic
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"To describe the situation figuratively, one is guiding a ship
on a long journey by keeping it lined up with a point on the
horizon even though one knows that long before that point is
reached the weather will change (but in an unpredictable way)
and it will be necessary to pick up a new course with a new
reference point, again on the horizon rather than just a short
distance ahead."

In this section of our paper we examine the stable multiregional populations
that evolve out of particular histories of fertility, mortality, and internal
migration. By tracing through the ultimate consequences of alternative fixed regimes
of growth, we strive for a further understanding of the spatial dynamics of the

hypothetical populations that they describe.
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3.1 Characteristics of Stable Multirogional Populations

Imagine a multiregional female pupulation that has been exposed to a fixed
- . 1
regime of growth for a very long period of time. The number of women aged x to
x + dx in this population at time t are survivors of those born x years ago,

rB(t-x)}dx, where P(x) is a matrix of

9
k~

x $ t, and therefore may be denoted by P(x)
regional probabilities of surviving to age x and {E(t)} is a vector of regional
births at time t. If subjected to a regime of fertility described by y(x), a
diagonal matrix of age-specific annual rates of childbearing at age x, these

women at time t give birth to g(x)g(x){g(t—x)}dx baby girls per year. Integrating

over all ages x, we obtain the multiregional Lotka renewal equation
t 1 t
{g(o} = JHGoRe) {B(t-0}ax = J‘g(x){g(c-x)}dx, for t > g, (3.1)
0 0

where B denotes the last age of childbearing and §(x) is the multiregional

net maternity function.2

1 . .
We adopt the normal convention of mathematical demography and focus on the
female population. It should be clear, however, that our arguments apply to any

single-sex population: male, female, or total.

2Contrary to conventional matrix notation, we use a transposed ordering of
subscripts so as to preserve a left-~to-right ordering of successive regions of
residence in the usual '"matrix-times-a-vector'" multiplication projection process
of single-region mathematical demography. For example, the probability that a
baby girl born in region j will be alive in region i at age x is denoted by jpi(x)
. . th .th C g
and appears as the element in the i~ row and j—— column of P(x). The multipli-
cation of the vector of births {g(t-x)} by P(x) then yields a vector of sums

m

such as .2 B,(t—x)jp,(x), in which the subscript referring to region of birth
3= J 1

1
appears before the one defining the subsequent region of residence at age x.

Extensions to denote several successive regions of residence, e.g., jpik(x)’

are straightforward.
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Following the procedure used in the single-region model (e.g., Keyfitz,
1968, Ch. 5) we observe that the trial solution {E(t)} = {9} ert satisfies (3.1)
provided r takes on a particular value, which we shall derive presently. Sub-
stituting the trial solution into (3.1) transforms that equation into the

multiregional characteristic equation

{g} = fﬁe-rﬁﬁ(x)f(x){g dx = [ fse_rxg(x)dx] {g} = X(r){g} , (3.2)
o o

where X(r) is the multiregional characteristic matrix. Note that the range of

integration has been narrowed to embrace only the ages of childbearing o« through B.
By moving from (3.1) to (3.2) we have reduced our problem to one of finding

the value of the constant r that satisfies the characteristic equation:
{g} = X(r){g} . Rewriting that equation as

[ﬂ(r) - i] {9} - {9 (3.3)

we observe that {9} is the characteristic vector that corresponds to the unit
dominant characteristic root of X(r), and r is the number which gives that
matrix such a value for its dominant characteristic root.

The system of equations in (3.3) can have only one maximal real root r and
any complex roots that satisfy (3.3) must occur in complex conjugate pairs whose
real components are smaller than the maximal real root. Consequently, the birth

o r t
sequence {g(t)} = hgl {Qh} e h is increasingly dominated by its first term as

3Such a root is in fact a function which associates each value of r with the
dominant characteristic root of ¥(r) evaluated at that particular value of r.
This function is continuous, concave upward throughout, and its values decrease
monotonically as its argument increases. Thus a dominant characteristic root of
unity can occur only once, and it will always take on that value when r assumes

its maximal value.
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t becomes large. Thus, ultimately,

r,t

fpof s{ope’ =g .

where we omit the unit subscripts for convenience.

Exponentially growing births produce an exponentially growing population,
I's
tg(t)} say, which maintains stable regional age compositions and a constant

regional allocation of the total multiregional population:

{k©} =ojw {600} ax = ofwg(x){ga-x)} dx = oj‘wef(t'x)g(x){g} dx

- ertofwe-r%B(x){g} dx = ertk-l{g} - {X} ert ’ (3.4)

where {E} is a vector of stable equivalent regional populations (Keyfitz, 1969),

and b is a diagonal matrix of regional intrinsic birth rates

b. = . (3.5)

A multiregional population that is projected to stability under a constant
regime of growth will ultimately increase by the ratio e5r every 5 years. If
this population were stable to begin with and contained Yi individuals in each
region, i = 1,2,...,m, then by time 5t it would have grown to {E} eSrt. Thus,
as Keyfitz (1969) suggests, the stable equivalent population of an observed
population may be found by projecting the latter forward t periods to stable
growth and then backward an equal length of time by dividing by eSrt. The
resulting hypothetical population, if increased by the ratio eSr after every

unit time interval of 5 years, would approach the same asymptotic levels as the

projected observed population. By analogous reasoning,
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{o) = e} -2 {y 3.6

may be referred to as the vector of stable equivalent regional births.

The number of j-born persons at age x in region i in a stable multiregional
population is equal to the number born x years ago in region j times the proportion
of those babies alive x years later in region i. Summing this quantity over all
regions in the multiregional system and dividing it by the same total integrated

over all ages of life gives the regional age composition

m
S04 P ® ERER
c.(x) = = b.e z D, (%)
o L om rx N j=1 @ J'1
O EL e o
or, in matrix form,
- -1 -1
{coo} =2 e™ o pe {o} = 970 Lo} (3.7)
where
cx) =h e B(x) (3.8)

and Q is a diagonal matrix with the elements of {Q} along its diagonal.

Having found the stable age composition of each regional population we may
proceed to develop a number of demographic measures that describe other important
characteristics of such stable multiregional populations. TFirst, the mean age
of the population in region j is given by

w
a, = f x ¢, (x)dx ,
J 0 J
and its intrinsic rates of birth, death, outmigration, inmigration and net
migration are, respectively,
W
b = OJ‘ ¢ GOm, (dx
w

; OI cj(x)uj(x)dx

o
It
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w m

o, = f e, (x> ¥ v, (x)dx

i, i=1 ji

/)

i, =r - b, +d. + o,

] ] ]
n, =i, - o

] ] ]

where uj(x) is the instantancous (i.e., compounded momently) annual rate of
mortality at age x in region j and vji(x) is the corresponding rate of migration
from region j to region i. Two other useful measures are the net migration rate
and the net absence rate, respectively:

nj = ij - oj , and

4, =Db, -r =d, -n,

] ] ] ]

Finally, the share of the total multiregional population that is allocated to

region j at stability may be defined in ta2rms of stable equivalent populations

as

Table 3.1 presents several fundamental characteristics of the stable female
United States population that evolves from a projection using the 1968 growth
regime. The national territory is divided into two regions: the West region
defined by the U.S. Census Bureau and the rest of the United States.4 The
expectation of life of women born in the West was found to be 1e(0) = 75.49 years

1

with e2(0) = 23.10 years of that total (31 percent) expected to be lived in the

rest of the United States. Women born in the rest of the United States, on the

4The West region is comprised of the following 13 states: Alaska, Arizona,
California, Colorado, Hawaii, Idaho, Montana, Nevada, New Mexico, Oregon, Utah,

Washington, and Wyoming.
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FEMALE POPULATION

OF THE UNITED STATES, 1968
1. The West Region 2. The Rest of the United States
Age,x 1968 Population Proportion
142 1 2 1+2 1 2
0 8,245,762 1,411,337 6,834,425 0.0806 0.0817 0.0804
5 9,597,933 1,652,125 7,945,808 0.0938 0.0957 0.0935
10 10,000,941 1,711,965 8,288,976 0.0978 0.0992 0.0975
15 9,253,495 1,576,909 7,676,586 0.0905 0.0913 0.0903
20 8,289,804 1,474,897 6,814,907 0.0811 0.0854 0.0802
25 6,722,467 1,217,733 5,504,734 0.0657 0.0705 0.0648
30 5,721,493 1,020,086 4,701,407 0.0559 0.0591 0.0553
35 5,583,993 966,359 4,617,634 0.0546 0.0560 0.0543
40 6,042,636 1,022,598 5,020,038 0.0591 0.0592 0.0590
45 6,143,112 1,050,292 5,092,820 0.0601 0.0608 0.0599
50 5,644,471 926,417 4,718,054 0.0552 0.0537 0.0555
55 5,106,221 809,787 4,296,434 0.0499 0.0469 0.0505
60 4,500,799 684,070 3,816,729 0.0440 0.0396 0.0449
65 3,794,498 566,234 3,228,264 0.0371 0.0328 0.0380
70 3,068,152 461,793 2,606,359 0.0300 0.0267 0.0307
75 2,230,070 341,626 1,888,444 0.0218 0.0199 0.0222
80 1,381,406 217,761 1,163,645 0.0135 0.0126 0.0137
85+ 949,739 152,125 797,614 0.0093 0.0088 0.0094
Total | 102,276,992 17,264,114 85,012,878 1.0000 0.1688 0.8312
STABLE POPULATION:
r - Rate of growth 0.00432
Y - Stable equivalent population 121,292,482 26,989,870 94,302,612
SHA=Y/ZY - Stable regional share 1.0000 0.2225 0.7775
Q - Stable equivalent births 1,920,961 410,412 1,510,549
SBR21=Q2/Q1 - Stable birth ratio 3.68
b - Birth rate 0.0158 0.0152 0.0160
d - Death rate 0.0115 0.0114 0.0115
0 - Outmigration rate -- 0.0083 0.0025
i - Inmigration rate -- 0.0088 0.0024
n - Net migration rate -- 0.0005 -0.0002
a - Mean age 37.18 38.12 36.91
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other hand, were expected on the average to live a total of 2e(O) = 74.29 years
with 2el(O) = 6.95 years of that total (9 percent) expected to be lived in the
West. Fertility in the West was slightly lower than in the rest of the United
States. The former had a gross reproduction rate of 1.13, whereas the latter

experienced a GRR of 1.17. Symbolically,

[52.39 6.9 1.13 0]
e(0) =\ . GRR =
|23-10 67.34] 0 1.17
where e(0) = EXP - § , and
[75.49 o'l (0.69 0.09]]
EL(P = g =
0 74.29’ [0.31  o0.91

The stable projection allocates 22.25 percent of the ultimate national
population to the West and accords it an annual growth rate of 4.3 per 1000, an
annual birth rate of 15.2 per 1000, and a positive annual net migration rate of
0.5 per 1000. The stable population of the rest of the United States increases
at the same intrinsic annual rate of growth, but its other demographic character-
istics are quite different. It has a somewhat younger population, a higher
annual birth rate, and exhibits a very slight net outmigration to the West.

Both regional stable populations are a few years older in mean age than the

corresponding observed 1968 populations.
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3.2 Two Families of Model Stable Multiregional Populations

The numerical evaluation of the multiregional population growth process
described above usually involves a population disaggregated into 18 five-year
age groups (0-4 through 85+) of which 8 are assumed to be capable of childbearing
(=10 through p=50). Thus the mathematical representation requires 8 age-specific
birth rates, 18 age-specific death rates, and 18(m-1) age-specific migration rates
for each of the m regions comprising the multiregional system. We have seen,
however, that among human populations such rates exhibit persistent regularities and
therefore are not truly independent observations. In consequence, a remarkably
accurate description of spatial population dynamics can be realized with the aid of
model stable populations that have been generated using a much smaller number of
indices of variation in fertility, mortality, and migration which summarize the
kinds of regularities that were identified in Section 2.

In their monumental study of single-region model life tables and model stable
populations, Coale and Demeny (1966) present two overlapping sets of stable
populations which to a large extent provide similar information. Each population
is identified by two nonredundant indices of variation relating to fertility and
mortality, respectively, and evolves out of a particular combination of a model
life table and intrinsic rate of growth or gross reproduction rate. The former
are referred to as the "'growth rate" stable populations; the latter are called
the "GRR" stable populations and rely on a model fertility schedule with a given
mean age of childbearing ﬁ, which is assumed to be 29 years. Symbolically, the
two sets of model stable populations may be expressed as:

1. Growth Rate Stable Populations : f(e(0),r)

2. GRR Stable Populations : g(e(0), GRR)

Model stable multiregional populations may be developed by means of a straight-
forward extension of the Coale and Demeny method. Underlying every such model

population are:(l) a set of regional mortality levels specified by regional
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expectations of life at birth; (2) a set of regional fertility levels defined
either by an intrinsic rate of growth and an associated proportional regional
allocation of total stable equivalent births, or by a set of regional gross
reproduction rates; and, finally, (3) a set of interregional migration levels
between every pair of regions in the multiregional system. Symbolically, we may
once again express two sets of model stable populations:

1. Growth Rate Stable Multiregional Populations : f(EéP,r,SgR,Q)

2. GRR Stable Multiregional Populations : g (EXP,GRR,8)
where EXP is a diagonal matrix of regional expectations of life at birth ie(O),
SBR is a matrix of stable equivalent birth ratios : SBRji = Qj/Qi; Q is a matrix
of migration levels jei; and GRR is a diagonal matrix of regional gross
reproduction rates GRRi.

Coale and Demeny observe that growth rate stable populations are more
convenient for exploring the implications of various recorded intercensal rates
of growth, whereas GRR stable populations are more useful in analyses of the
effects of different levels of fertility and mortality. An analogous observation
may be made with respect to multiregional populations. Growth rate stable
multiregional populations are more convenient for examining the implications of
various recorded intercensal rates of growth and regional allocations of total
births, whereas GRR stable multiregional populations are more suitable for
assessing the impacts of different combinations of regional levels of fertility,
mortality, and migration.

Growth rate stable multiregional populations also may be used in connection

with analyses of regional allocations of the total multiregional population.

5 -1
Note that S(O) = EXP - 9 and that SBR = Q i Q where l is a matrix of ones.
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Expressing the stable regional shares in the form of a diagonal matrix SHA, we

easily may establish that

{B} - st [xgo e-r(x+2.5)£<x)]-1sBA {}} o

and with it obtain

-1
SBR = [sgA . 3] 1 [sgA . g] , (3.10)
where {R =‘E {l} and‘E(x) is a matrix comprised of elements jLi(x) that denote

the stationary population aged x to xt4 years in region i who were borm in region j.6

Thus we may work with r and either SBR or SHA. Hence our earlier symbolic expression

for growth rate stable multiregional populations has the alternative form

1(b). Growth Rate Stable Multiregional Populations : h(EzP,r,SHA,@).

Table 3.2 sets out several specimen model stable multiregional populations

which were generated by combining various model schedules of fertility, mortality,

The' reciprocal of the expectation of life at birth in a single-region life

table is equal to the birth rate of the stationary life-table population.

Equation (3.9) with r = 0 may be used to establish the corresﬁonding result

for the multiregional life-table population:

{e} = spa™ g7 sma {2}

which, for example, in a two-region model gives

SHA ,
jej(o) " SHA, jei(o)
b, = * , 1,3 =1,2.
i 0) - .e,(0).e.(0
iei(o)jej( ) 1eJ( )Jel( )

The regional shares in this case refer of course to the regional distribution

of the stationary population.
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TABLE 3.2 - MODEL GRR STABLE MULTIREGIONAL (TWO-REGION) FEMALE
POPULATIONS WITH EQUAL MORTALITY LEVELS:

le(0)=2e(0)=70

A. Low Fertility in Region 1
Fertility Levels: GRRl =1
I GRR2 =1 GRR2 =2 GRR2 =3
Equal Migration Levels: 162 = 261 = 0.3
Parameters 142 1 | 2 1+2 ‘ 1 2 1+2 I 1 2
r -0.0022 0.0142 0.0268
SBR21 1.00 2.99 5.28
SHA 1.0000( 0.5000| 0.5000 1.0000) 0.3832| 0.6168 1.0000( 0.3199| 0.6801
b 0.0131 0.0131 0.0131| 0.0232| 0.0152| 0.0282] 0.0331 0.0165 0.0409
a 39.08 39.08 39.08 30.80 33.96 28.84 25.34 30.17 23.06
Unequal Migration Levels: 162 = 0.2; 291 = 0.4
Parameters 1+2 | 1 l 2 1+2 , 1 2 1+2 | 1 2
r -0.0022 0.0106 0.0222
SBR21 0.50 1.60 3.01
SHA 1.0000| 0.6667 0.3333 1.0000( 0.5391] 0.4609 1.0000( 0.4550| 0.5450
b 0.0131 0.0131| 0.0131( 0.0208| 0.0148; 0.0277| 0.0293 0.0161 | 0.0404
a 39.08 39.08 39.08 32.52 35.08 29.52 27,22 31.52 23.63
B. High Fertility in Region 1
Fertility Levels: GRR1 =3
GRR2 =1 GRR2 =2 GRR2 =3
Equal Migration Levels: 162 = 291 = 0.3
Parameters 1+2 1 2 1+2 1 2 1+2 [ 1 2
r 0.0268 0.0311 0.0369
SBR21 0.19 0.51 1.00
SHA 1.0000| 0.6801| 0.3199 1.0000| 0.5884| 0.4116 1.0000| 0.5000| 0.5000
b 0.0331 0.0409 0.0165 0.0368| 0.0414( 0.0303( 0.0419 0.0419| 0.0419
a 25.34 23,06 30.17 23.68 22.49 25.40 21.70 21.70 21.70
Unequal Migration Levels: 162 =0.2; 261 = 0.4
Parameters 1+2 1 2 1+2 1 2 1+2 1 2
r 0.0306 0.0332 0.0369
SBR21 0.10 0.26 0.50
SHA 1.0000| 0.7976 0.2024 1.0000( 0.7367 0.2633 1.0000| 0.6667 0.3333
b 0.0363 0.0413| 0.0167 0.0386 0.0416| 0.0305 0.0419 0.0419| 0.0419
a 23.88 22.56 29.09 22.93 22.20 24.97 21.70 21.70 21.70
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and migration.7 Each of the 12 populations may be expressed symbolically by any
one of the three forms listed earlier. For example, the first stable multiregional
population may be expressed as a function of
70 0 11 7/10  3/10
EXP = r = -0.0022 SBR = g =
0 70 1 1 3/10 7/10

in which SBR could be replaced by

1/2 0

SHA = .
0 1/2

Alternatively, the same population may be described as a function of the same
EXP and § matrices but with r and SBR (or SHA) replaced by

1 0!

GRR =
0 1

7To develop the fertility matrices F(x) and the life table matrices L(x) which

are needed as inputs to the calculations, we used Coale and Demeny's basic

fertility schedule for m = 29, their "WEST" model life tables, and our own "AVERAGE"
model migration schedules which are set out in another paper (Rogers and Castro,
1975). Given F(x) and L(x) for all x, we evaluate ¥(r), determine the r that

gives it a dominant characteristic root of unity, and solve for the associated

B
characteristic vector ig} .
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3.3 Spatial Impacts of Changes in the Components of Multiregional Population
Growth

Perhaps the simplest way to examine the spatial impacts of particular changes
in schedules of fertility, mortality, and migration on an observed population is
by means of population projection. Such arithmetical calculations, carried out
first with the original and then with the revised schedules, readily identify the
effects of the differences between the two growth regimes. However, this approach
suffers from a lack of generality and fails to reveal functional relationships
that may exist between the changes occasioned in the population studied and its
fundamental parameters. Thus mathematical demographers concerned with population
dynamics have focused their attention on the behavior of model populations that
evolve from different growth regimes (Coale, 1972a;Preston, 1974) or have developed
mathematical formulas that trace through the impacts of particular changes in age-
specific rates on the population subjected to those rates (Goodman, 1971; Keyfitz,
1971b). Both approaches have adopted the stable population as their basic model
and both can be extended to multiregional populations.

Model stable multiregional populations readily reveal the impacts of changes
in fertility, mortality, and migration levels. By varying these levels either
singly or in various combinations we may establish the long-run consequences of
particular changes in the components of population growth and, in the process,
obtain an improved understanding of the population dynamics that are involved.

For example, consider some of the more interesting aspects of population dynamics
that are revealed by the stable populations presented in Table 3.2 (and illustrated
in Figures 2.4B and 2.4C). First, an unchanging multiregional growth regime in
which regional fertility and mortality levels are identical produces jidentical
stable regional age compositions, even though their stable regional shares vary

inversely with the ratio of their migration levels, i.e., SHAj iej

SHAi je
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Second, as in the single-region model, higher values of the intrinsic rate of
growth create stable (regional) populations that taper more rapidly with age and,
in consequence, include a higher proportion of the population below every age
Further, fertility not only affects the rate of growth of a stable population
but, in the multiregional case, it also affects the stable regional allocations
of such populations. Mortality and migration schedules also affect the form of
the stable regional age compositions and the stable regional shares in an obvious
way, and any idiosyncracies in the age patterns of such schedules will be reflected
in the stable regional populations.

A rather surprising finding is the relative insensitivity of the regional
age compositions and birth rates to migration levels. Consider, for example,
the case of unequal migration levels with GRR,=1, GRR

=3 and GRR1=3, GRR.=1,

1 2 2
respectively. 1In the first instance the region with the larger (by a factor of

2) outmigration has the higher fertility level; in the second case the situation
is reversed. Yet in both instances the population in the region with the higher
fertility level has an average age of approximately 23 years and exhibits a birth
rate of approximately 41 per 1000. This insensitivity to migration behavior does
not extend to systemwide measures, however. For example, the intrinsic growth
rate and systemwide birth rate are considerably lower in the first case than in

the second, and the higher fertility region assumes a stable region share of only
54 percent in the first case but receives 80 percent in the second.

The confounding of regional differentials in mortality with those of fertility
and migration produces complex interactions that generate even more complex
patterns of growth and change.

For example, in a two-region population system with fixed, identical regional
schedules of fertility and migration, the regional population with the highcr

expectation of life at birth (i.e., with the lower mortality level) ultimately
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assumes the higher stable regional share of the total multiregional population

and becomes the older population with the lower birth rate. As fertility in the
region with the higher life expectancy is increased relative to that in the other
region, the high fertility population assumes an even higher stable regiomal share
and develops into the younger population with the higher birth rate. However, if
the increase in relative fertility occurs instead in the region with the lower
life expectancy, this pattern may be reversed and the regional population with the
higher mortality level can become the population with the higher stable regional
share, the lower average age, and the higher birth rate.

We have considered some of the spatial impacts of changes in the components
of population growth by examining model stable multiregional populations. We
could instead have directed our efforts toward a mathematical analysis of the
impacts on the stable population of changes in rates at a particular age in the
manner of Keyfitz (197lb) say. The details of such an approach will be developed
in a forthcoming paper and we, therefore, only sketch out the principal
arguments here. Our approach follows Keyfitz's chain of derivations and centers
on the multiregional generalization of his principal formulas.

Keyfitz begins his derivations by tracing through the effect on p(a), the
probability of surviving from birth to age a, of a change fu(x) in the age-specific
death rate p(x) applied to ages x to x+Ax, where a>x+A8x. He shows that the change
Ap(a) occasioned by the change Au (x) may be found by

ap(a) ¥ - p(a)au(x)dx , a>x+bx , (3.11)
and concludes that the effect of a change in the age-specific death rate pu(x) on

the expectation of life at age a is approximated by

pea) = - 5{% ()M (x) . (3.12)
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Keyfitz then goes on to identify the effects of changes in age-specific birth
and death rates on stable population parameters such as the intrinsic rate of
growth, the intrinsic birth and death rates, and the age composition and mean
age of the stable population.

The multiregional generalizations of (3.11) and (3.12) may be shown to be,

respectively,

4P(a) = AV(x)AxP(a) a>x+ Ax (3.13)

and

sl

fe(a) £ V(PP ", (3.14)

where, for example, in a two-region population system

—(ui(X) + vij(X)) vji(X)

vij(X) -(uj(x) + vji(x))

in which ui(x) and Vij(x) denote instantaneous rates of mortality and migration,

respectively.
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4, The Spatial Dynamics of Stationary Populations

Increasing public concern about the sizesand growth ratesof national
populations has generated a vast literature on the social, economic,
and environmental impacts of a reduction of fertility to replacement levels
and the consequent evolution of national populations to a zero growth condition
(e.g., Coale, 1972b, Frejka, 1973). But where people choose to live in the
future presents issues and problems that are potentially as serious as those posed
by the number of children they choose to have. Yet the spatial implications of
reduced fertility have received very little attention and we are, in consequence,
ill-cquipped to develop an adequate response to questions such as the one recently
posed by the Commission on Population Growth and the American Future:1

"How would stabilization of the national population affect
migration and local growth"? (C.P.G.A.F., 1972, p. 13)

The Commission observes that zero growth for the nation will mean an average
of zero growth for local areas. This, of course, still allows for the possibility
of nonzero growth in particular localities. Thus spatial zero growth, like
temporal zero growth, may be viewed either as a condition that ultimately prevails
uniformly or one that exists only because of a fortuitous balancing of regional rates

of positive growth, of zero growth, and of decline. Since no obvious advantages

1A notable exception is the work of Peter Morrison, who concludes: '"...demographic
processes interact in subtle and often complex ways, and the mechanisms by which
declining fertility would influence population redistribution are only partially
understood. Their elucidation can furnish a clearer picture of how zrnd under what
circumstances population redistribution can be influenced by public policy,"

(Morrison, 1972, p. 547).
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arise from the latter case, demographers quite naturally have viewed the
attainment of temporal zero growth in the long-run in terms of an indefinite
continuation of temporal zero growth in the short-run. We follow this tradition
in this paper and view the attainment of spatial zero growth in the long-run in
tetrms of temporal zero growth within each region of a closed multiregional
population system. In consequence, we confine our attention here to the
evolution of stationary multiregional populations, i.e., stable multiregional
populations that have a zero growth rate. Thus we augment the usual twin
assumptions of a fixed mortality schedule and a fixed fertility schedule set at
replacement level with the assumption of a fixed migration schedule. Multi-
regional populations subjected to such regional growth regimes ultimately assume
a persisting zero rate of growth in every region and exhibit zero growth

both over time and over space.
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4.1 Characteristics of Stationary Multiregional Populations

If age-specific death rates remain unchanged and the annual number of births
is fixed, a population that is closed to migration will ultimately evolve into a
stationary population. The characteristics of such a population are well known.
The number of individuals at any age would remain fixed, and the total number of
deaths would exactly equal the total number of births. Because mortality risks
would be relatively low from just after birth through middle age, the age
composition of such a population would be nearly rectangular until ages 50 or 60,
tapering much more rapidly thereafter as death rates increase among the older
population.

The maintenance of a stationary population requires that parents have only
as many children as are needed to maintain a fixed number of births every year.
This means, for example, that a 1000 women must on the average produce a 1000
baby girls during their lifetime. Moreover, since some women will not survive
to become mothers, those who do must have slightly more than 1000 daughters in
order to compensate for those who don't. Hence the gross reproduction
rate must be greater than unity by an amount just sufficient to maintain a unit
level of net reproduction. For example, about 97 to 98 percent of women in the
United States today survive to the principal ages of childbearing. Consequently,
those who do must have approximately 1.027 daughters, on the average, as they
pass through the childbearing ages. In other words, the GRR must be 1.027 in

order for the NRR to be unity.2

2Because there are usually about 105 baby boys born for every 100 baby girls,
mothers in a stationary population of males and females would need to have a total
rate of reproduction about 3 percent more than twice 1.027. 1In this way we obtain
the total fertility rate of 2.11 used, for example, in the United States Census

Bureau projections, (U.S. Bureau of the Census, 1972).



- 35 -

The net reproduction rate, like the total fertility rate and the gross
reproduction rate, summarizes the fertility experience of a population of all
ages during a single year as if it were the experience of a single cohort that
passed through all ages. It is a hypothetical value that treats cross-
sectional data as if it were longitudinal data in order to estimate the number
of daughters that would be born per woman subjected to specified
age-specific risks of fertility and mortality. A commonly used procedure for
obtaining NRR is to multiply each female age-specific fertility rate by the
corresponding probability of surviving from birth to that age and integrate the
product over all ages of childbearing:

B
NRR = [ p(x)m(x)dx = R(0)
o
Since NRR may be viewed as the zeroth moment of the net maternity function, it
usually is denoted by R(0), a notation which we shall adopt henceforth.

Total births in a stationary multiregional population must, of course, also

equal total deaths. However, because of the redistributive effects of migration,
total births in any particular region need not equal total deaths in that region.
This can be readily demonstrated by means of the accounting identity connecting
regional stable intrinsic rates:

r=>b,~-d, -0, +i, =b, -d, +n_, ,
J J J 3 J 1 1

which with r = 0 defines the fundamental relationship that must hold in every

region of a stationary multiregional population:

~ ~

b, +n, =d, |, 4.1
] J ] ( )

where the caret is introduced to designate a stationary population. Thus only if

the net migration rate is zero will regional births equal regional deaths.
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The maintenance of a stationary multiregional population requires that the
total number of births in every region remain constant over time. Thus we may
substitute the trial solution vector-{@(t)} =<{g}-into (3.1) to find

~ B ~ - ~
e
where carets are ouce again used to distinguish stationary population measures,

. . th .th ) , .
and the element in the i row and the j~ column of R(0) is the stationary

regional net reproduction rate in region i of women born in regicn j:

~ B ~
jRi(O) = af jpi(x)mi(x)dx .

Equation (4.2) shows that for a stationary multiregional population to be
maintained, the dominant characteristic root of the matrix é(O) must be unity.
Consequently a reduction of fertility to replacement level may be interpreted as
a reduction of the elements of g(x) to a level that reduces the dominant
characteristic root of a given net reproduction matrix 5(0) to unity. Such an
operation transforms M(x) to é(x) and R(0) to E(O).

Stabilization of the regional populations in a multiregional population will
alter the relative contributions of natural increase and migration to regional
growth. Regional age compositions will aiso be affected, and in ways that are

strongly influenced by the age patterns of migration. Retirement havens such as

San Diego and Miami, for example, will receive proportionately higher flows of

inmigrants as the national population increases in average age, whereas
destinations that previously attracted mostly younger migrants will receive
proportionately fewer inmigrants. Finally, as we demonstrate in the next section,
the redistributional effects of stabilization depend in a very direct way on the

redistribution of total births that is occasioned by the reduction in fertility.
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4.2 Alternative Spatial Paths to a Stationary Multiregional Population

In his paper for the Commission on Population Growth and the American
Future, Ansley Coale (1972b)considers three alternative paths to a stationary
population: (1) maintaining births constant at the levels recorded in 1970;

(2) moving to a replacement level of fertility either immediately or in the very
near future; and (3) reducing childbearing levels such that total population

size is held fixed beginning immediately. He finds only slight differences
between the first two alternatives and rejects the third as infeasible since

it would require an immediate decline in the birth rate of almost 50 percent. We
shall therefore confine our attention to Coale's second alternative path and will
explore a few of its spatial ramifications.

Imagine a multiregional population system growing at some positive rate of
growth, i.e., exhibiting a net reproduction matrix R(0) with a dominant character-
istic root XI(B(O)) greater than unity. If the rate of childbearing in
each region of this multiregional population system were immediately reduced such
that every woman born in that region would have a net reproduction rate of unity,
then

~ m
.R(0) = ¥
i j=

I R0 =1

or, in matrix form, .
RO {1} = {1} . 4.3)
where the prime denotes transposition.
As in the normal practice in single-region exercises of this kind, assume that
the reduction of the fertility of each regional cohort of women is achieved by
reducing that cohort's age-specific fertility rates by the same fixed proportion, Y

say. Then

p

A d ¥ 0) =1
2 ipj(x)vjmj(x) X T B Y R.(0) =

~ m
.R(0) = 2
1 =L j11

.R.(0) =
J=11J()
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and
R(0) =vyR(O) , (4.4)

where Y is a diagonal matrix of fertility adjustment factors. Substituting (4.4) into
(4.3) gives
R’ y {1} = {1}

whence

o] {1 s

= 0 11 . .

{¢} =lzo@’] {1 4.5)
The adjustment factor Y; may be re-expressed in a way that offers additional

insights into its properties. According to (4.2)

~

~ m ~

~

Dividing both sides of the equation by Qi gives

Q. .
—‘]. =
ai jRi(O) Ri(O) » say,

where Ri(O) may be defined to be the net reproduction of women living in region i

(as distinguished from the net reproduction of those born in region i). But

~ m Q.
R,(0) = £ =L v, .R.(0) =v.R,(0) =1 ,
1 j=1 Qi 1]1 1 1
m Q.
where we define R,(0) = T - .R.(0) . Hence
i j=1q; i1

and

{r@} =y {1} = g rfg} (4.6)

where {é} = § {l} .
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The vector {@} in (4.6) is the chafacteristic vector associated with the
unit dominant characteristic root of 5(0) and denotes the total number of births
in each region of a stationary multiregional population. The proportional
allocation of total births that it defines is directly dependent on the trans-
formation that is applied to change 5(0) to E(O), a particular example of which
is given by (4.4). Since in a stationary multiregional population the regional
stationary equivalent population ;i is equal to the quotient ai/gi’ we see that
the different ways in which 5(0) is transformed into E(O) become, in fact,
alternative "spatial paths' to a stationary multiregional population.

A numerical example may be instructive at this point. The net reproduction

behavior of the urban and rural female populations of the United States in 1968

is crudely approximated by the net reproduction matrix

uRu(O) rRu(O) 0.85 0.45
R(0) = = :
uRr(O) rRr(O) 0.25 0.90
where, for example, rRu(O) = 0.45 denotes the net reproduction rate in urban

areas of rural-born women. 1In other words, under the regime of growth observed
in 1968, each woman born in rural areas will, on the average, replace herself in
the succeeding generation by 1.35 daughters, one third of whom will be born in
urban areas. Urban-born women, on the other hand, have a lower net reproduction rate,
i.e., uR(O) = 1.10 < rR(O), which when combined with the net reproduction rate of
rural -born women gives the United States female population an overall net reproduction
rate of AI(B(O)) = 1,21, where AI(B(O)) is the dominant characteristic root of
the net reproduction matrix B(O).

About 73 percent of the 1968 United States female population lived in urban
areas. A projection to stable growth under the 1968 growth regime reduces that

allocation to approximately 2/3 of the stable population and yields an intrinsic
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growth rate of slightly under one percent per annum. What would be the spatial
allocation under a similar projection, but one in which fertility was immediately
reduced to a level of one daughter per urban-or rural-born woman? To obtain an estimate
of the regional shares in the stationary population that would evolve out of such

a projection we need to first derive the fertility adjustment factors Y, and Yo
respectively. Calculations carried out using (4.5) give Yy 1 and Y, = 3/5,

whence (0.85 0.45?
| .7

R(0) =
LO.IS 0.55

Note that both groups of women now exhibit unit rates of net reproduction,
and observe that the dominant characteristic root of E(O) is unity.

The characteristic vector associated with the unit dominant characteristic
root of é(O) indicates that 3/4 of the total births in the stationary multiregional

~

~AA
population will occur in urban areas. Since Qi = biYi s

B

> (4.8)

LT

oo
L)L

j
a result that equates the ratio of stationary regional shares to the corresponding
stationary birth ratio times the reciprocal of the corresponding ratio of intrinsic
birth rates. Since the stationary birth ratio of urban to rural births is given
by é(O) to be 3 (i.e., 3/4 to 1/4) and because the ratio of rural to urban
intrinsic birth rates is likely to be close to unity (it comes out to be 1.07 in
the projection) we conclude that in the stationary multiregional population about

3/4 of the population would reside in urban areas.

3This result of course refers to regional designations that existed in 1968. 1In
light of the continuing urbanization of rural regions it is probably a

conservative estimate.
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We have observed earlier that the proportional allocation of total births
in a stationary multiregional population depends directly on the transformation
by which R(0) is changed to é(O). Alternative transformations are in effect
alternative spatial paths to such a populaticn inasmuch as they lead to
alternative spatial allocations of the tctal multiregional population. This can
be easily illustrated by considering an alternative fertility reduction program
which reduces the aggregate net reproduction rate to unity by reducing each regional

fertility schedule by the same proportion, Y say. That is,

ﬁ(o) = YR(0) , where (4.9)
y = 1
A (R(0))

In the context of our numerical illustration this means that the fertility of
urban-born women would now be reduced to below replacement levels whereas that

of rural-born women would be permitted to exceed replacement fertility levels.

That 1is,
by 1 0.70 0.37
R(O) = 7577 R(O) = ; (4.10)
: 0.21  0.74
and R(0) = 0.91 , _R(0) =1.11 .
u r

The spatial implications of this alternative path to a stationary multi-
regional population are quite different, as can be seen by calculating the
characteristic vector associated with the unit dominant characteristic root of
~
E(O). The characteristic vector in this case allocates approximately 55 percent
of total multiregional births to urban areas. Since the ratio of rural to urban
intrinsic birth rates would now be somewhat higher than unitv, however, we should

expect a correspondingly higher concentration in urban areas than is indicated

by this allocation of total births.
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4.3 On the Momentum of Multiregional Population Growth

Differences between most observed population age compositions and those of
stationary populations make it virtually impossible to attain zero growth in the
near future. A population's birth rate and growth rate depend on its fertility
schedule and its age composition. Consequently whether and how long a population
continues to grow after achieving a net reproduction rate of unity depends on that
populations's age composition and its degree of divergence from that of a stationary
population. The ratio by which the ultimate stationary population exceeds a current
population is the "momentum'" of that population, a quantity that recently has begn
given analytical content by Keyfitz (1971la)who shows that the momentum of a
population numbering K individuals and having an age composition close to stable

may be approximated by the expression

Y _ b e(0) (R(O) - 1
K~ o ( R(0) ) : (4.11)

where b is the birth rate, r the rate of growth, e(0) the expectation of life,
and R(0O) the net reproduction rate, all measured before the drop in fertility,
. and y is the mean age of childbearing afterward. The derivation assumes that the
the population is approximately stable before the decline in fertility so that
b and r are intrinsic stable rates of the initial (nonstationary) regime of growth.
Straightforward population projection calculations may be used to obtain the
future population that evolves from any particular observed or hypothetical regime
of growth. Therefore (4.11) is not needed to obtain a numerical estimate of an
ultimate stationary population. However Keyfitz's simple momentum formula gives
us an understanding of the population dynamics that are hidden in the arithmetical
computations of a population projection. It identifies in an unambiguous way the
five parameters of a current population that determine the size of the ultimate

stationary population.



In order to evaluate the accuracy of Keyfitz's momentum fo:tmula we have
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carried out a two-region projection of the 1968 United States female population

on the assumpution that age-specific fertility rates in each region drop immediately

to replacement levels.

regional population exceeds its 1968 level by about a third.

estimates the momentum to be about the same:4

0.01878

74.3

(1.12-1)

K(1968)

A multiregional generalization of Keyfitz's momentum formula may be show

I >

{

where 5(1)

2

0.00432

26.3 1

.12

Le@ xR RO - o [ {6}

1.31

Equation (4.11)

is a matrix with elements jRi(l) = jui.'Ri(O)’ and where tota’

Table 4.1 shows that the ultimate total stationary multi-

tu be

multiregional stable births Q are allocated to regions according to ithe stationary

proportions defined by the characteristic vector associated with the unit dominant

~

characteristic root of R(0).

Evaluating (4.12) with

that produced the results in Tables 3.1 and 4.1 gives:

—
~

Yy

~

Y.

Ki(l968)

— 1
Kj(1968)

-

-

1

0.00432

r'52.39

6.95
23.10  67.34
| 0.02377
0.01777 |

0.0509

~0.0161

1.74 |

)

-0.0045

0.0382

0.0833

0.0350

the same two-region data

0.009%

(4.12)

!

0.1108

Unlike Keyfitz we do not use the observed birth rate but divide total stable biiths

Q by the current population, i.e., b = Q/K(1968) =

1,920,961/102,276,992 =

0.01878.

That is why our approximation is more accurate than similar ones reported by Keyfitz.

X
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FEMALE POPULATION
1968

TABLE 4.1 - RELATIONS UNDER STATIONARITY:
OF THE UNITED STATES,

1. The West Region 2. The Rest of the United States]
Age,x Stationary Equivalent Population Proportion
1+2 2 1+2 1 2
0 8,919,063 1,999,286 6,919,777 0.0662 0.0645 0.0668
5 8,801,161 1,960,681 6,840,480 0.0654 0.0632 0.0660
10 8,786,342 1,954,891 6,831,451 0.0653 0.0630 0.0659
15 8,767,142 1,973,196 6,793,946 0.0651 0.0636 0.0656
20 8,739,604 1,993,989 6,745,615 0.0649 0.0643 0.0651
25 8,706,948 1,987,121 6,719,827 0.0647 0.0641 0.0648
30 8,663,633 1,968,097 6,695,537 0.0643 0.0635 0.0646
35 8,596,752 1,948,595 6,648,156 0.0638 0.0628 0.0642
40 8,493,131 1,924,987 6,568,144 0.0631 0.0621 0.0634
45 8,341,530 1,894,516 6,447,014 0.0620 0.0611 0.0622
50 8,126,033 1,853,200 6,272,832 0.0604 0.0598 0.0605
55 7,822,168 1,793,484 6,028,684 0.0581 0.0578 0.0582
60 7,401,017 1,711,320 5,689,697 0.0550 0.0552 0.0549
65 6,805,483 1,594,855 5,210,627 0.0505 0.0514 0.0503
70 5,963,701 1,425,125 4,538,576 0.0443 0.0460 0.0438
75 4,814,365 1,182,097 3,632,267 0.0358 0.0381 0.0351
80 3,410,328 866,383 2,543,945 0.0253 0.0279 0.0245
85+ 3,480,965 982,171 2,498,794 0.0259 0.0317 0.0241
Total | 134,639,366 31,013,997 103,625,370 1.0000 0.2303 0.7697
STATIONARY POPULATION:
r - Rate of growth 0.00000
; - Stationary equivalent population |134,639,366 31,013,997 103,625,370
SﬁA=§/Z§ -~ Stationary regional share 1.0000 0.2303 0.7697
a - Stationary equivalent births 1,805,735 406,374 1,399,361
S§R21=a2/61 - Statiomary birth ratio 3.44
b - Birth rate 0.0134 0.0131 0.0135
d - Death rate 0.0134 0.0133 0.0135
0 - Outmigration rate -- 0.0079 0.0024
i- Inmigration rate -- 0.0080 0.0024
n - Net migration rate -- 0.0002 -0.0000
a - Mean age 39.65 40.45 39.41
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A comparison of these regional momenta with those found by population projection
and set out in Table 4.1 reveals that the quality of approximation afforded by
(4.12) is adequate (1.74 and 1.23 as approximations of 1.80 and 1.22, respectively).
Equation (4.12) is not as practically useful as its single-region counterpart

because it is much more difficult to come up with accurate guesses or estimates

of the values taken on by the many parameters. Thus a more effective procedure

may be to first estimate the ultimate size of the total stationary multiregional
population using Keyfitz's formula and then rely on (4.8) to allocate that total

to the various regions of the multiregional system. Such a procedure requires

estimates of the stationary birth rate ratios.
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5. Conclusion

It is an unassailable fact of life that current rates of population growth
cannot prevail for a very long period of time in the future. Coale (1972b) for
example, points out that were the United States population to continue to increase
at its present rate of about one percent a year, there would be more than one
American per square foot of land in less than 1300 years. 1In an analogous vein,
Keyfitz (1971c) observes that Mexico cannot continue with its current rate of
growth for as long as the lifetimes of children now born, for if it did its
population would increase sixteen-fold to about 800 million people in that span
of time. Of what use then are population projections developed on the basis of
constant rates?

Knowledgeable users of population projections know full well that the
assumptions that generated them are certain to be violated. This is especially
true of multiregional projections that assume fixed schedules of internal migration.
Unlike fertility or mortality, migration is functionally related to two populations
instead of one. Thus it is patently unrealistic to assume that age-specific rates
of migration between two regional populations will remain unaffected by changes
in the relative sizes of these populations over time. Nonlinear models of growth
therefore deserve an important place in any agenda of demographic research.
Nevertheless, the knowledgeable user of demographic models will still find that
linear multiregional models of population growth can indeed provide a better
understanding of the spatial dynamics of such growth. They

"permit experiments out of which we obtain causal knowledge; they
explain data; they focus research by identifying theoretical and
practical issues; they systematize comparative study across space
and time; they reveal formal analogies between problems that on
the surface are quite different; they even help assemble data,"

(Keyfitz, 1971c, p. 573).
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