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OPTIIIAL CONTROL OF
LINEAR ECONO:METRIC SYSTEMS
1JI1lI INEQUALITY CONsrRAINTS
ON THE CONTROL VARIABLES

Gerald C. Robertson

Chow (1975. pp. 157) develops a series of methods to solve the following

optimal tracking problem.

subject to

Yt = AtY't-l + Ctxt. + BtZt

One of the methods is that of Lagrangian multipliers. K.C. Tan (1979)

extends this to include the case where the instruments must satisfy

The purpose of this note is to develop the corresponding solution when

the instruments are constrained

With the addition of these constraints the problem becomes



-2-

subject to

and

where u t > 4

Forming the Lagrangian we get

L = i<Yt - 8.t)'~(Yt - 8.t)

T
- ~ A't(Yt - ~Yt-l - CtXt - Btzt)

t=l

-t p't(ut - xt)
t=l
T

:- ~ U't(xt - 4)
t-l

8
8L =~(Yt - 8.t) - At + A't-lAt-l =0
Yt

8L =C'tAt + Pt - Ut =0
8xt. .

8L
8At = Yt - AtYt-l - Ctxt - Btzt = 0

8L . 8L
-= -xt. + 4 ~ 0, Ut-= Ut(-xt. + It) = 0
But But

8L 8L
a--=-Ut+xt~O,Pt-8 =Pt(-Ut+xt)=O
tJPt 'Pt

(2)

(3)

(4)

(5)

(6)

(7)

If this is a "free endpoint" problem ~+l = 0, following Chow (1975), there­

fore using (3)

AT = ~YT - KT~ + A.r+lA.r+l

=KTYT -KTaT

AT = HTYT - h T

Substitute this into (4)

C'TAT +PT - uT = 0

C'T(HTYT - h T) + PT - uT = 0

(8)

(9)

(10)
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Substitute (5) into this

Solving for xT

where

gT = -(C'THTCT)-lC'T(HT - BTzT - h T)

PT = (C'THTCT)-lpT

Substituting this into (5) we obtain

Substituting this into (9)

(11)

~T = HT(Ar + CTGr)YT-l + HT(BTzT + CTgT) + HTCTP; - HTCTPT - b T (12)

Lagging (B)

Substituting (12) into it

~-1 = ~-lYt-l - ~-1~-1 + A't~(" + CtGt )Yt-l

+ A'tHt(Btzt + Ctgt)

+ A'tHtCtPt' - A'tHtCta; - A'tbt

and

>-t-l =Ht-1Yt-l - ~-1

(13)
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where

lit-I =~-I + A'tHt(~ + CtGt )

h t - I =~-I8..t-l - A'tHt(Btzt + Ctgt + CtPt - ctut) + A'tht

There are three possibilities in any given year.

Chow's unconstrained algorithm can be used to get from t to t-l.

B. Xt, =4.

The lower constraint is binding.

This implies Pt' = 0, since xt = ~, therefore Xt, '# ll.t and CUt - Xt,)Pt' = O.

If the constraint is binding

using ell).

C. Xt, = Ut

The upper constraint is binding.

This implies ut' = 0

and

CASEB

For case B

u; = GtYt-I + gt - 4-
or Ut={C\HtCt)-I{GtYt_I + gt - 4.)

Substituting this into (13)

(14)

(15)

(16)

(17)

(1S)
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+ A'tHt(Btzt + Ctgt)

- A't~Ct(GtYt-l + gt -It)

- A'tht

At-l =~-lYt-l - ~-l~-l + A'tHt~Yt-l + A'HtCtGtYt-l

+A't~Btzt + A'tHtCtgt

- A'tHtCtGtYt-l - A'tHtCtgt + A't~Ctit - A'tht

>-t.-1 =~-lYt-l - ~-llit-1 + A't~~Yt-1 + A'tHtBtzt

+ A'tHtCtlt - A'tht
l-i' ,

>-t.-1 =A't-1Yt-1 - ht-1

where

l4'-1 =~-1 + A'tHtAt.

~'-1 =~-16.t-1 - A't~(Btzt + ctlt ) + A'tht

When comparing these with the normal recursion formula

~-1 =~-1 + A't~(~ + CtGt )

~-1 = ~-lat-1 - A't~(Btzt + Ctgt ) + A'tht

(19)

(20)

(21)

Notice that xt =It and if Gt and gt are calculated normally and then used to

calculate

(21)

and then if Gt is set equal to 0 and gt is set equal to it. then the usual recur-

sion formulae are used then the ~-1 and ~-1 are calculated correctly. This

means that after 1\. h t• Gt• and gt are calculated using the normal recursion

and it is found that Xt, would be out of the bounds set for it. then we calcu~tte
. ':'- .

0'; and set Gt =0 and gt =it and calculate Ht- 1 and h t- 1 for the given Xt, and Gt

and gt.

Notice that Yt-l has not been calculated yet and is needed to calculate p;'

If one uses the nonlinear argorithm (Chow. 1975) then an estimate of Yt-1 is

available from the last iteration. At convergence this Yt-1 will be arbitrarily

close to the "actual" Yt-1'
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CASEC

Similarly for case C:

and

p; =-GtYt-l - gt + Ut

~'-1 =~-1 + A't~"

h.t'-l = ~-lat-l - A't~(BtZt + CtUt) + A'tht

Here again if the Gt and gt are calculated normally then

p; =-GtYt-l - gt + ut and then set Xt, =ut,Gt =0 and gt =u t ° Then the normal

recursion formula (21) will work correctly.

ANEXAIIPLE

For example, suppose we wish to constrain the instruments to be positive,

subject to

and

Forming the Lagrangean we get

1 T T
L ='2~ (Yt - ~)'~(Yt - ~) - ~ ~-'t(Yt - <\Yt-l - Ctltt - Btzt )

t=l t=l "
T

-- ~PtXt,
to::1

~L = ~(yt -~) - At + A't+lAt+l = 0
vYt

8L - C' l" P - 0- - t"1. - t-
8Xt,

:~ = Yt - AtYt_l°-C tIt - BtZt = 0

(1)

(2)

(3)
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Using the example in Chow (1975) we begin with period T

(4)

(5)

using (l)

AT =HTYT - h T

C'TAT - PT =0

C'T{HTYT - h T) - PT =0 using (2) and

C'T{HrATYT-l + HTCTxT + HTBTzT - h T) -PT =0

Solving for xT

C'THTArYT-l + C'THTCTxT + C'THTBTzT - C'ThT - PT =0

C'THTCrXT = -C'rHTArrYT-l - C'rHTBTzT + C'thT + PT

or

where

GT =-{C'rHTCT)-ICTHTAr

gT =-(C'THrCT)-IC'T{HTBTzT - h T)

PT ={C'THTCT)-lpT

Solving for YT as a function of YT-l

using

(6)

(2)

(6)

(3)

(7)

YT =(At + CTGT)YT-l + BTzT + CTgT + CTPT

AT =HT{Ar + CTGr)YT-l + HT{BTzT + CTgT) + HTCTPT - hT

Substitute this into (l)

~-IYt-l - ~-1~-1 - At-I + A'tAt =0

At-I =~-IYt-l - ~-1~-1 + A'tAt =0

At-I =~-IYt-l - ~-1~-1 + A't~{~ + CtGt )Yt-l + A't14

(Btzt + Ctgt ) + A'tHtCtPt· - A't~

using (6)

(B)
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Or

where

Ht - 1 =1<1.-1 + A'tHt(J\ + CtGt )

h t - 1 = 1<1.-18.t-1 - A'tHt(Btzt + Ctgt ) + A'tht

Using (5) the problem breaks down into two cases:

1) A. Constraint Xt, ~ 0 is binding

-. Xt, = 0 and Pt' =-GtYt-1 - gt using (7)

2) B. Constraint Xt, ~ 0 is not binding

-. Pt = 0 and Xt, ~ 0

In case B Pt =0 reduces to Chow's algorithm

In case A

we get

~-1 =~-1Yt-1 - ~-1~-1 + A't1\.(~ + CtGt )Yt-1 + A'tl\.

(Btzt + Ctgt) + A'tHt Ct(-GtYt-1 - gt) - A'tht

=~-1Yt-1 - ~-11it-1 + A't1\.J\Yt-1 + A't14~zt

+.A't~CtGtYt-1 + A't~Ctgt - A't~CtGtYt-l - A'tHtCtGt - A't~

~-1 =~-1Yt-1 - ~-11it-1 + A't~~Yt-1 + A'tHtBtzt - A'tht
l-i' ,= .. '"t-1Yt-l - ht-1

where

1\.'-1 =~-1 + A't14~

h;_1 =~-11it-1 - A'tHtBtzt + A'tht

(9)

(10)

Chow (1975) shows that the two Ricatti difference equations (9) and (10) can

be written as

(11)



- 9 -

for case B

(12)

Notice that if Case A applies. i.e. Xt = 0 and the constraint is binding the recur-

sion formulae are

H;-1 =~-1 + A'tllt.<\

h;_1 =~-1~-1 + A't(ht - HtBtzt}

These are exactly what (11) and (12) reduce to when Gt and gt are set =O.

Also. since each period can be solved separately (from dynamic programming),

the solution procedure for the optimal problem subject to x ~O can be imple-

mented as follows.

SOLUTION PROCKDURE

Steps

1. Proceed as if Xt, is unconstrained

2. Calculate llt.. ~

then calculate xt using la¢ iterations Yt-l.

3. If xt is positive. proceed as in Chow (1975) to t-1

if Xt, is negative. set Xt, =O. Pt =-GtYt-l - gt

then set Gt =0 and gt =0

then proceed as in Chow (1975) to t-1.

4. Start at step 1 with a new period t-1

Note 1: This allows not only Xt,-1 to change since Yt and Yt-l may be dif-

ferent. but also allows the coefficient feedback martices Gt and gt to

change correctly knowing that xt ~ 0



Note 2:
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For Xt, a vector only the rows of Gt and gt corresponding to negative

values are set equal to zero.
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