RR-75-11

ON STOCHASTIC COMPUTER NETWORK CONTROL

Yu. A. Rozanov

May 1975

Research Reports are publications reporting
on the work of the author. Any views or
conclusions are those of the author, and do
not necessarily reflect those of IIASA.






On Stochastic Computer Network Control

Yu. A. Rozanov

1. During the past year a problem concerning distributeu
control of a communication system for transmitting infor-
mation has arisen at IIASA [1]. One can imagine a general
network of nodes (terminals) and arcs (transmission lines)
designed to meet different types of demands entering the
system from outside, to be serviced at the corresponding
terminals.

If by chance no (open) direct line is available to
transfer a demand from an initial node i to its proper
destination j, then the problem is to choose the best of
a number of arcs (i,k) leading from i.

According to [1], this problem is posed in the
following way. It is assumed that:

a) each line o is independently opened or closed
with the given probabilities p(a) and
1 - pla);

b) if a demand D appears at some node k, only
local information is available, i.e. one knows
which line from i is open or closed;

c) the probability distribution of the system, which
in case (a) is determined by all probabilities
p{a), remains constant; in other words it does
not depend on a routing (line choice) policy.

One can note a few weaknesses of the model (abc). First,
according to the main problem this model has to work in a
situation when a typical route from the initial node to the
destination consists of more than one arc; but in that case
assumption (a) concerning line independence does not hold.

Secondly, the existence of optimal control under which
the system evaluation process becomes stationaryl is a very

lIn other words, in proper system space there is the
equilibrium (stable) point which is invariant under our
(control) transformation.



interesting and difficult problem; but in model (abc) it is
simply taken for granted (see assumption (c)).

In considering model (abc) the optimality criterion is
to choose for the current demand the route which leads to
the destination with maximum probability. Remember that
according to assumption (b) one has to make a decision by
knowing the probability (system state) distribution and local
information at every node reached.

I am not familiar enough with a real communication
network to know how realistic is assumption (b), but I
believe that if the problem of the routing policy for random
demand flow is actually important then a detailed knowledge
of the whole system situation is indispensable. ©One can
imagine, for example, that a system operator knows the whole
network situation. In this case, the optimality criterion
suggested in [{] does not work at all, but the problem of
routing policy is still valid.

By the way, if we are given some probability distribution
p =p(x) , xeX , (1)

on some space X of all possible system states x, then the
problem of the optimal route leading to the destination with
(corresponding) maximum probability is a pretty good exercise
in dynamic programming.

Note that under assumption (a) the system state may be
described by a set x of all closed lines, and the probability
distribution of the network system considered is

P(x) =T pla) T (1 - p(R)) . (2)
ogx Rpex

Let us therefore consider the arbitrary probability
distribution (1) on state-space X. Any possible system
state xeX indicates specifically which arcs are open or
closed. Moreover it may show a route of each demand entering
the system and so forth.

Let
M5 (+/2z)

be the maximum probability of reaching destination j under
the condition that the corresponding demand has appeared at
terminal k and a part z of the current system state x (zC x)
is known.



After arriving at terminal k we learn something new
about the system state x; say we know its part y,

zCcy<cx ,

which specifically indicates a set of all open lines from k.
Under the condition that the open line

Otk —eul(y) (3)

is chosen, the new (conditional) probability of reaching
destination j is

Taty),j 7Y

and

ey (/2) = 1
y2z

“u(y),j('/y) Pl{y/z} (4)

where summation is done over all disjoint outcomes y which
may happen after arriving at terminal k, and

} P(x)

plysz} = 2 . (5)

Yy P(x)

XgZ

For model (abc) we have to assume that z is nothing and
y indicates exactly the set of all open lines from k.
(Formally one can treat y C x as a set of all closed lines
from k.) In this case

'ITkj = 5 ﬂu(y)'j P{y} ?

P{y} =1 p(a) T (1 - p(R)) .
oy BEy

Let us look at the general equation (4). Because the
probablllty‘P{y(z} does not depend on the control parameter
u = u(y) which is the next terminal after k, we have to have



ﬂu(y),j(-/y) = max (6)

over all open lines from k indicated by y. Thus in order to
determine at each step the corresponding optimal control
parameter u = u(y), it is sufficient to determine all
probabilities

ﬂij(-/y)

In the case of finite system space X our step-by-step
process is bounded, so actually

ﬂij(-/y) = ﬂij(n/y)
for some finite n where

ﬂij(n/y) : n=1,2,..., (7)
is the corresponding probability of reaching j from i in
not more than k steps.

The probabilities ﬂi.(n/y) are the monotone increasing
sequences, and J

ﬂij(-/y) = lim ﬂij(n/y) .
Obviously
o , (i,3)ey
ﬂij (l/Y) =
1, (i,3)ey

if y means the set of all closed lines from i, and generally

Y P(x)

X2y
_ x3(i,])

)} P(x)
X2y

(8)




Similarly to (4)-(6) we have the following recurrent equation:

Wij(n-+l/z) =
yoz

ﬂu(y)'j(n/y) P{y/z} (9)

where u = u(y) has to be the maximum point of the corresponding
probability ﬂkj(n/y) as a function of k, namely

ﬂuj(n/y) = max nkj(n/y) (10)

over all open lines (i,k), (i,k)e¢y.

2. The optimal control routing described above depends on
the corresponding probability distribution (1). We
mentioned already the problem of stationary distribution
which is invariant under the system transformations governed
by the routing control.

Let us consider this problem in a case when the demand
flow is of the Poisson type. Say a demand D appears during
time interval At at the initial terminal i with the
probability

11
Aij(D) At + o(At) (11)

(where j is the corresponding destination) and is served
(independently) at j according to exponential probability
distribution with the parameter

uj(D) . (12)

In this case, the system evaluation process

x = x(t) , t >t (13)

O ’

is of the Markov type (with respect to the obvious system
state description) with the transition probability matrix Q
depending on our routing control, which itself depends on

the choice of the probability distribution (1). Let us
indicate such control as

u = u(P)



and set
Q = Qlu(P)] ,

where P is the corresponding (a priori) probability
distribution.

From well known ergodic properties one can be sure that
for any P there is a (limit) stationary distribution P*:

p* = p*Q[u(P)] . (14)
The problem concerns a probability distribution P* such that
p* = p*Q[u(p*)] . (15)

In the case of distribution P = P*, the system process

x = x(t) governed by control u = u(P) is stationary; in
particular the probability state distribution P = P* remains
constant.

Formula (14) gives us a non-continuous mapping
Q:P — P*

of a convex set of all probabilistic vectors P = {P(x)!} into
itself, and we have no special idea how to find the fixed
point P = P* if such a point exists.

Note that under the control u = u(P) with respect to any
fixed distribution P the corresponding stationary distribution
P* is the unigque solution of the linear equation

P*R[u(P)] = 0 (16)

where

R[u(p)] = {ny [u(p)]}

denotes the transition densities matrix of the system's homo-
geneous ergodic Markov process (13) which can be easily

determined by the initial parameters A,. (D), u.(D) (see (11), (12)),
and the routing control u = u(P). 1] J

.Assume that the current system state x means that the
serving demands Dl""’Dm’ keep the corresponding lines



i —_— o o0 e o

1 jl

i " e o0 — J
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and that the waiting demands Dm+1"“'Dn occupy the lines

Tmel = 7 T Ipn
i —> stes —> 3
n n
(where possibly ik = jk; k =m+ 1,...,n). According to the

routing control u = u(P) each new arriving demand D has the
certain route

i —_—> oo 0 —)j 1

so one can easily find out which new system state y is
achievable from x during a short time interval At with a
significant probability of O(At). For example, a service
of some Dk’ k < m, may be finished, so the corresponding
line

will be open. This may happen with probability

(D, } At + o(At)

H Kk

Ik
and according to an additional routing prescription some of
the waiting demands may be transferred further, which gives
us the certain new system state y. Another significant

possibility is for some new demand D to appear; then the
corresponding line

will be closed, which happens with probability

Aij(D) At + o(At) .



Thus, the problem is to find a probabilistic solution
P* of the (non-linear) equation

P* R [u(P*)] =0 (17)

where R[u(P*)] is the matrix with components ny[u(P*ﬂ which

are the transition probability densities described above.

In any case, if one gets numerically a probabilistic
solution P* of equation (17), then under the control
u = u(P*) one can be sure that the actual state distribution
tends to P*, which in the obvious sense is the equilibrium
point; with respect to the state distribution P = P* we then
have the maximum probability of reaching the destination.

3. As was mentioned, the optimality criterion considered for
the routing control does not work when the system operator knows
the complete situation, in other words when one has to control
the system process (13) by knowing the corresponding system
state x = x(t).

Let us consider the routing control
u = u[x(t)] (18)

according to which any appearing demand D has to be transferred
in a proper way from the initial node i towards destination j.
It may happen that for the current system state x = x(t) it is
impossible to transfer D from i to j. Let us call this
situation a failure.

Let Yij(X’D) be a set of all possible system states which

are consistent with transmission of demand D from i to j under
the condition that the current system state is x. The failure
means that the corresponding set Yij(X’D) is empty:

Yij(x,D) =0 . (19)
Remember, we have a demand inflow of the Poisson type with
the parameters Xij(D) (see (1l1)), and it is easy to verify

that a probability of failure during a short time interval
(t,t + At) is



a(x) At + o(At)

(20)
alx) = ) Xij(D) .
i,j,D :
Yij(x,D)=O
The failure probability under the condition that some
demand appears is
= (21)
T(x) = y Aij(D) y Aij(D)
i,3,D : i,j3,D
Yij(x,D)=O

where x is the current system state. The appearing demand may
be transferred from the initial node i to destination j in
different ways; accordingly, the system will be transferred
from x to one of the states erij(D). It seems quite likely

that one may be interested in minimizing the failure proba-
bility by choosing such a route leading from x to the new
system state y, for which

7(y) —> min

(22)
y€Yij(x,D)
A loss ¢ij(D) may be associated with the failure of trans-
mitting demand D from i to j. 1In this case, the loss average
due to possible failure at system state x is
o(x) = Y ¢;5(D) 144D ) Ai3 D), (23)
i,j,D: i,3,D

Yij(x,D)=O
and the optimality criterion may be generalized to the following:

d(y) — min
‘YEYij(X’D)

Of course there may be other operation goals. Say one
is interested in minimization of the total loss expectation
during a fixed time interval (tO,T). Let the expectation of

loss during a short time interval (t,t+At) under condition
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x(t) = x be
) %35 (D)D\ij(D) At + o(At)] = &(x) At + o(At)
i,j,D:
Yij(D)=O
where
o(x) = N “’ij(D) xij(D) ; (25)
i,j,D:
Y..(x,D)=0
1]

then the expected value of the total loss has to be defined as
T
E J d(x(t)) dt . (26)

to

(Note that in the case ¢ij(D) = 1 we deal with the expected
number of failures.)

Standard dynamic programming may be applied to determine
optimum functions Fx(t) of t (x€X),

T
Fx(t) = min E {{ d(x(s)) ds//;(t) = X } ' (27)

t

where the minimum is taken over all possible Markov type
routing controls

u = u(x,t)

(see, for example, [2]).

Obviously the optimal control has to be of the following
type: if demand D appears at time t when the system is at
state x, it has to be transferred in such a way that the
corresponding new system state y€Y..(x,D) gives the minimum
future loss: ' 1]

F (t) — min

Y
YEY. . (x,D)=0
1] (28)
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Formally this control description may be verified by
considering the conditional loss expectation with a fixed
system trajectory up to moment T of the nth demand appearance
under the condition that our routing control is actually
optimal after moment T:

T
E J d(x(S)) ds
t

T
= EE{J d(x(s)) ds + Fx(T+O)(T)/X(s)’ s < T} .
t

That is, the routing policy (28) gives us the minimum
FX(T+O)(T) because of our choice of system state x(1 + 0) = vy

which may be achieved from the previous state x(1) = x.

Let us consider an expected loss of the following
general type:

B j o(x(t)) c(t) at (29)

t

where c(t), t > t; is some weight function. If

() - {1 , ty St <T ’
o , t>T
we are dealing with a loss of the previous type (28). Let us
set tO = O and
c(t) =e™@ ,  t>0 ; (30)

this weight function may be treated as a discount factor.

In this particular discount case the dynamic programming
objective functionstx(t) which give us the corresponding

expected loss minimum have the following property:

min E {[ e 2% p(x(s)) ds/x(t) = x}
' t

= e-at min E{[ e—aSQ(x(s + t)) ds//x(t) = x}
0
-at
e Fx(O) . (31)

F_(t)
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Thus if we set

FX = FX(O)

the optimal control may be described as follows: demand D
appearing at system state x has to be transferred from the
initial node i to destination j in such a way that for the
new system state y we have

Fy-—+ min (32)
erij(x,D)=O

(compare (22), (24), and (28)).
Let us consider this type of routing control for an

arbitrary objective function FX. We suggest defining the

stationary optimal objective function

FX ’ xeX ’

as a function with respect to which the routing control is
optimal in the following sense.

Let Q(F) be the transition probability matrix of system
process x = x(t) governed by the control defined above with

respect to objective function F. Let P = P(F) be the
corresponding stationary probability

P = PQ(F)

which is the (unique) probabilistic solution of the linear
equation

PR(F) = O , (33)

where R(F) is the transition densities matrix. Then the
expected value of the total loss during any time interval

(tO,T) is

T
E J ¢(x(s)) ds = [Z ¢ (x) P(X)] (T - t5)
X

to

and the optimal objective function F has to give us the
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minimum loss:

Yy ¢(x) P(x) = min . (34)
X F

Remember that ¢ (x) was defined by formula (25), and the
stationary probability distribution P = {P(x)} depends on
the objective function F because of relationship (33).

There is only a finite number of possible system states
x and of all possible routes from any node i to any destination
j. Thus we are actually dealing with a finite number of
possible routing controls, and there is no question about the
existence of an optimal objective function. But how do we
determine one such function? Concerning this problem we
wish to make a remark which may not be useless: namely,
that under any homogeneous routing policy described by the
corresponding operation function

F = F(x) ’ XEX ,
we are dealing with the ergodic homogeneous Markov process

x = x(t) , t>0 ;

and for any initial system state x(0) x we have

E {Q(x(t))/X(O) = x} =) o(y) P{x(t) = y/X(O) = X}

Yy

— ) 0 (y) P(y) ,
t > ® y

where P = P(y), y€X, is the corresponding stationary system
distribution and the convergence is uniform over all xeX.
(You will recall that there is only a finite number of
different system states x.)
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Now we have

G2 = E {
X
= { ae_at E{@(X(t)v/x(o) = x }dt

0]

[ ae_atdb(x(t)) dt/x(o) = x}

0

— ) o(y) Ply) ,
a->=o Y

where P = P(y), YE€X,

is the corresponding stationary system
distribution and the convergence is uniform over all operation
functions F

(you will recall that there is only a finite
number of different routing strategies u =

= u(x), x€x).
Let a parameter "a" be a such that

|62 - § aly) PAY)| < ¢

and let

’ xeX

be a stationary system distribution with respect to the
routing policy determined by the operation function

F*(x) = min G2

’ xeX
u

Obviously

T o(x) PP(x) < min ] &(x) P(x) + ¢
X u X

and moreover

Y o(x) P?(x) = min §J o(x) P(x)
X

u X

for all sufficiently small parameters a,

a > 0, so
asymptotically (a ~» O0)

the operation function
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F(x) = min E J e—até(x(t)) dt/x(O) = x}
u 0

is stationary optimal (you remember there is only

a finite number of different values ) ¢(x) P(x)).

One may believe that a similar property exists with
respect to the operation function of the type

T
F(x) = min E J d(x(t)) dﬁ/x(o) = x
b 0

(T » =)

for which computation the standard dynamic programming methods

may be applied.
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