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GRADIENTS VERSUS CYCLING IN GENETIC SELECTION MODELS

Josef HOFBAUER
Insitut fir Mathematik, Universitdt Wien, Strudlhofgasse 4
A - 1090 Wien, Austria

We review the hierarchy of (continuous time) selection models starting
with the classical Fisher's viability selection model, and its generalizations
when allowing mutations, recombination, sex-dependent viabilities, fertility
selection and different mortality rates. We analyse the question in which
way Fisher's "Fundamental Theorem of Natural Selection"” and Kimura's Maximum
Principle can be extended to these more general situations. It turns out that
in many cases this is principally impossible since the dynamics becomes
cycling or even chaotic.

1. VIABILITY SELECTION

1.1. The basic selection model in population genetics was introduced by
Fisher (1930). He considered one gene locus with n possible alleles Al,...,An.
Let Xl""’xn be the frequencies of these alleles within the gene pool of the
adult population. Assuming random mating, the frequency of the genotype AiAj
among the zygotes will be - according to the Hardy-Weinberg law - 2xixj (if
i¥j) resp. xi2 {(if i = j). Now assume that the individuals are not equally
adapted to the environment and that a genotype AiAj will survive until adult

age only with probability wij' Then wijzo, = w and wij is also called

“i3 ji
the fitness of AiA,. The number of adults AiAj in the next generation is
therefore proportional to wijxixj and the frequency of the gene Ai is then

given by the recurrence relation
n
x'=x, I w,,x./w ()

_ n
w = z (2)
s=

r,

W X X
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the mean fitness of the whole population is needed as a normalization factor

to guarantee Exi = in' = 1. Instead of assuming separate generations one

may also consider overlapping generations, which leads to the differential



equation
n —
x, =x,( Z w, . X, W) (3)
i j=1 ij 3
which could also be obtained by a limiting argument from (1), since
xi' -x, = ki/;. The state space of both (1) and (3) is the prcbability
i
simplex
s = {x = (xl,. , xn) le =1, x_ 2 0}

The selection equations (1) and (3) are rather well undexstood and their

dynamics is characterized by two essential features:

1) FISHER's Fundamental Theorem of Natural Selection: The mean fitness W
increases steadily along the orbits of both (1) and (3).

Mathematically speaking this means that mean: fitness is a Lyapunov function:

w/2 =L w, .x.x, =2 x.w,(w, - w) =¢ x.(w,2 - ;2 )y = I x,(w, - ;)2 2 0,
137175 iiti it iti

i.e. the change in mean fitness is twice the variance of fitness of the

population. For (1) the proof is more technical (see e.g. EWENS (1979)).

As a consequence all orbits of (1) and (3) will converge to the fixed points.
This picture of a population steadily climbing uphill in a fitness

" landscape is very attractive and satisfying and still very common among

population genetists (despite the contrary results we will discuss below).

Historically it was a justification of Darwinism on the basis of Mendelism,

two (r)evolutionary theories which had been considered to be incompatible

before.

2) KIMURA's Maximum Principle (1958) states that th= change of the state of
the population proceeds in such a way that the incirease of mean fitness is
the maximal possible. Mathematically this would mean that (3) is a gradient
system: The orbits follow the steepest ascent on the fitness landcape W, they
are orthogonal to its contour lines. But this assertion is obviously wrong
since e.g. the boundary of the state space Sn would not be an invariant set.

But as often, when great men make "obviously wrong" statements, there is
some truth behind it. It was Shahshahani (1979) who noticed that one needs
only to redefine "orthogonality", i.e. to introduce a new Riemannian metric
at every point of the simplex. This Shahshahani metric at p€S is simply
given by n

< > = .
X,y o z for x,y€TpSn (4)

More generally it can be shown (see e.g. Sigmund(1984)), that

*i = x; (fi(x) - £), £f=2x.f (5)

is a Shahshahani gradient on Sn' if ki = fi(x) is a usual gradient, i.e.
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fi(x) = Bv/oxi. For the selection equation (3) fi(x) z wijxj >

Q
»

holds, since the fitness matrix (wij) is symmetric.

Another (equivalent) possibility to "save" Kimura's principle would be
to make a change of coordinates: with vy, = xil/z, (3) becomes a gradient
system ( with respect to the usual Euclidean metric) on the sphere Zyi2 = 1.

(see Akin (1979)).

1.2. As a first generalization of this basic selection model we consider a
model allowing mutations. Following Crow - XKimura (1970) or Hadeler (1981)
mutations occur within the pool of newly produced genes, with probability

ei' from Aj to Ai' after selection has changed the gene freguencies as before

from xi_to xiwi/; . So the action of selection and mutation is described by

the recurrence equation

- .
WX, § Eijxj E wjkxk (6)
which is usually replaced by the analogous differential equation

xi 5% k 13 j ]kxk - x, w. (7)

Akin (1979) considers a different model, with simultaneous action of selection
and mutation:

X, =x, (L w,.x,. -w) +2 (€&,.x, - €..x.) (8)

Mathematically, Akin's uncoupled version can be obtained as limit case § + 0
from (7), after the scaling

Eij - 6eij (i#¥3), wij -1 + Gwij, t >+ t/8. (9)

The special case of equal mutation rates, say

= €, i i), €., = - -1l)e,
€45 ; GED, e =1~ (n s (10)
deserves separate analysis. Hadeler (1981) studied in detail the case E.-—e/n,
and after proving local stability, he posed the problem to find a Lyapunov
function for (7) to globalize his results. This is now easily done: With his
assumptions, (7) simplifies to (for the more general case (10) see Hofbauer
(1984)):

X, = x,(w, - w) + £(wW/n - x_w,)
1 1 1

n
"
g
¥
}
s
£

with (11)
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Since the fi(x) fulfill the integrability conditions, Sigmund's result on(5)
aﬁplies and (11) is a Shahshahani gradient with the potential function
n

igl lqg X - (12)

Slm

Vix) = 1%5 log w o+

X - o
In particular one can take w ‘(xlxz...xn) ’ a = 2¢/n(l -€) as the Lyapunov

function for the selection - mutation equation (7) under Badeler's conditions
which generalizes the mean fitness function W in Fisher's selection model.

So in this special case all the results on gradient - like behaviour carry
over. For Akin's equations (8) essentially the same result holds, but with

a different potential:

SIE

= L= £
V(x) = w o+ o log X, - (13)

N eto

i=1

Now suppose that the mutation rates are not equal. Thanks to Bkin's
gecmetric analysis we know now that then the situation is much more delicate:
The mutation field *i = Zsijxj - % is then no longer a gradient with re-
spect to the Shahshahani metric. And Akin (1979) proved that - given any
mutation matrix (Eij) not of the form (10) - one can always find selection

matrices (wi.), such that the combinad field (8) undergoes a Hopf bifurcation

and periodic orbits occur. By the above approximation argument (9) this
result carries over to Hadeler's equations (7). This shows that the picture
of an adaptive topography (see e.g. Wright (1931)) is no longer reasonable
for arbitrary interactions of selection and mutation. The dynamics is no
longer gradient-like. The frequency distribution need no longer converge to
a stationary equilibrium state, but may oscillate forever. And it is very
likely that even chaotic motions should be possible for these differential
equations.

1.3. One simplistic assumption in Fisher's : selection model is to allow
selective differences of alleles at one gene locus only. But even the most
primitive species have thousands of different loci on their chromosomes. So
let us consider at least the case of two loci A and B with possible alleles
Ai (1 £isn), Bj (1 £3< m). Then there are nm different types of
gametes AiB., the frequency of which we denote by xij' Assuming random
mating the proportion of AiBj/AkBl individuals will change from xijxkl to
wij,klxijxkl from zygote to adult age by natural selection. When haploid
gametes are produced during meiosis, besides the parental combinations AiB

_‘I
)

1
which happen with a certain probability r depending on the distance between
the two loci. This recombination fraction r takes its maximum possible value
1/2 if the two loci are on different chromosomes. This leads to the following
modification of the recurrence equations (1) for the gamete frequencies

xij (see e.g. Karlin (1978), Pollak (1979)):

" . 11} . -
and AkBl also "recombinants AiB and AkBj will appear due to cross-overs



wx . = (1-o)x.. L w,. X . +r L w, XX
ij ij X,1 ij, k1l k1l k,1 il,kj il kj
= X Z W, . X - r D, . (14)
. L5, x1 %K1
ij K,1 ij, k1 k ij
with
D = - ; 15
ij k?l Vi5, k15571 T Yi1,x3%11%3’ (13)

. . ilibria. Si 1 -
The Dij are called linkage disequilibria. Since usually wij,kl wil,kj
holds (= no "position effects"), Dij = 0 holds if the gamete frequencies

X,. can be written as product of the gene frequencies pi = Z?=1 xij of Ai

and qj = Zz 1 x,j of Bj' i.e. if linkage equilibrium holds. It is easy to
=1 i
see that for recombination without selection all Dij tend to 0 and xij = piqj

holds in the limit. On the other hand, if ¥ = 0 (= very tight linkage), (14)
may be viewed as a selection equation for nm "alleles" AiBj and so the
selection part is again a gradient with respect to Shahshahani's metric on Snm'
But the recombination field is not and Akin (1979) could again prove that

the interaction of both fields may lead to cycling. For the simplest case of
two alleles at each of the two loci (TLTA) he computed also the higher order
terms which govern the stability of the cycles and showed that both stable and
unstable limit cycles are possible (see Akin (1982,1983)). In this case the
differential equation version of (14) simplifies to

4
x, =x, ( L w,,x -w) + &, rbD, i=1,2,3,4 (16)
i i . ij i
j=1
where xl,xz,x3,x4 are now the frequencies of the gametes AiBl' Ale, A2Bl’ A2B2
resp., D = X X, T XX is the linkage disequilibrium (15), 51 = - E2 = - 53 =
= 64 = -1, and b is the birth rate of the double heterozygote.

1.4. One basic assumption in all our previous models is that there are no
sex-differences , i.e. the population may be treated essentially to be mono-
ecious. We will now briefly discuss the simplest possible Way of allowing
sex-differences in the basic viability model. Let there again be n alleles

Al,..., An at one gene locus, let xi,yi be their frequencies in the adult

female and male population and let fij (mij) be the fitness of an AiAj female

(male) individual. Now a gene Ai in the female gene pool comes from females
AiAj which have frequency xiyj + xjyi at time of conception (random mating)
of which only a proportion of fij will survive. Hence the equations read as

(see e.g. Ewens (1979), Karlin (1972,1984), Roux (1977))

X
rs IYS

1
X = '2— [ X
J r,s (17)

i

T f o +vy, L f,, x. ] z
j ijy] yl S x] /

1
- = Zm . ! m
Yy 3 [ v § mijxj X, ; inJ 1/ r;s Trs %Y



-6-

The differential equations are obtained in the usual way. Ifnp i3 = fij the
gubspace xi = yi of the state space Snx Sn is invariant and globally
attracting and so (17) reduces to (1). Interesting special cases of (17) are
fij = 1, where selection acts only on cne sex, or mij = afij + b, where
selection acts in the same way in both sexes but at a different scale. Here
xi = yi holds at equilibria and all eigenvalues are real. So it is likely
that these equations are gradients. For other cases, e.g. mij
is used for sex-ratio models by Karlin (1984), nonsymmetric equilibria are also
possible. In any case, no global results seem to be known for the two-sex
equation (17), if n 2 3. For two alleles see the next section.

+ £, =1, which
1]

2. FERTILITY SELECTION

2.1. In all selection models described in § 1 the two main assumptions were
random mating to have the zygote population in Hardy-Weinberg propcertions,

and selection acting only by viability differences on the different genotypes.
These assumptions are essential in order to deal with gene frequences X, of

alleles Ai only. In a more general selection model one has to consider genotype
frequencies Xy of AiAi - zygotes and 2xij of AiAi - zygotes (i ¥ j), so that

? . x,. = 1. Now let m, (f,
i,j=1 ij 1] 1
AiAj and let h(ij,rs) be the probability for a mating of an AiAj -~ male with

j)be the viabilities for (fe) male genotypes

an ArAs—female times the fecundity of this type of mating. An AiAj—zygote is

issued either from an AiA xAjAs or an AjAS X AiAr mating (with any r,s).

r
This gives the frequencies of the next zygote generation (see e.g. Roux (1977)):

1
@ .I. - 1 . . £ + . ,. .
X5 r?s > [h(ir,3js) m, is h(ds lr)mjsfir] xirxjs (18)
With
F(ij, = h(ij, £
(ij,rs) (ij,rs) ml] s (19)
and
f(ij,rs) =(F(ij,rs) + F(rs,ij))/2 (20)
we observe that mathematically a viability + fertility selection model is
reduced to a pure fertility selection model (since we count zygotes here
instead of adults):
® )
¢ =z f(i ]
Xi3 Tpbg TUIIS) xg x. o (21)
with
¢ = Zf(ij, k1) xijxkl the mean fertility of the population.
The corresponding differential equation reads
., = L flir,js) x, x, - x.,. ¢ (22)
ij =r,s ir s ij



e : n(n+1) . s
These equations define a dynamics on the — - simplex which is now
forward invariant. Up to the special cases of additive and multiplicative
fertilities which will be treated in 2.3, almost nothing is known fox the
fertility equation (22) if n 2 3. Only the case of n = 2 alleles is well-
studied and essentially completely analysed (Hadeler and Liberman (19753),
Hadeler and Glas (1983), Koth (1984)). In this case the equations xeduce tQ

(with x11 = X, x12 =v, x22 = z, and numbering the genotypes AlAl’AlAZ’AZAz
by 1,2,3 resp.):

. 2 2

x-fllx +2f12xy+ f22y x

. 2

= - 2

v f22y + f12xy + f23yz + f13xz v & (23)

. 2 2

z = f33z + 2f23yz + f22y z

To get rid of the condition x + 2y + z = 1, (23) is best studied in the new
variables X = x/y, Y = z/y, leading to

2 2
- £ - Y - £ Y
12) X £ X P 4

X =f + (2f 23 13

22 12~ Epp) X+ (£

11 (24)
. 2
Y = f + (2f

2
- Yy - Y - XY
22 23 f23) £12% £

SE) ¥+ (8 12 13

33

The main problem when studying a two-dimensional system like (24) is waether it
admits periodic orbits. This question was recently solved by Hadeler and Glas
(1983), who observed that (24) is "quasimonotone", i.e. all off-diagonal terms
of the Jacobian are negative on the whole state space. They have excluded the
existence of exponentially stable limit cycles for such systems (in any dimen-
sion!) and the existence of periodic orbits in two dimensions. Similaxr results
were obtained by Hirsch (1982) who called such systems "competitive". Now our
equations are of a more special form

X = a(X) - Y b(X)

. (25)
'

c(Y) - X d(Y)

with b(X), d(¥) > 0 implying the "competitive" character. This leads to a more
refined result: (24) is a gradient if we again choose a suitable Riemannian
metric, or make a change of coordinates. The potential is given by

_ o ax) _ r ey

V(X,Y) = [ b0 X - XY+ gy A (26)
Then

., alX) . c(¥) _ - -1 22 -1 .2

Velgm D Xt (e - ¥ ¥YEbm X +dm ¥ 20

and sc V is a Lyapunov function. The concrete form of V however is rather
messy and it seems to be impossible to generalize this result to n 2 3 alleles.
In fact nothing concerning existence of Lyapunov functions or cycling is known
for the general n-allelic fertility eguation.
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2. 2. Now reconsidering the derivation of the fertility equation (22) - Qr any
of the above differential equations - we see that it was obtained by a limit
process or rather by analogy from the discrete time model (21), a point which
has often been criticizéd, especially for the selection equation (3), see e.g.
Ewens (1979). A true model for overlapping generations leading to a differential
equation was first worked out by Nagylaki and Crow (13874), see also Ewens (1979),

which can be roughly described as follows: the frequencies xij(t) of AiAj

will increase in a small time intervall At due to births by f(ir,js)xirxjs At,

with f(ir,js)measuring again the fertility of a AiAr X AjAS mating, and

decrease due to deaths by di' X, . At, with di‘ being the death rate of AiA..
This leads to J J J J

- x o) (27)

x.,. = L f(ir,js) x d..x.. ..
1) ij i3 ij

L X,
ir"js
r,s

with

3 =i5§lf(1j,kl) xijxkl - i% dij xij

denoting the mean fecundity minus the mean mortality, whose appearance in (27)
ensures again that the relation Zi jxij = 1 in k.ept invariant. So within a
contimious time model, not only different fertility rates but also different
mortality rates arise in a natural way. The continyous fertility-mortality
equation is therefore more general than (22). Only in the case of equal
mortalityrateSndij = d, (27) is equivalent to (22).

With different mortality rates, (27) cannot be a gradient, even for n = 2,
as was recently discovered by Koth (1984): Introducing the same coordinates X,Y
which simplify (23) to (24), (27) transforms for n = 2 into the following
generalization of (24):

. 2
X = f22 + (2f12—f22 + 2(d2 - dl)) X + (f11 - f12 + d2 - dl) X +
2
+ ( - f23 + d2 - dl) XY - f13X Y
(28)

. 2
Y = f22 + (2f32 - f22 + 2(d2 - d3)) Y + (f33 - f32 + d2 - d3) YT o+

+ ( - £ +d. - d,) Xy - £ XY2

12 2 3 13

But now the coefficients of XY need no longer be negative and the system is not
competitive in general. So the above argument does not work. And in fact Koth
(1984) constructed examples where (28) has a fixed point with complex eigen-
values (so it cannot be a gradient), which - when varying some parameter - cross
the imaginary axis. Hence Hopf bifurcations occur and periodic orbits are
possible for (28). A morerefined analysis of the higher order terms, using
Maraden - Mc Cracken's (1976) formula,shows that both stable and unstable
pericdic orbits may occur. But it seems that these orbits are limited in size,
they generally disappear very soon by a blue-sky ( = homoclinic) bifurcation.



2.3. We conclude with some remarks concerning the interrelationship of
the fertility equation with other selection models, in order to obtain more
insight into the logical hierarchy of selection models, as indicated in the
diagram in 3.2.

The first observation is rather unexpected and surprising: the two-allelic
fertility-mortality equation occurs as a subsystem of the TLTA-system (18).
Akin (1983) proposed to study (16) equipped with some additional symmetry, e.g.

that A1B2 and A2B1 should behave equally, i.e. w2i = w3i for all'i . Then

the plane X, = Xq is invariant and with X = xl/x2 and Y = x4/x2 the flow is

there given by

X=X {2(w12—w22) + (wll—wlz)x + (w14-w24)Y} + rb(1+X) (1-XY) 29)

)+ (w )Y + (w YX} + rb(1+Y) (1-XY)

e
]

Y {2(w42-w

22 44742 14721

Obviorsly these equations are identical with (28). So the limit cycles found
for (28) carry over to (29) and one has at the same time given another (simpler)
proof of Akin's result on cycling in TLTA.

Let us now consider the special case of (22) when the parents contribute
additively to the fertility rates: f£(ij,kl) = mij + fkl.Then (22) reduces to

PO . .E( ) X, . I 3

el

X (m + £..) x and ¢ =2 L F(i).

n
FU) =5 oy * 550 %k i=1

[N T

n

For the gene frequency xi = Zk=1xik of Ai we obtain

x, = F(1) - x, /2 (31)
i i

Then (x, .6 - x.x.) = - (x,., - x,x.) ® implies that in the limit t -+,
i i%5 ij i%5

xij = xixj heclds, and the population is in Hardy - Weinberg equilibrium. But
then (31) simplifies to Fisher's selection equation (3) With"ij = (mij+fij)/2.
So the case of additive fertilities is essentially equivalent to the basic
viability model.
Finally we consider the case of multiplicative contributions to the
fertility rates: F(ij,kl) = mijfkl' Then (21) reads as
x '_ MH)F(F) + MJIF()
ij 29 (32)
. , n ) n n n
th = = = i = i = -
with M(1i) Zk=1 m, X F(1) Zk=1fikxk’ M= 2 _MWU),F Zi=1F(1),® MF

Then for the new variables Xi = F(i)/F and Yi = M(1) /M, (32) reduces exactly

to the two-sex equation (17), as is also clear from the derivation of (18).
A similar connection holds for the differential equations. In particular, if
the male and female contributions are equal, mij = fij , (22) leads to



_lo_

%= M(L)M(3) - x, M2 (33)
ij i

£, =X.(Im. . X. -m M (34)
i i ij 3

Hence the multiplicative fertility case with sex-independent contributions

is also equivalent to Fisher's selection eguation (1) resp. (3) and is there-
fore a gradient. The Hardy-Weinberg law however holds only for the discrete
time model, but not for (33).

3. CONCLUDING REMARKS

3.1. In this paper I wanted to give some survey on the different selection
models used in population genetics. The basic model is Fisher's wiability
selection model (1), {(3) which behaves very nicely, since it is a gradient
with mean fitness as a potential. This lead to the wide-spread view am.ong
population genetists that the evolution of gene (or genotype) frequencies
within a population can be described by an "adaptive topography"” and mean
fitness or some suitable generalization of it will be optimized by evolution.
However, research in the last years, mainly due to Akin, shows that this
optimistic view cannot be maintained. Most of the generalizaticns of the
basic model, allowing e.g.mutations, recombination, different fertility, and
mortality rates etc. do not show gradient-like behaviour. The dynamics becomes
much richer and more complicated: Oscillations (and probably also chaotic
motions) occur.

Such periodic oscillations are well-known in other parts of bicmathe-
matics, the classical example being predator-prey interactions in population
ecology. But population geneticists generally believed their equations to be
free of such behaviour - maybe with the exception of frequency dependent
selection. For a recent example of cycling in a frequency dependent TLTA
system modelling the "battle of sexes" see Maynard Smith and Hofbauer (1984).

I confined myself to the dynamical behaviour of the differential
equations. Now it is well-known that difference equations can play much worse
things than correspomding differential equations. So it is not surprising that
the results on cycling carry over to the discrete time models whenever they
are found in the continuous time models. Mathematically this follows from
a theorem in Hofbauer and Iooss (1984). For the basic selection model, which
in continuous time is a gradient, the difference equation behaves equally
well. Hopefully this can be extended to the selection-mutation equation
with equal mutation rates. For the discrete version of the two-allelic
fertility eguation however, the function V from (26) cannot be a Lyapunov
function, since stable periodic points of period 2 may arise by overshooting
effects (see Hadeler and Liberman (1975)).
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3.2. The hierarchy of genetic selection models

The diagram below lists all selection models treated in this paper and shows
the interrelations between them. The two dotted lines separate the models
which lead to gradients from those which may produce cycles. For the inter-
mediate region the problem is not yet solved.

frequency—-dependent
selection

Multilocussystems

replicator equation

[

Lotka-Volterra

Two Loci

selection + mutation

FERTILITY

s e e e e o s s ool e e secccecoce v
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additive fertility

SELECTION
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