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Generalized Lagrange Multiplier Technique

For Nonlinear Programming

Yuri Evtushenko*

Abstract

Our aim here is to present numerical methods
for solving a general nonlinear programming problem.
These methods are based on transformation of a given
constrained minimization problem into an unconstrained
maximin problem. This transformation is done by using
a generalized Lagrange multiplier technique. Such an
approach permits us to use Newton and gradient methods
for nonlinear programming. Convergence proofs are
provided and some numerical results are given.

1. Statement of Problem and Description of Numerical Methods

We consider the following general nonlinear programming

problem:
minimize F(x) (1)

subject to constraints xe€X = {x|g(x) = 0, h(x) < O, xEEn},
where F,g,h are real-valued, twice continuously differen-

tiable functions defined on En,»Euclidean n-space;

X = (Xl,xz,...,xn) is a point in En: and vector functions

g(x), h(x) define the mapping g(x): En >~ E_, h(x): E_~- E

We define the modified Lagrangian function H(x,p,w)

X
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associated with problem (1) as:

H(x,p,w) F(x) +

"~ o

ii ¢ i.2.1
pg(x) + & (w)h (x)

i=1 i=1

where

1 1 _2

2 e
p=(p,p°,...,p")EE, , w= (w,w ,...,wC)EEC

Consider an unconstrained maximin problem

max max min H(x,p,w) . (2)
peEe weEC ern

We shall solve this problem instead of (1). Under certain
conditions, which we shall formulate later in 2, the solution
X to problem (2) coincides with that to primal nonlinear

programming problem (1). As a rule, the Lagrangian is defined

as

© id SO T |
C(x,p,w) = P(x) + L pig(x) + I whix) ,
i=1 i=1
and the following problem is solved:
max max min  C(X,P,W) (3)
PEE weT xeE
where T = {w|w > O}. Problem (3) is a constrained maximin

problem and this circumstance complicates its solution.



When we use the modified Lagrangian H(x,p,w) we have no

such difficulties because (2) can be solved with the well-
known numerical methods for unconstrained maximin and saddle
point problems. For example, using the simplest gradient

method yields the following method:

X=-Hx,p:H w = H (4)

t

x(0) = x5, P(0) = pgy, w(0) = wg,

where Hx’Hp’Hw are n x 1, e x 1, ¢ x 1 vectors, whose ith

elements are

§H(x,p,w)/6x, SH(x,p,w)/8pT, 6H(x,p,w)/éw’

3

respectively.

From equation (4) on, a super dot denotes differentiation
with respect to time variable t, i.e. (+) = d/dt.

In 2 we shall prove that the solution x(t), p(t), w(t)
of system (4) locally converges to that of (2) as t » . The'
author presented (Refs. 1-2) a number of iterative methods for
finding local solutions of an unconstrained maximin problem.

Using three of these yields




Ty=1y (5)

Hy, W = 2D(w) [h -h H H

* L _ _T-l
x = -Hy, P = 8 ByHyx

X = -H_-H (g g + 4h D(w) D(w) h), b = & w = 2D(wh  (6)

. _ —1 . _ T —1 L4 _ - T _1

X = -H_ H , p=g-gH H,ws=2Dw [h h H JH ] (7)
where g_,h_,H _, are n x e, n x ¢, n x n, Jacobian matrices,

respectively, whose ijth elements are

sgd (x)/6x>, ohd(x)/6x>, §%H(x,p,w)/6x axI

I

respectively; D(w) is the diagonal matrix whose ith diagonal
element is wl; superscript -1 denotes the inverse of a matrix;
superscript T denotes the transpose of a matrix.

For simplicity we shall denote

z = (X3p,W)EEn+e+C ’

Z* = (X* ,p*,W*)EEn_'_e_'_C‘ b b

H(z) = H(x,p,w), H(Z,) = H(X,,Dx>Wy)

Definition. The point z, is a local maximin of function

H(z) in problem (2) if there exist neighborhoods A, Q, G about



the points X5sPosWy, respectively, such that for all xeA,

peEQ, wEG, the following inequalities hold:
H(x(p,W), p,w) < H(X,,DPysWy) < H(X,DuWy)
where

H(X(p,W), p,W> = min H(X,p,W)
xeA

(8)

The necessary conditions that Z 5 be a local maximin of problem

(2) are (see Ref. 1)

H (z,) = 0, Hp(z*) = 0, H (z,) =0 . (9)

A1l the points satisfying these conditions we will call
stationary points. Now we apply the Newton method for com-
putation of stationary points. We obtain the following con-

tinuous version of the method:

H X + = -
XX pr P+ H W H,
(10)
H X = - . S
pPX Hp’ HWX X+ wa w = Hw s
where pr, wa, wa are the matrices whose 1jth elements are

62H(x,p,w)/6x16p3, 62H(x,p,w)/6xlde, 62H(x,p,w)/6w16w3,

T T

respectively; H = H H = H®_ . Using abbreviated notations

Xp PX? XW WX




yields the following continuous and discrete version of system

(10):

H,(2) 2 = -H (2) z(0) = z (11)

0

B _-1
s+1 = Zg ~H (2 ) H (z) (12)

where 2 is given, s = 0,1,2,...,.
In the case when constraints are absent, these methods
coincide with the Newton method. They are well known and are
investigated when problem (1) has no inequality constraints
(see Ref. 3).
On the basis of continuous methods (4) - (7), we can
construct a number of discrete methods for finding saddle

points. But we shall use only the simplest finite difference

approximation to (4) - (7). For example, method (4) yields

X = X —aHX(zS) s, D = p

s+l s s+l * OLHp(Zs) 4

S

Woyp = Wo ¥ an(zs)

> (13)

where O < o 1s the step length. The discrete version of
other methods can be written in an analogous way, except in

(12), where it is possible to use a = 1.



2. Convergence Proofs

In this section we shall give rigorous convergence proofs

of the methods suggested above. We shall first state some
preliminary results.

Define the following set of integers:

B(x) = {i|n*(x) = 0, 1 < i< ¢}

Definition. The constraint qualification holds at a point

x if all gradients {gi(x)}, 1 < i < ¢ and all gradients
hi(x), jeB(x) are linearly independent.

Definition. The strict complementarity holds at a point

0 it follows that wy # O, i < i < c.

Z, if from hl(x*)

Lemma 1. If z (X,p,w) is a saddle point of function
H(z) in problem (2), then x solves problem (1), and
F(x) = H(X,p,W).

Lemma 2. Let A be a neighborhood of X and let the

following inequalities hold:

H(X,p,w) < H(X,D,W) < H(x,D,") (14) |

for any p e E., weE,, x €A, x # X3 then X is a local,
isolated solution to problem (1).

Lemma 3. If X € X then

F(x) = sup sup H(X,p,w)
p€Ee weEé




The proof of these lemmas is quite similar to that of
analogous results for problem (3)(see for example Ref. 4),
and is therefore not given here.
Consider the following auxiliary problem
max min P(x,u) , (15)
ueEk ern
where P(x,u) is a continuous function of x and u. Use will
be made of the following lemma, which is stated here without
proof (for proof see Ref. 1).
Lemma 4. Suppose that function P(x,u) is twice contin-

uously differentiable on En x E , and a solution to problem

k
(15) exists. Sufficient conditions for y, = (x,,u,) to be

an isolated (unique locally) maximin point of problem (15)

are that

1) y,. is a stationary point, i.e.
P (ys) = 0, P (yi) = O,
2) Pxx(y*) and M(y,) =

_1 . .
Pux(y*) Pxx(y*) qu(y*) - Puu(yg) are positive

definite matrices.



If matrices Pxx(x,u) and M(x,u) are positive definite
for arbitary x € En’ u € E;, then the stationary point y, is
a global maximin point of P(x,u). However, y, may not be a
saddle point of P(x,u) (see also Ref. 1).

Lemma 5. Suppose that the constraint qualification and
strict complementarity hold at a stationary point z,, the
Hessian HXX(Z*) is positive definite, and h(x,) < 0. Then the

Hessian HZZ(Z*) is nonsingular, the symmetric block matrix

—— e e e W o -

is positive definite, z, is a local, isolated solution of
problem (1).

For shorthand in the formula for N, we omit the argument,
which is z,. We shall use the same abbreviations later.

Proof. Stationary conditions (9) and inequality h(x,)
< 0 imply that x, € X, i.e. x, is a feasible point for problem
(1). 1

To prove nonsingularity H, (z4) we need only show that

Z

there is no non-zero solution of the following system of linear
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equations:
Hxx(z*)i + gx(x*)ﬁ + 2h (x,) D(w,)w = O (16)
T - T - -
gx(x*)x = 0, D(w*)hx(x*)x + D(h(x,))w = 0O (17)

From the last system and strict complementarity, it follows

that for all i such that i € B(x,),

h;(x*)i =0, hl(x*) = 0, wi £0 ,

and that for all i such that i & B(x,),

h'(x,) < 0, wi = 0, wl=o0

In both cases hl(x*)ﬁl = 0 and D(w*)hz(x*)i = 0. Let x # 0;
then premultiplying (16) on the left by iT and taking into

account (17) yields

=T -
X Hxx(z*)x =0

This holds only if X

0. Consider this case. From (16) and

(17) we find

g,(x)p + 2h _(x,) D(w,)w = 0 , D(h(x,))W = 0



...ll_

The first system can be written in the form

g (x,)p +2 I hi(x, wint = o (18)
ieB(x,) *

A1l wi > 0 for 1 € B(x,); with the assumed constraint qualif-

ication all the gradients in (18) are linearly independent;

0O and W™ = O for all i € B(x,). But we

and (18) holds if p

found above that w' = O for i € B(x,); thus X = O, p = 0, w = O
for all solutions. This contradiction proves that the matrix
H__(x,) is nonsingular. We can assume without loss of gen-

erality that h'(x,) = 0 for 1 < i < s and h'(x,) < O for

1 +s <1 < c. Introduce the vectors

<
n
1
o
=
o]
-
o
D
-
=
-
-
=

and

joryd
n
—
o
0
+
'_‘
=
[ 4]
+
no
o
Cy
m
el
-
W
1"
Q
i
wn

Making use of strict complementarity, we obtain wi = 0 for all
1 +s <1< c. Therefore, omitting arguments we can rewrite

N as follows:

nr XX XV

=
1
T
__1;__
s}
s
__:;_-
1
no
————pm———
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where Oij is the i x j matrix whose elements are all equal to
zero, and D(h) is the diagonal matrix whose ith diagonal

element is hl. The matrix N can be written in the four blocks

form
..l 8
Hvx Hxx Hxv X Okr
i
Oy . =2D(h)
where
0o - 1(X):2( Yoo ige ' oo 11 N DNy
<V g, (%) ) gy (x4 .....gx(x*) '2w*hx(x*):...:2w*h*(x*)

is the nxk matrix. Assuming strict complementarity, wi £ 0
for all 1 < i < s. Since the constraint qualification holds,
all gradients gi(x*), 1 <i< e and wihi(x*), 1 <ic< s are
linearly independent columns; that is, H , has maximum rank
k. Since H;i(z*) is a nonsingular matrix, there exists a
symmetric, nonsingular matrix W such that H;i(z*) =W oe W, It
is well known (Ref. 5) that if a matrix is multiplied on the
left or on the right by a nonsingular matrix, the rank of the
original matrix remains unchanged. Thus matrices HX$ W and

T

W Hy, have maximum rank k. Their product Heo W W HXV =

T -1 . . .
Hxv HXx HXV 1s a nonsingular symmetric matrix. Because of
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assumption B < 0, matrix -D(%) is positive definite and con-
sequently N is also positive definite.

According to the sufficient conditions formulated in
lemma 4, the stationary point z, is the local, isolated maxi-
min point of problem (2); hence, taking into account that x,
is a feasible point for problem (1), we obtain from lemma 3

that

F(x,) = H(z,)

max max min  H(x,p,w)
peq weEG x€A

sup sup H(x*,p,w) . (19)
pEEe WEEC

where Q, G, A are neighborhoods about points p,,w,,x,,
respectively. From (8) and (19) the inequalities (14) follow.
Therefore z, is a local, isolated solution of (1).

We shall show now that z, is an isolated saddle point
of H(z) in problem (2). If it is not true, then for any
neighborhood of point 2z, there would exist a saddle point
z, of H(z). The point would be stationary. Applying the

Taylor formula for first-order expansions, we obtain

Hz(zl) = HZ(Z*) + HZZ(Z* + t(zl - z*))(zl -2z,) =0 , (20)
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where O < t < 1. The Hessian HZZ(Z*) is nonsingular. As
the Hessian is continuous, we may select z, 80 close to z,
that the Hessian HZZ(Z* + t(zl - Z,)) 1is also nonsingular
for arbitary O < t < 1. Hence, the system (20) has only
trivial solution 2z, = 2x. The contradiction is evident.
Local uniqueness of the saddle point is proved.

Theorem 1. Suppose that the assumptions of lemma 5 are
satisfied. Then the solutions of systems (4) - (7) and (10)
locally, exponentially converge to z, as t » « (i.e. positive

numbers €, p exist such that ||z(t) - z,|| < ¢ (e)e ™Mb ir

IA

€). There exists a number a such that for

IN

IIZO - 24|
any O < a < a the solutions of finite difference approxim-
ations to (4) - (7), similar to (13), converges locally and
linearly to z, (i.e. O < e, 0 < q < 1 exist sugh that

IIZS - zu|] <0 (e)g® if [lzs - 2 <€),

ol
Proof. All the systems suggested above have two common
properties. They are autonomous, and for all these systems
any stationary point z, is an equilibrium position. This
permits us to use for proof the linearization principle first

proved by Liapunov (Ref. 6) and often called "the first method

of Liapunov". With this technique we shall prove the asymtotic
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stability of solution z(t) = z, of systems (4) - (7) and (10).
This result implies local convergence of the solutions z(t)
to a stationary point z,.

Set §x = x(t) = X4, 8p = p(t) = Dy, W = W(t) - w,,
§z = (8x,8p,8w). Using the Taylor formula for first-order

expansions using stationary condition HZ(Z*) = 0, we obtain
H (z, +# 8z) = H (z,) + H (z,)8z + O(||Gz||2)
z T* z X zz X
-1 4 2
H o (z, + 82) H (z, + 8z) = 38z + o(]|sz|]°)

XX

where O(|]y||) is a quantity such that
lim o(llyl| < as ||y| =0

The equation of the first approximation cf system (4) about

the equilibrium »noint z, is

- \ \
- -g -2h  D(w)
XX : X X X

______ [
! )
- T ¢ '

§z(t) = M 8§z(t) where M = g, : Oee : Oge

e

' \
oD(w)ht | 0 l 2D(h)

| X, ce 1 _

1

(21)
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All elements of matrix M are computed at the point z = z,,
The convergence of method (4) will be proved if we show that
all eigenvalues X of matrix M have negative real parts. Let
§z = (8x,8p,8w) be a characteristic vector of M, i.e.

M &z = x 6z. Let 8§z = (3x,%p,8w) be a complex conjugate to
vector 8§z; Re b denotes the real part of complex number b.

From (21) we obtain
—T _ 2 =T =T
Re 8§z M8z = Re A|[6z]||° = Re[-68x H, ., (2,)8x+28w D(h(x,))éw] < O

Here we take into account that Hxx(z*) is positive definite
and x, is a feasible point. Consider the case when Re A = O.
Then Re [-FfTHXXGX + 26wD(h(x,))8w] = O if and only if &x = O,
i

8w- # O for all i such that i € B(x,). From the characteristic

equation we have
g8.(x,)8p + 2 I hi(x*)wiawi = 0
ieB(x,)
From the constraint qualification it follows that Gwi = 0 for
any i € B(x,). Hence ||8z|| = O; the case Re A = O is thus
impossible and strict inequality Re A < O holds.
The convergence of methods (4) - (7) can be proved by

similar analysis of their characteristic equations. Their
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eigenvalues proved to be real and this circumstance simplifies
investigation. For example, the linearized system of equation

(5) about the stationary point z, is

§x = —HXXGX - gxép - 2hX D(w)dw
. T.-1
§p = —gXHXX Eéx Sp + 2hX D(w)Gw]
Sw = H_ 6w -2D(w)h_H.: [g.8p + 2h_D(w)éw]
WW X XX x°P X

The condition for asymptotic stability can be expressed by

means of the characteristic roots of the following secular

equation
| I
- AT : g, i 2hXD(w)
____________ Y [
-1 i oTo-1
O i g H g + AT, i 2gXHXXhXD( )
____________ Y S
- - I
0., I 2D(w)h H Jg, 1 AD(wh H Sh DOw)=H 44T,
I 1

(22)
where Ij is the jJ x j unit matrix.

It is easy to see that determinant (22) is equal to the

product of the determinants of the diagonal cells:

|H,, + AL | ¢ [N+ I =0 (23)

e+C|
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According to lemma 5 the matrices Hxx and N are symmetrical
and positive definite; hence, the characteristic roots of
equation (23) are real and strictly negative.

After some transformation it can be shown that secular
equations for systems (6) and (7) also have real, strictly
negative roots. From the integration of (10) along a

solution, we have

H (2(t)) = H,(2(0)e™" ,  2(0) = zg

This shows that if for any initial state z, there exists the

0
solution z(t) of system (10) for all t > O, then this
solution converges to a stationary point, which may not be
feasible for problem (1), nor be a saddle point in problem
(2). But if Zq is chosen sufficiently close to a saddle
point z, at which all assumptions of lemma 5 hold, then the
solution z(t) of (10) exists for all t > 0, and z(t) converges
to the saddle point z, as t » =,

The principle of determining the stability from the

equation of the first approximation about an equilibrium state

is also valid for discrete systems. Denote AX = Xg = Xgxs

APy = Pg = Px> bW = W = Wy, Az = (Bxg,Ap_,Aw,). The

S S S
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linearized system of (13) about equilibrium point z, is

Az g = ¢ A zg (24)
where ¢ = I, . . + oM (M is defined by (21)).
The solution Zg z z, of the autonomous discrete system

(24) is asymptotically stable if all eigenvalues of the
matrix ¢ have magnitudes smaller than 1.

Let u and A = (Xl’x2""’xn+e+c) be eigenvalues of matrices

¢ and M respectively, i.e.

|¢ - ul =0 M= AT e

n+e+cC |

Consequently, we have relationship u = 1 + al.

Denote
2 . 2 2 2
12 = max (11210502 e 2
Re AS = max |Re Al’ Re A2,...,Re An+e+c]
5 = |2

-2 Re xs/lxj
We proved that all A have negafive real parts, hence a > O.
The magnitudes of all u are smaller than I (in modulus) if o

is sufficiently small, O < a < a. This follows from inequalities:
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[ul? = [1+a]? = T+a[r]2[ + 2B < 1aa|n[®[0-3] < 1

Ry

For computation it is desirable to take step length a
as large as possible. But in the case of large o values we
may lose convergence. The maximum admissible o value depends
on function F, g, h, point z, and the computational method.
In all other discrete versions of systems (5) - (7), the proof
of convergence follows from that of the respective continuous
system, as was shown above.

Theorem 2. Suppose that the assumptions of lemma 5 are
satisfied and the function HZZ(Z) satisfies the Lipschitz
condition in a neighborhood of point z,. Then the solution

Zg of (11) locally quadratically converges to the saddle

point z,; i.e. g,e exist such that
e
[lzg = z4|| < c(e)a® if |lzg - z4|| <€)

The proof is analogous to that of the Newton method of conver-
gence theorem (Ref. 7), and is therefore omitted. To hasten
convergence to the solution of problem (1) we can, in methods
(4) - (7), (10) and (11) use the following function instead

of H:
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lar |

i

fan)

+

o]
"nMo

. C N .
ExI? + b 1 wh)imicx))?
1 i=1

where a, b are some positive coefficients. From (4), for

example, we obtain

x==-T_, p=T w =T, (25)

All other methods can be modified in a similar way. It is

easy to prove that if the assumptions of theorem 1 hold, then
the solution of (25) locally converges to z, for any O < a,
0 < b.

3. Numerical Examples

We shall give an example that was solved using the three
methods presented to illustrate their convergence properties.

The function to be minimized is

F(x) = [xl + 3x° 4 x3]2 + 4 (xt - x2)2

The constraints are




—-P2=

The starting point is assumed to be

The step length was o = 0.02,

The approximate solution of this problem is F, = 1.8311. The
iterations were terminated if the difference between the current
value of F(XS) and the following one remained less than 107°.
If the number of iterations was more than 100, then the process
was also manually terminated.

Denote the maximum number of steps by N. Let & be a
difference between F(XN) and F, and T be the time of computat-

ions. For the discrete version of (4) N = 100, § = 0.0064.

T = 11 sec were obtained; for the discrete version of (5)
N = 100, § = 0.0056, T = 16 sec; for method (11), N = 4,
§ = 0.0001, T = 3 sec.

The modified Newton method converges after 4 iterations.
While this method has the best rate of convergence, it also
requires more time per iteration than the others, and the size
of the region of convergence was also less. The simplest

method (4) has the largest region of convergence.
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It is not possible to state without ambiguity that one
numerical method is superior to another. It 1s also doubt-
ful whether a universally best method exists. For computation
the combination of different methods seems to be most expedient.
For finding a rough solution, the simplest methods, such as
(4), may be used; a more accurate solution would be found by
a more complicated method such as (11).

The difference §(s) = F(xs) - F, as a function of step
number s is shown in Fig. 1 for method (13). Various values
a = 0.05, a = 0.04, o = 0.02 were used. For a = 0.2, method
(13) does not converge. Increasing the step length o hastens
the rate of convergence, but the solution becomes less stable.

The influence of coefficient a on theArate of convergence
of method (25) is shown in Fig. 2, For computation, a discrete
approximation similar to (13) was used with o = 0.02, b = 0.
Using a small value of a (a = 1, a = 2) hastens convergence,
but for a larger value (a = 5) the convergence rate decreases.

4, Some Generalizations

Consider the following minimax problem. Find

min max K(x,y) (26)
x€X ye€Y
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FIGURE 1

FIGURE 2
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where X = {x € En|g(x) = 0, h(x) <0}, Y = {y e En|G(x) = 0,

H(X) :O}; XEEn’ YEEm, gEEe,hEEC, Kk? s°

Functions K, g, h, G, H are continuously differentiable.

Introduce the Lagrangian as follows:

e ..
2(X,¥,P,W,P,W) = K(x,y) + I pig’(x)
i=1
c . . Kk .. ) . .
2
v %t -z Pret - L wh)EN ()
i=1 1=1 i=1
where P € Ek’ W e Es’ p € Ee, W E Ec'
Consider an unconstrained maximin problem
max max max min min min d(X,y,DsW,P,W)
yeEm pene weEC ern PEEk WEmS
(27)
Lemma 5. If z = §,§,5,&,P,W) is a saddle point of

function L(z) in problem (27), then (X,y) is a saddle point
of function K(x,y) in problem (26).
For solving problem (27) any of the above methods can be

used. For example, the simplest method, (4), yields

(28)
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We shall call stationary points those points z, where the
right-hand sides of equation (28) are equal to zero.

Theorem 3. Suppose the constraint qualifications (for
constraints g,h and G,H) and strict complementarity hold
at a point z, which is feasible for problem (26), and matrices

QXX(Z*) and - ¢ y(z*) are positive definite. Then the solution

y
of system (28) locally, exponentially converges to z, as t -+ «.
The proof is similar to that of theorem 1 and therefore

is omitted. Analogously to (28), all other methods can be

generalized.
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