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For purposes of preliminary discussion, it is convenient to identify stochastic 

optimization problems with: 

find x c R~ that minimizes z = E{f(x,E)} - 
N 

where E is a random N-vector with distribution function,P, f:~" x R + R U {+mi 

is a l&er semicontinuous function, possibly convex, where dom f ( . E 
= {x If (x,€) is finite], corresponds to the set of acceptable 

choices for x when [ is the observed value of the random vector E, and - 

To simplify matters, we may even take f finite, it will not affect much the 

discussion of the numerical obstacles, that must be overcome to solve stochastic 

optimization problems. With 

we see that our original problem is equivalent to the deterministic optimization 

problem: 

find x c R" that minimizes z = F(x) . 

Thus, in principle, any algorithmic procedure developed for nonlinear 

optimization problems could be used. In fact, we have: 

F is convex if f(.,E) is convex a.s., - 
and, assuming that dom f ( . , E is independent of E, then 

Moreover, in general 



VF(x) = j vf(x,[) P(d[) if f(., € 1  is a.s. differentiable 

although usually F is nondifferentiable and then with an appropriate definition 

of the subgradient-set, we have 

Related formulas can also be found for second order derivatives, so that, in 

theory at least, all what we need to do is to include an integration subroutine 

in a standard nonlinear (nondifferentiable) optimization package to have 

state-of-the-art software for stochastic optimization problems. And indeed this 

would work very well if [ is a random varialbe i.e. N=l -- excellent integration 

subroutines are availabl; in this case -- or even possibly when N=2 or 3 and the 

analytic description of f is not too complicated. However, most applications 

that are of interest have N much larger that 2 or 3, in some cases all the 

coefficients of a given problem have stochastic components that cannot be ignored 

in which case N could be quite large. Except for certain specific distribution 

functions, such as for gamma or normal distribution functions and then with N54, 

the only known multidimensional integration subroutines available rely on 

Monte-Carlo techniques, involving generating pseudo- or quasi-random numbers. 

And for these methods to be effective we need ready access to functions values or 

to (sub)gradients, etc, and, as we shall see later, in stochastic optimization 

this is the exception rather than the rule. 

Thus, in one way or another, we must design solution procedures that do not rely 

on multidimensional integration subroutines. Excluding certain specific classes 

of problems, such as stochastic programs with simple recourse and some stochastic 

programs with probabilistic constraints, where the properties of the problem at 

hand make it possible to carry out at low cost the required integration, the 

suggested solution strategies can be divided in two major categories: (1) 

"descent" methods that rely on directions determined by statistical estimates of 

the subgradients of F, and (ii) approximation methods that replace to original 

distribution function P by a discrete distribution P" involving a 

sufficiently small number of probability mass points, so that jf(x,[) 
v 

dP ( € 1  -- now corresponding to a finite sum -- is numerically feasible. 

The remainder of this presentation is devoted to a brief description of the major 

features these solutions procedures and of their actual or potential 

implementations. 



A. Stochastic quasigradient methods. 

Let us consider the case: 

find x c C that minimizes E(g(x,<)} - 
where 

C is a closed convex set of R", 

g(.,<) is convex for all < 

and the random vector < is as defined above. In terms of our original 

formulation we would sit 

g(x,<) if x c C 

f(x'E) = + - otherwise. 
The algorithm generates a sequence (x1,x2, . . . } of points of C through 
the recursive formula 

where prjC denotes projection on the set C, (pv, v=l, . . . } is a 
sequence of scalars and 

v V 
h is a stochastic quasigradient of G at x 

with 

V 
By stochastic quasigradient, one means a realization of a random n-vector h - 
satisfying 

Typically 



with the {EU, u=l, . . . ) independent random samples of kU, or more - 
generally 

lu u ul where for all 1, h c ag(x , and the {tul; 1=1, . . . , L, u=1, . . . ) 
are independent random samples. 

u 
The sequence of feasible solutions {x , u=l, ..) converges with 
probability 1 to an optimal solution -- assuming naturally that it exists -- 
provided that the scalars pu are chosen so as to satisfy 

pu = l/u is such a sequence. The proof can be derived from a modified 

super-martingale convergence argument. 

In the implementation of this method we must contend with three possible 

stumbling blocks: 

the projection on C, 

the choice of the step size, 

the stopping criterion. 

The projection of a point on a closed set C is easy only if C is "simple" by 

which we mean that C is a bounded interval, a sphere, ... The most general case 

that we know how to handle quite efficiently, has the set C as the intersection 

of a bounded interval and 1 nonlinear (or linear) constraint of the type 

where a is convex and differentiable with a' > 0 on the bounded interval. 
3 3 

If C is a polyhedron it may be possible to develop a technique based on the 

observation that for u sufficiently large, the xu are liable to be quite 

close to each other and thus project in all likelihood on the same face of C. If 

C is a general convex set then each projection involves minimizing a 



quadratic function on a convex set. For all practical purposes this complicated 

projection operation would make every step of the algorithm very expensive as 

soon as we approach the boundary of C. The objections we might have about using 

this method on these grounds, could be overcome by relying on penalization 

approximates -- see the literature on nonlinear programming -- such as for example 

v 
and h is then a stochastic quasigradient of 

However, experimental results have shown that due to the steepness of the 

subgradients, penalization has a tendency to destabilize the method whenever the 

optimal solution lies on the boundary of C. 

The choice of the step-size pv is in principle prescribed by the 

convergence requirements. However, since in practice only the short run 
V 

properties of the sequence (x , v=l, . . .)  are of interest, there is at 

present a gap between theory and practice where the choice of the step-size is 

usually guided by some adaptive rule that tries to estimate the progress made 

during the last H iterations, f4 2 1. Some preliminary results that begin to fill 

this gap having recently been obtained. 

Finding a pood stopping criterion is still very much an open question. As 

already mentioned earlier, in stochastic optimization problem evaluating 

P = E(f(.,E)) may be quite expensive -- and this is why we rely on the 

method of-stochastic quasigradients in the first place -- so it is out of 

question to use value comparisons between F at xV and xV+l. The quantity 

V 
has been suggested as an estimate for F(x ) .  The algorithm is to terminate 

when no improvement is observed in the value of F . The fact that we never 
a 

really know if we have or have not reached an optimal, or nearly optimal, or 

sufficiently optimal solution is Achille's heel of this class of methods. 

Finding stopping criteria based on probabilistic error bounds, and the related 

question of step-size, is an area ripe for research and experimentaion. 



B. Approximate solutions by discretization. 

If PV is a distribution function that approximates the given distribution P 
V 

we may hope that an optimal solution x of the approximating stochastic 

optimization problem: 

find x E R~ that minimizes F'(x) = ff(x,I) pV(d{), 

will be an approximate solution of the original problem. And, in fact this is 

the case provided f is not too exotic and PV is not chosen so selectively 

that it generates the unusual. Every distribution function P can be approximated 
V 

as closely as desired by a piecewise constant distribution function P which 

corresponds to assigning probabilities 

to a finite collection of vectors 

Moreover, it can usually be shown that the approximation error, measured by the 

quantity 

is a function of the goodness of fit of P' to P, even proportional to it in 

the polyhedral case, i.e. when f(.,t) is a convex piecewise linear function. 

If we are satisfied with an approximate solution -- and often we shall not have 
V 

any alternative -- and we choose a discrete distribution P close enough to 

P, we could solve the problem 

n v L k 
find x E R that minimizes F (x): = Ikzl pk f(x,I ) .  

No longer is there any need for a multidimentional integration scheme, gradients 
V 

and values for F only involve computing a finite sum. However, we should 

not be lulled into believing that in this way we have licked the multidimensional 

integration problem. Unless N i 3 ,  the number L of points that we need to 

approximate P sufficiently closely so as to guarantee an acceptable error bound 



for the solution may be truly astronomical. For example if N=10 and we have 10 

independent random variables taking on each 10 possible values or we have 

approximated each marginal distribution function by a discrete distribution with 

10 density points, then L=10 billion 1 Thus even if the orginal problem itself 

involves a discrete distribtuion we may shy away from solving such types of 

problems. 

The alternative is to choose a very rough approximate of P involving only a small 

number of density points, and this even if P itself is a discrete distribution, 

and hope that the resulting solution xV is nonetheless a good approximate. 

This actually works ( I ) ,  at least with our limited computational experience. 

There is actually some basic justification for this: The optimal S O ~ U ~ ~ O ~ S  of 

stochastic optimization problems exhibit surprising stability properties with 

respect to perturbations of the distribution function of the random variables. 

V 
However, we can no longer rely on the proximity of P and P to obtain error 

bounds, this must be obtained through other means. Vhat could be done is to 

choose a pair of discrete distributions P1 and PU in such a way that, if we 

solve 

n 1 
find x c R that minimizes F (XI: = 

ue obtain a lower approximate for the original problem, and if we solve 

n u 
find x c R that minimizes F (XI: = 

L ' 

we obtain an upper approximate, i.e. we have 

1 
inf F 5 inf F 5 inf FU 

This of course gives an error estimate that can be used as a termination 

criterion. If we feel that the error bound provided by these approximates is not 

tight enough we can refine either P1 or PU or both, to obtain a better 

bracketing of the optimal value. In fact we could design a solution procedure 

that systematically refines the approximating distribution while carrying out the 

steps of the algorithm. 

The design of discrete distributions P1 and PU with the desired properties, 

either relies on convexity or concavity properties of f(x,.), i.e. with respect 



to the random parameter, or we try to identify a class of distributions 1 that 

contains P and such that for all x, or at least for some region in the 

neighborhood of an optimal solution, 

and 

u 
P e argmax I f(x,€) dQ(€). QcI: 

If the distributions in 1 are restricted to a fixed compact support and we 

choose to define I: as the class of distribution functions that have the same 
1 u 

moments up to order r as P, then P and P as defined above are discrete 

distributions having about as many points of support as the number of moments 

that we want to match. The bounds obtained through convexity or concavity of 

f(x,.) rely on Jensen's inequality and the fact that sup f(x,t) is attained E 
at an extreme point of the (convex hull of) the support of P. Assuming 

convexity, it yields 

Thus, 

1 
P which assigns probability 1 to Et - 

1 
yields a lower bound since then F (x) = f(x,Et). On the other hand if - 

tU E argmax{f(x,t) 1 F; c support of P} 

then with 

pU which assigns probability 1 to tU, 

u u 
we have an upper bound since F (x) = f(x,t 1 .  

All these bounds can be substantially refined by partitioning the support of the 

distribution function P and taking conditional moments or conditional extreme 

points instead of moments or extreme points as here above. 



All we have done so far is lay the ground work to justify limiting our attention 

to 

in the development of solution techniques for stochastic optimization problems, 

with L relatively small, maybe a few hundreds or thousands. Ue could now rely on 

standard linear or nonlinear optimization techniques for solving this class of 

problems, and this would work well enough (and in some cases we actually can 

proceed in this manner), except that in most applications the function f is quite 

difficult to evaluate, the same being true about subgradients as well as other 

related quantities. To see this we need to examine a little bit more closely the 

type of functions f that we have to deal with in stochastic optimization. 

As a first example, let us consider a simple version of stochastic programs with 

probabilistic constraints: 

find x c R: such that Ax = b, P(Tx) 1 a 

and z = cx is minimized. 

The constraint P(Tx) 1 a -- recall P is here the distribution function 

means that with probability a we want the values of C to be less than Tx. - 
The function 

cx if x 1 0, Ax = b, a - P(Tx) 5 0, 
f(x,C) = 

+ otherwise 

does not really depend on C but to check if x c domf(.,E), or equivalently 
if x is a feasible solution of the stochastic program, we must evaluate the 

integral 

which can be replaced by a finite sum to obtain upper and lower bounds. Ue could 

then refine the approximation in the neighborhood of the suspected optimal value 

of Tx to obtain tighter bounds. The most efficient and reliable algorithm for 

solving such problems appears to be a primal-dual procedure that works as 

follows: with 

p(v) : = inf Evx I P(x) 1 a] 



we can show that 

m2 find u c v c R+ such that c = uA + vT 

and w = ub + p(v) is maximized, 

is dual to our stochastic program, at least when 

{xIP(x)~ a} is convex, 

k k  
the function p is then concave. Suppose (u ,v ) is a feasible solution of this dual 

program, let 

k k x c argmin p(v ) 

and 

k 
xk c argmin [cxl Ax = b, Tx 2 x , x 2 01 

-k -k 
This last problem is a linear program. Let (u ,v ) be the simplex multipliers 

k k  -k -k 
associated with the constraints at the optimum. If (u ,v ) matches (u , v 1 ,  we 

are done since then we satisfy the optimality conditions. Otherwise note that 
-k -k 
(U , v 1 is an extreme point of the dual feasible region and the direction 

k+l k+l 
is a direction of ascent for the dual problem. A new point (u , v 1 is 

selected between 

k -k -k 
(uk, v 1 andu , v 1 

that improves the dual objective, and the procedure is repeated until an optimal 

solution of the dual problem is reached: the corresponding xk solves the 

original program. In fact only convergence can be claimed. The touchy part in 

this algorithm from a numerical viewpoint is the minimization of p which 

requires evaluating P(x). 

As a second example, we take f to be the essential objective function of a 

(linear) stochastic program with recourse (with random right hand sides), namely 



cx + inf Iqy I Vy = C - Tx, y 2 01 
Y 

+ otherwise 

The stochastic program is a model for the following decision process: we choose 

an activity level x subject to certain deterministic constraints Ax = b, x 2 0, 

and generate an output Tx before we can observe the value c of the random vector c. - 
If there is any discrepancy between [ and Tx, we make it up by selecting a 

recouse decision y at cost qy such that Vy = - Tx, y 2 0. The penalty for 

not matching exactly the random outcome c with the output Tx can be calculated 
by solving a linear programing problem. There are of course a myriad of 

variants of this model. 

Unless the problem has specific structural properties, the standard solution 

procedure is a partial decomposition method to which one usually refers as the 

L-shaped algorithm. Let 

where 

The method consists of 3 steps that can be interpreted as follows. In step 1 we 

solve an approximation to 

find x c R" with Ax = b that minimizes z = cx + *(XI + 

obtained by outer-linearization. The two types of additional linear constraints 

that appear in this linear program come from 

(1) feasibility cuts -- generated in Step 2 -- that restrict x to the region 

where *(x) < +-, i.e. which render the recourse problem feasible for 

all possible values of c, and - 
(ii) optimality cuts -- generated in Step 3 -- that refine the linear 

approximation to * at least in the neighborhood of the optimal solution. 



Ue give here a coarse version of this algorithm. At the outset set all counting 

parameters u = s = t = 0. 

Step 1. Set u = u+l and solve the linear program: 

find x 2 0, 8 E R such that 

Ax = b  

DkX 2 dk, k=l, ..., s 

E x + 8 2 ek, k=1, ..., t k 

cx + 8 = z is minimized 

Let (xU,8') be an optimal solution. If there are no constraints 

involving 8, we set 8' = -m and the variable 8 is ignored in the 

linear program. 

Step 2. For all possible realizations E of E solve the linear programs - 
+ - 

find y 2 0, v 0, v 2 0 such that 
- u 

Vy + IV+ - Iv = E - Tx and 
+ - 

ev + ev = w1 is minimized. 

If for some E the corresponding value w1 > 0, let a' be the simplex 

multipliers associated to an optimal solution, and define 

u u 
= a T, and ds+l = a E. 

Ds+l 

Return to Step 1 adding this feasibility cut and set s = s+l, u = u+l. If 

for all possible vectors , w1 = 0 then go to Step 3. 

Step 3. For all possible realizations E of E solve the linear program: - 
find y 2 0 such that 

Vy = E - Tx, and 
2 qy = w is minimized 



Let ~ ( € 1  be the multipliers associated with the optimal solution, of course 

they depend on F. Define 

and set 

V If eV 2 w2V we stop, x is an optimal solution. Otherwise return 

to step 1 improving the outer-linearization to $ by adding the optimality cut 

and set t = t+l, u= v+l. 

Ve see that in carrying out the steps of the algorithm we are up against two 

maJor difficulties. The first one is: given IT( . )  compute E and e t+l t+l ' 
This has been dealt with in the earlier part of this section, and we shall assume 

that an acceptable discrete approximation of the distribution function P has been 

found that renders this calculation numerically feasible. The second difficulty 

is that even if the probability mass is only carried by a finite number of vectors 

and L is not too large -- of the order of 50, or 100, maybe even 1000 -- we need 

to solve in Step 3 L linear programs. (Step 2 allows usually for much further 

simplification, it often suffices to solve the linear program that appears there 
V 

for a very limited number of vectors of type [ to check if x is feasible.) 

To solve a large number of linear programs (with constant technology matrix) we 

rely on a discrete parametric analysis technique which goes under the name of 
V 

bunching. Given x , let B be a submatrix of V that is optimal for some 
1 V 

([ -Tx ) .  Then from the optimality conditions for linear programing it 

follows that this basis will also be optimal for all vectors Fk such that 



Since B - ~  is already available, verifying the preceeding inequality involves 

substantially less work than solving a whole collection of linear programs. 

Moreover, because of the nature of the problem at hand it is reasonable to expect 

that only a small number of bases in the neighborhood of B, i.e. which can be 

obtained from B by a small number of pivot steps, should be sufficient to bunch 
1 all vectors , . . . , tL; a bunch is the collection of vector associated 

to a basis by verifying if the linear inqualities above are satisfied. 

Efficient bunching, the favorite one these days is a trickling down procedure 

that creates a tree of neighboring bases rooted at the optimal basis that 

corresponds to the vector E{t)-Tx, brings the carrying out of Step 3 of the 

L-shaped algorithm in the reilm of possibilites. Special subroutines have been 

built for the case when the linear programs: for k=l, ..., L 

2 
find y 2 0 with Vy = tk - Tx that minimizes w = qy 

are transportation problems or network flow problems that are remarkably 

efficient, but even for general linear programs much progress has been made at 

the experimental level. 

C. Conclusion. 

I have tried to delineate the difficulties that are inherent to stochastic 

optimization problems and that hamper the development of efficient solution 

procedures. I have also suggested some strategies for the development of 

algorithmic procedures. Of course, I have only been able to survey a very 

limited corner of the on-going work. For recent results please refer to the 

Mathematical Programing Studies of Stochastic Programing, eds. A. Prekopa and 

R. Vets, that should appear in early 1985 (North-Holland). For a 

state-of-the-art description of computational issues in stochastic progrming, 

please refer to the IIASA-Collaboritive Volume on "Numerical Methods in 

Stochastic Optimization", eds. Y. Ermoliev and R. Vets, that is now being 

prepared for publication. The algorithm given for stochastic programs with 

probabilistic constraints is due to E. Komaroni. 
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