NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

NONSMOOTH ANALYSIS

Jean-Pierre Aubin
Ivar Ekeland

February 1984
WP-84-5

Working Papers are interim reports on work of the
International Institute for Applied Systems Analysis
and have received only limited review. Views or
opinions expressed herein do not necessarily repre-
sent those of the Institute or of its National Member
Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria



PREFACE

This survey of nonsmooth analysis sets cut to prove an inverse
function theorem for set-valued maps. The inverse function
theorem for the more usual smooth maps plays a very important
role in the solution of many problems in pure and applied anal-
ysis, and we can expect such an adaptation of this theorem also
to be of great value. For example, it can be used to solve
convex minimization problems and to prove the Lipschitz be-
havior of its solutions when the natural parameters vary--a
very important problem in marginal theory in economics.
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NONSMOOTH ANALYSIS

Jean-Pierre Aubin and Ivar Ekeland

INTRODUCTION

Nonlinear analysis must provide sufficient conditions for

solving inclusions
(*) y €EF(x)

when F is a set-valued map from a Banach space X to a Banach

space Y.

Our principal objective in this survey paper is to prove an
Inverse Function Theorem for set-valued maps allowing us to say that
when X is a solution to

Yg €F (xq) ’

then there exist neighborhoods U of Xq and V of Yo such that in-
clusion (*) has solutions in U whenever y ranges over V. Further-
more, as in the smooth case, we require that the set of solutions
F-1(y)rﬁU of (*) depends in a Lipschitz manner on the data y.
Since the Inverse Function Theorem for usual smooth maps plays
such an important role in solving many problems of pure and

applied analysis, we can expect an adaptation of the Inverse
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Function Theorem to be very useful, more than just a generaliza-
tion that had to be made. Actually, it can be used for solving
convex minimization problems and proving the Lipschitz behavior
of its solutions when the natural parameters vary. Economists
claim that this problem is of utmost importance in their field
(marginal theory). We shall take our inspiration from the smooth
case where the sufficient condition is very simply stated: the
derivative at X must be surjective. The question arises: Can we
define derivatives of set-valued maps such that the surjectivity
of the derivative at (xo,yo) is sufficient for solving the sur-

jectivity of F around Yo?

The answer to this question is one purpcse for this paper.
We now explain how we shall proceed to define derivatives of
set-valued maps. We adopt the very first strategy, apparently
suggested by Fermat, which defines the graph of the derivative to
a smooth function as the tangent to the graph of this function.
Therefore, we postpone dquestions about derivatives until after
having tackled the matter of tangent spaces to subsets K of a
Banach space X. They don't exist when K is no longer a smooth
manifold. However, it is known in convex analysis that we can
define in a natural way "tangent cones" to convex sets, which re-
tain enough properties of tangent spaces to be guite useful.
This is not enough, because most of the set-valued maps we shall

meet have nonconvex graphs.

When K is neither smooth nor convex, there are many ways
of defining "tangent cones", each one being as "natural" as the
other. We shall retain only two concepts among the many candi-
dates: the contingent cone and the tangent cone. Namely, they

are defined in the following way: let Xq belong to K.

The contingent cone, defined by

Tp{xg) := N N v %(K-XO)-keB)
£>0 o>0 h€]0,al

was introduced by Bouligand in the early thirties, and the tangent

cone defined by
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] ]
Y h

e>0 ao,B>0 h€]0,a]
xEBK(xo,B)

]

C. (x (K-x) + B

K (Xo)

was introduced by F.H. Clarke in 1975.

We see at once that the tangent cone CK(x) is contained in
the contingent cone TK(x). They are both closed, and the tangent
cone 7s always convex. We can say that they form a kind of
"dipole", in the sense that the tangent cone CK(xo) is the
Kuratowski liminf of the contingent cones TK(x) when X > Xg (when
the space X is finite dimensional). So, several properties of

the tangent cone CK(xo) at x, "diffuse" to generally weaker prop-

erties of the contingent congs TK(x) in a neighborhood of Xg-
This "dipole" collapses to the usual tangent cone of K or the
tangent space of K when K is convex and a smooth manifold respec-
tively. We shall see in the sixth section that the contingent

and tangent cones enjoy "dual properties".

These are some of the reasons for studving both contingent
and tangent cones, and treating them as a pair rather than indi-

viduals.

Let F be a set-valued map from X to Y and (xo,yo) belong to
its graph.

We define the contingent derzivative DF(xO,yO) as the closed
process from X to Y whose graph is the contingent cone to the
graph of F:

Vo SDF(xg,yg) (ug) &= (ug,vy) €T oy (r) (Xgr¥o)

and the derivative CF(xO,yo) as the closed convex process from

X to Y whose graph is the tangent cone to the graph of F:
Vo €CF(xgryg) (ug) = (u5,vg) €Cqrapn (r) ¥or¥a) -

They may be different. Consider for instance the Lipschitz

single-valued map 7 from IR to IR defined by

T({x) = 0 when x <0 T(x) = x when x > 0 .



Then the contingent derivative of m at (0,0) is defined by
Dm(0,0) (u) = 0 when u < 0, Dm(0,0)(u) =u when u >0
and the derivative of m at (0,0) is defined by
Cn(0,0)(u) = g when us# 0, Cm(0,0)(0) =0 .

AR
graph (m)

= graph Dmv (0,0)

1\
H

This example shows that the price to pay for having a closed

convex process as a derivative is sometimes too high.

These definitions provide intrinsic definitions of deriva-
tives of single-valued maps defined on subsets K that may have
an empty interior, as well as formulas for computing them when
they are restrictions to K of a smooth map: when F is continuously
differentiable on an open neighborhood of K, then the contingent
derivatives and derivatives of the restriction F|K of F to K are
the restrictions of the Jacobian VF of F to the contingent and

tangent cones respectively:

1) D(F| Q) (kg Flxg)) = VF(xg) g (o

g (¥o)

ii) C(F|,) (x4, F(x,)) = VF(x,) |

K 0 0 0 CK(XO)
Also, these concepts of derivatives allow to compute the inverse
of the derivative of a map, in particular, the inverse of the
Jacobian of a single-valued map, because we infer immediately

from the definitions that
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i) DF(XOIYO) = D(F )(YOIXO)

-1 = C(F-1)(YO1xo) .

ii) CF(XOIYO)
Since the derivative is a closed convex process, it is useful to
*
distinguish its transpose CF(xO,yO) ; @ closed convex process from
* *
Y to X : we shall call it the codifferential of F at (xo,yo).

For real-valued functions, we can take into account the order
relation, which is used in such problems as optimization problems
(or Lyapunov functions, i.e., functions that decrease along the

tranjectories of a dynamical system).

We associate with a proper function V from X to RU{+x} the
set~-valued map V, defined by V+(x) = V(x) + R, when V(x) < +=,
V+(x) = @ when V(x) = +», We observe that there are numbers

-~

D+V(x0)(uo) and C+V(x0)(u0) such that

i) Dy+(x0,V(xo))(u0) D+V(x0)(uo) + IR,

ii)  Cv, (x4/V(xy)) (uy) = C+V(x0)(u0) + R,
where
- < D+V(x0)(u0) < C+V(x0)(u0) < 4o
We shall say that the functions D+V(x0)(-) and C+V(x0)(-) from X

to {-»} URU{+»} are the epi-contingent derivative and epi-derivative
of the function V.

In other words, the epigraphs of D+V(x0)(-) and C+V(xo)(-)
are the contingent and tangent cones at the epigraph of V at
(xo Iv(xo) ) .

When the derivative C+V(x0)(-) is a proper function from X
to RU{+=}, it is convex, positively homogeneous and lower semi-
continuous. This is, then, the support function of the closed

convex subset

*
3V(x,) := {peX |VuEX,(p,u)iC+V(xo)(u)} .



We shall call this subset the generalized gradient introduced

by F.H. Clarke in 1975. 1Indeed, the terminology is justified by
the fact that when V is continuocusly differentiable at Y then
BV(xo) = {VV(xO)}. We observe also that when V is convex, the
generalized gradient coincides with the subdifferential BV(xo)

of convex analysis.

It is then natural to consider the derivatives of the set-
valued map x + 3V(x) as candidates for the role of "second deri-

vatives". Let Py belong to av(xo); the derivative
COV(Xn,pa) 3= B32V(X.,pn)
0'Po’ ¢ 0'Po

» * S J
is a closed convex process from X to X , which is monotone when

V is convex.

These tangent cones and derivatives enjoy enough properties

to make a decent calculus. But the main justification for in-
cluding this study here is their use in the Inverse Function

Theorem.

When X and Y are finite dimensional, it has a very simple

formulation:

Let F be a set-valued map with a closed graph and (xo,yo)
belong to the graph of F. Assume that

the derivative CF(xo,yo) of F at (xo,yo) 18 surjective.

Then F-1

18 "pseudo-Lipschitz" around (xo,yo) in the sense that
there exist a neighborhood W of Yor two nerghborhoods U and V of

X Ucv, and a constant & >0 such that

o
i) Wyew, F (y) NU # @
ii) Wy, vy €W, B () nU,FT(y,) AV < ally, -yl
where &8 (A,B) := sup inf d(x,y).

XEA Y€EB

It is itself a consequence of a more general Inverse Function

Theorem, valid in infinite dimensional spaces, and involving



surjectivity properties of the contingent derivative of F, not

only at (xo,yo), but at all neighboring points.

We conclude this paper with a section devoted to the
calculus of tangent cones, derivatives of set-valued maps and

epi-derivatives of real-valued functions.



1. CONTINGENT AND TANGENT CONES

Let K be a nonempty subset of a Banach space X. We denote
by €B and eB the ball (respectively, open ball) of center 0 and
radius € > 0. We set BK(xO,e) := Krﬁ(x0-+€B) and the symbol X >Xg

denotes the convergence of x to Xq in K. K

Definition 1

We say that the subset
(1) T (x) := N N U (l(K-x)+€B)
€>0 a>0 O<h<ao
is the "contingent cone'" to K at x.

In other words, VEETK(X) if and only if

¥e >0, ¥o >0, 3u€v + ¢B, 3h€]0,a] such that

X + hu €K

or, equivalently, v&€T,(x) if and only if there exist sequences

K
of strictly positive numbers h and elements u, €X satisfying

(3) i) limu_ =v , ii) 1lim h_ =0, iii) ¥n >0, x+h u €K.
n->o n->co n - nn

We characterize the contingent cone by using the distance

function dK(°) to K defined by d,(x) := inf{llx-yll |y €K}:

dK(x-+hv)
(4) VETg(x) if and only if lim inf ———— = 0

h > 0+ h

It is guite obvious that the contingent cone is a closed

cone, which is trivial when x belongs to the interior of K:

(5) When x € Int (K) , then TK(x) = X

X
convenient to introduce the definition of the "liminf" of a

For all x€X, we have T, (x) = X. We set Tg(x) t+ #. It is

family of subsets F(u).



Definition 2

Let U be a metric space, u, belong to U and F a set-valued

0
map from U to X. We set

(6) lim inf F(u) := N U N (F(u) + €B) .
u>ug, >0 n>0 ueB(uO,n)

We observe that when the images of F are closed,

(7) ' lim inf F(u) CF(u
u-~>ug

o)
and that F is lower semicontinuous at ug if and only if

(8) F(u = lim inf F(u) .

u->u
0

0

It is useful to note that v belongs to lim inf F(u) if and only if
u->u

0
(9) ¥e >0, 3In>0 such that sup d(v,F(u)) < e.
Definition 3
We say that the subset
(10)  Cglxy) := lim inf Lx-x) = N U N (£ (k-x) +€B)
h > 0+ >0 ao,B>0 XEBK(xo,a)

X X
0 h€10, 8]

is the tangent cone to K at Xq.

In other words, VGECK(XO) if and only if

¥e >0, 3a >0, 38 >0 such that VxGBK(xO,a)
(11)
vhel0,8], Juev + &B satisfying x + hu ek

or equivalently, if and only if
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for all sequences of elements xneEx, hn> 0

converging to X and 0, there exists a sequence

(12)
of elements unesx converging to v such that
X+ h_ u_ belongs to K for all n.
n nn
It is also characterized in the following way
dK(x+hv)
(13) veC,(x,) if and only if lim _ = 0 .
K0 XX h
K0
h + 0+
We observe that when xe€ Int(K), then CK(x) = X. For all xeX,
we have Cx(x) = X. We shall set Cg(x) := #. Tangent cones enjoy

a very attractive property.

Proposition 4

The tangent cone CK(xO) to K at Xq is closed and convex.

Proof.

Let v1 and v2 belong to CK(x We take any sequence of

) .
0
elements (xn,hn)ezK x10,»[ converging to (xO,O). There exists a

sequence of elements v; converging to v1 such that the elements

_ 1 .
Y, = X, + hnvn belong to K for all né Since Yp conve;ges to Xgr
there exists a sequence of elements Vi converging to v~ such that

2

2 _ 1 2 . 1
Y + hnvn = X, + hn(vn + vn) belongs to K for all n. Since v, t v
1

converges to v1 + v2, we deduce that v + v2 belongs to CK(xO).

Hence the tangent cone is convex.
[ ]

We note that

1
C,(x,) CT,(x,) Cc| U —(K—x)) .
K'70 K'70 h>0 h 0

Proposition 5

If K is a convex subset, these three cones coincide:

— 1 _
(x = cf U H(K xo) .

(14) C,(x,) =T )
K'70 K70 h>0
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Proof

We have to prove that any uercz( v %(K'-XO)) belongs to

h>0
CK(xo). Let € >0 be fixed: there exist y €K and B >0 such that
Uy - %(y-—xo)eE% B. Let us take a := Be/2, x in BK(xo,a) and
hel0,B]. We set u := X%§ . Then x + hu = (1-%)x + %}r belongs

to K because both x and y belong to K and % < 1. Also, lu=-uyll <

Ix = x4l y - X
0 0
——??—-— + ||uo -

I < % +

3 < = g, Hence ug belongs to CK(xo). ™

N ™

These two cones may be different. Consider, for instance,
the set K from ]R2 , which is the graph of the map 7 from IR de-

fined by
T(x) = 0 when x <0 , m(x) = x when x >0 .
Then,
if x < 0, CK(x,O) = TK(x,O) = IR x {0}
if x =0, Cg(0,0) = {o0,0}, T (0,0) = (-IR,_ x {oh) U{u,u}uem+
if x > 0, CK(x,x) = TK(x,x) = {u,u}ueslR .

The tangent cone to K at (0,0) is convex, but trivial, whereas

the contingent cone to K at (0,0) is nonconvex, but quite large.

We observe also that when K is a smooth manifold (of class C1),
then both the tangent cone and the contingent cone coincide with

the usual tangent vector space to K at x of differential geometry.

The contingent and tangent cones are related by the following
interesting relation.

Proposition 6

Assume that X is finite-dimensional. Then

(15) VxOEK ’ CK(xo) Clim inf T, (x) .
X—»XO

K

K



Proof

By definition of the tangent cone, we have

0) =N U ) N n (%(K—x)-+€B) .
e a>0 B>0 xGBK(xo,a) he] 0, B8]
Let ¢ and o be fixed. It is clear that

U N N (
B>0 xeBK(xo,a) h€]0,8]

(K=-x) + €B)

o=

- N U N (=(K-x) + €B)

xGBK(xo,a) B>0 helo0,B]

g =

Since X is finite dimensional, we observe that any v in

U N

(K-x) + €B) belongs to TK(x) + €B .
g>0 h€]0,B]

g=

Indeed, there exist B and elements Xn such that

Xh-X
ve + eB for h < B.
h =
X, =X
A subsequence of converges to some w in TK(x). Hence
h
C,(x,) © N U N (T, (x) +eB) = 1lim inf T, (x) .
K0 K K
e>0 o>0 XEB_(x,,a) X >X
K70 K 0
]

The above inclusion is actually an equality.

Theorem 7. Let K be a nonempty weakly closed subset of a

Hilbert space. The following inclusions hold true

(16) lim inf TK(X)CZlim inf(co’TK(x)) c CK(XO) .
X > X X+ X
0 N
K X

When X is finite-dimensional, equalities hold true. Then the set-

valued map x + T, (x) is lower semicontinuous at x, if and only if

K
the contingent cone to X at X coincides with the tangent cone to

K at XO' -
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The proof follows from the following lemmas.

Lemma 8. Let KCX be a weakly closed subset. We denote by WK(y)
the nonempty subset of elements x € K such that llx-yll = dpe(y). We
obtain the following

(17) ¥y € K, VxGnK(y), VVGEETK(X), then (y-x,v) < 0 .

Proof. Let erwK(y) and VGETK(X). We deduce from the inequali-

ties |ly-xl - dK(x+hv) = dK(y) - dK(x+hv) < lly=x-hvl that
+

y=x,v) _ g My=xll - Wy=x-hvl ;.. . ¢ dg (x+hv) - 0
ly=xIl h-+0+ h ~  ho+ h

for y # x, since u~|llull is differentiable at u # 0. So {y-x,v)<0

for all veT,(x), and, consequently, for all vV € co Ty (%) .

Lemma 9. For any y € X, we have

C . 1 2 2 S

(18) lim inf EK(dK(y+hV) -—dK(y) ) < dK(y)d(v,co TK(WK(y))).
h~0+

Proof. Let us take x in NK(y). We observe that

1 2 2 1 2 2
s Qg (Y+hv) ™ = dp (¥) ™) < sp(ly+hv=-x] = - I y=xIl <)
because dK(y) = {ly-xll. Therefore

lim inf =—(d (y+hv)2 -d (y))2 < {y=-x,v)
2h 9K K Z
h>0+

and, for all weco TK(x), we deduce from the above lemma that

1 2
lim inf se(d (y+hv)® = @ (y)%) < Cy-x,v-w)

h-0+ K

< My=xll lv-wl = a (y) llv-wil .

Lemma 9 ensues by taking the infimum when w ranges over co Ty (%)

and x over wK(y).
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Lemma 10. Let us consider the Lipschitz function £ defined by

f(t): = %c%((x+tv)2. For almost all t > 0, we have

(19) £'(t) 2 dp(x+tv)d(v,co Ty (m, (x+tv))) .

Proof of Theorem 7. Let v, belong to lim inf co TK(x). Then,
XX
0

for all € > 0, there exists n > 0 such that, for all erBK(xo,n),

v, €co Ty (x) + €B. Now if x belongs to BK(xo,a) and t€10,RB[,

0
then nK(x+tv0)<:BK(xo,n) whenever 2a+BHv0H < n. This happens

for instance, when o := n/4 and B := n/ZHVOH. By setting f£(t) :=
%w%<(x+tv0)2, we deduce from Lemma 10 that
. —_
£'(t) < dp(x+tvy)d(vy,c0o T (T (x+tvy))) < edp(x+tvg) < etlivyll
because
dK(x+tv0) < tHvOH .

Therefore, for all x€B,(x,,0) and h&€]0,8],

5 2
dK(X+hV0)

oy B

B h
- £ - £0) = [ £ (eae < vyl
0

and consequently,

d. (x+hv,)
lim £ 0 _ o
X >X h
K 0
h >0+

This implies that vy belongs to the tangent cone CK(XO).
Then, by formula (15), we obtain:

lim inf TK(x)(:llm inf co TK(x)<:CK(x0) .
X>Xq XX

K K

When x is finite-dimensional, Proposition 6 implies that these

three cones are equal.
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The tangent cone CK(xo) being a closed convex cone, it is
equal to CK(xo)_-, its negative bipolar cone. This duality

relation being quite useful, we introduce the following definition.

Definition 11

We shall say that the negative polar cone
(20) N, (x

to the tangent cone to K at X is the normal cone to K at Xqe

2., CONTINGENT DERIVATIVES AND DERIVATIVES OF A SET-VALUED MAP

We adapt to the case of a set-valued map the intuitive
definition of a derivative of a function in terms of the tangent

to its graph.

Let F be a set-valued map froem X to Y and (xo,yo) belong
belong to graph (F).

We denote by DF(xo,yo) the set-valued map from X to Y whose

graph is the contingent cone T (xo,yo) to the graph of F

graph (F)
at (xo,yo).

In other words,

(1) VOGEDF(xo,yo)(uO) if and only if (uO’VO)(ETgraph(F)(XO’YO) .

We observe that Vo belongs to DF(xO,yo)(uo) if and only if

There exist sequences h_-+0+, u_-+u, and v_ >V
n n 0 n 0

F(xo+h u ) -y
such that v S 0 nn 0 for all n .

h
n

Definition 1

We shall say that the set-valued map DF(xO,yo) from X to Y

is the "contingent derivative" of F at (xo,yo)ezgraph (F). R

It is a "process", i.e. a positively homogeneous set-valued

map (since its graph is a cone) with closed graph.
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We now give an analytical characterization of DF(xO,yO),
which justifies that the above definition is a reasonable candi-

date for capturing the idea of a derivative as a (suitable) limit

of differential quotients:

Vo belongs to DF(xo,yo)(uO) if and only if

=0

(3) lim inf d
h > 0+
u->u0

(V F(xo-khu)-yo)
’
0 h

When F is a single valued map, we set

(4) DF (x 1= DF(xO,F(xo))

o)

since Yo = F(xo). The above formula shows that in this case, Vo

belongs to DF(xO)(uO) if and only if

IF(x, +hu) = F(x,) = hv,ll
(5) lim inf 0 0 0O - o .
h - 0+ h
u>ug,
If F is C1, then DF(xO)(uO) = VF(xo)uo. When the graph of F is

convex, we observe that u, belongs to DF(xO,yO)(uO) if and only if

= 0

F(x0 + hu) - Yo
(6) lim inf (inf 4 Vi
u->u, h>0 \ h

Proposition 2

Assume that F is Lipschitz on a neighborhood of X (belonging

to Int Dom F). Then Vo belongs to DF(xO,yO)(uO) if and only if
F(x,+hu,) -y
(7) lim inf dfv,, 0 0 0= o .
h > 0+ h

Furthermore, if the dimension of Y is finite, then

(8) Dom DF(xo,yo) = X .
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Proof
a) The first statement follows from the fact that

(9) F(x0-+hu) - y0<:F(x0-+huo) - Yo * QhHu—uOHB

when both h and Hu—uOH are small.

b) Let u, belong to X. Then, for all h > 0 small enough,
(10) yOEF(XO) CF(xy+huy) + hilu,liB .

Hence, there exists vheEF(xO-+hu0) such that (vh-yo)/h
belongs to gHuOHB, which is compact. A subsequence (vh -yo)/hn

converges to some Vg, which belongs to DF(xO,yO)(uO). n

We point out that

-1 _ -1
(11) onéEK, VyO<EF(xO), DF(XO,YO) = D(F )(yo,xo) .

Indeed, to say that (uO’VO)GETgraph(F)(XO’yO) amounts to sayilng

that (v,,u,) €T (YarXa) e
0" "0 graph(F'1) 070

Contingent derivatives allow us to "differentiate" restrictions

of a map or a set-valued map to a subset.

Proposition 3

Let F be a single-valued map from an open subset (& of X to Y

of class C1 and K be a nonempty subset of (Q containing Xq. Then
VF(xO)uO if uO<ETK(x0)

) if uoetTK(xO)

Proof

If F is a C1 single-valued map at Xq and Ug belongs to TK(xO),
there exist sequences hn-+0+ and u, > u, such that Xq + hnun belongs
) = Flxg) + h[VF(xg)u + 0(h)

to K. Since FIK(x0+hnun) = F(xg+th u,
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we deduce that the elements v, oi= VF(xO)un + O(hn) converge to
VF(x,)u, and belong to (Flg (xg*h u ) = Fg(x4))/h . Therefore,
DF|K(XO,F(XO))(uO) = VF(x5)ug. a

We follow the same procedure in defining the derivative of

a set-valued map from X to Y.
Let (xo,yo) belong to the graph of F.

We denote by CF(x ) the closed convex process from X to Y

0’'Yo

whose graph is the tangent cone C (xo,yo) to the graph of F

graph (F)
at (xo,yo). Briefly:
(13) VO<ECF(xO,y0)(uO) if and only if (uO’VO)éscgraph(F)(XO’yO)'

Definition 4

We shall say that the closed convex process CF(xo,yo) from X

to Y is the derivative of F at xOGEDom F and yOGEF(xo). R

We observe that v, belongs to CF(xO,yO)(uO) if and only if

0

Yeqre4 > 0y da,B8 > 0 such that V(x,y)eEBgraph(F)(xo,yo,a) ,

(14)

+€1B, VEVO+€ B such thatVEF(X+hu) -y

¥helo,e]1, Jueu 5 h

0

or, equivalently, if and only if

for all sequences of elements (xn,yn,h ) egraph (F)x]0,«]

n

converging to (xo,yo,O), there exist sequences of elements
(15)
u, converging to U, and Vo converging to Vo such that

Yn + hnvneEF(xn-+hnun) for all n>0 .

The analytical formula involving "differential quotients"
is gquite complicated. It is simpler when F is locally Lipschitz:

we begin with it.
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Proposition 5

Assume that F is Lipschitz on a neighborhood of an element

Xq € Int Dom F. Then v belongs to CF(xo,yo)(uo) if and only if

F(x+hu0)--y0
(16) lim d Vg s = 0 .
x+x0,h+0+ h
K

Remark

We observe that the domain of the derivative of a Lipschitz
function is not necessarily the whole space, while the domain of
the contingent derivative is the whole space when the dimension

of Y is finite. Take for instance the map m associating to x € IR,

m(x): = 0 if x<0 and m(x) = x if x>0. We saw that Crn(0,0) (u) =@
when u # 0 and Cn(0,0) (0) = 0, whereas Dm(0,0) (u) = n(u) for all
ueElR. |

For the analytical formula in the general case, we need the

following definition:

Definition 6

Let U and V be metric spaces and ¢ be a function from U xV

to R. We set

(17) lim sup inf ¢(u,v): = sup inf sup inf ¢ (u,v).

u->uy Vv, >0 n>0 uEB(uo,n) VEB(VO,e)
A

Proposition 7

Let F be a proper set-valued map from X to Y and (xo,yo)

belong to graph (F). Then A belongs to the derivative CF(xO,yo)(uO)
if and only if
lim sup inf  d|v, 'F(x+ﬁu)-y) = 0
(x,¥) > (x5,y45) uw->uy ’
(18) graph (F)
h > O+
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Proof of Propositions 5 and 7

Formula (14) can be written

sup inf sup inf

alv F(x+hu)-—y)
€1>O a,B>0 (x,y)EB

graph(F)(XO’YO;a) ueEuo-+e1B

he] 0, B8]

This proves Proposition 5. When F is Lipschitz around Xqr

F(x+hu,) -y

. F(x+ - 0

inf d(vo,LEILX> - d(vo, o ) < 251
u€u0+e1B

and the above formulas become
F(x+hu0)-y
inf sup d\vys o = 0 .

a,R>0 (X'y)eBgraph(F) (XOIYOIO«) -

hel 0, B8]

When F is single=valued, we shall set

(19) CF(xO) = CF(xO,F(xo)) .

If F is continuously differentiable at Xgr We have
(20) CF (x
Naturally, the formula for derivatives of inverses is obvious:

- -1
(21) ¥(xy,yy) €9raph(F), CF (xqsyy) | = CE ) (yg.xy) -

Proposition 8

Let F be a single-valued map from an open subset @ of X to
Y, continuously differentiable at xOGEQ, and K be a nonempty

subset of X containing Xqe Then



VF(xo)u0 if uOGECK(xo)
(22) CF |, (x,)u
K70’ 70 .
g if  uy €Cplxg)
A
Proof
Let (xn,hn)eI(X]O,m[ converge to (xO,O) in Kxi&+. If u,

belongs to CK(xO), there exists a sequence of elements u, con-

verging to U, such that x, + hnun belongs to K for all n. Then

Flg(x +hu ) = F(x +h u ) = F(x,) + h (VF(x Ju +0(h)) .

Since F is continuously differentiable, the sequence of elements

v, 3= VF(xn)un + O(hn) converges to VF(xO)u0 and we have

FIK(xn) + h v, = FIK(x+hnun) for all n. .
Since the derivative CF(xO,yO) is a closed convex process,

k) . . » * * 13

1t 1s equal to its bi-transpose CF(xo,yo) . This suggests that

we introduce the following definition.

Definition 9

*
We shall say that the transpose CF(xO,yo) of the derivative

of F at (xo,yo)EEgraph(F) is the codifferential of F at (xo,yo).

A
* *
It is a closed convex process from Y to X defined by
E 3
poeCF(xo,yO) (qo) if and only if ¥ueX '
(23)
¥v eCF(x4,y4) (W), (pysu) = (qy,v) <0 .
=

We mention an example of derivatives of a set-valued map that we

shall use later.



Proposition 10

Let X and Y be Banach spaces, A be a continuously differ-
entiable operator from an open subset @ of X to Y and LCQ, MCY
be closed subsets of X and Y respectively. Let F be the set-valued
map from X to Y defined by
A(x) - M when Xx€L

a when x €L

Let (xo,yo) belong to the graph of F. The following conditions

are equivalent
a) VO €CF (XOIYO) (uo)

b) uOECL(xo) and VOEVA(xO)u0 - CM(Axo—yo)

A
Proof
a) Let us prove that a) implies b). We take sequences
(xn,zn,hn)€§L><M><]0,w[ converging to (xO,Axo-yo,O). Then Y, =
A(xn) - z, converges to y, and, by a), there exist sequences u,

and Vi converging to u, and Vo such that x, t hnunGEL and
A(xn+hnun)(EM ty, t hnvn for all n. This implies that U belongs
to CL(xo) and that VA(xO)u0 -V belongs to CM(Axo-yo) because

W, o= A(xn+hnun) - A(xn) - v, converges to VA(xO)uO A and

because z, + hnwn belongs to M for all n.

b) Conversely, let us show that a) follows from b). We
take a sequence (xn,yn,hn)(Egraph(F) x]10,=[ converging to (xo,yO,O).
There exists a sequence u, converging to U such that X, + hnun

belongs to L and, since Axn - Yy, converges to Ax0 - Yy in M, there

exists a sequence of elements W, converging to vA(xO)uO -V and
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satisfying Axn - Y, + hnwnezM for all n. Then the sequence of

elements Vo T A(xn+hnun) - Axn - w, converges to Vo and satisfies
Y + hnvnezF(xn+hnun) for all n. .
Proposition 11

Let K be a closed convex subset of a Hilbert space X and Po
belong to the normal cone NK(xo). Let NK denote the set-valued
map x-+NK(x) and Tx denote the Lipschitz single-valued map asso-
ciating to x its best approximation ﬂK(x)<EK by elements of K.
Then the two following statements are equivalent

a) qg ECNK(xo,pO) (uo)

b) u0<EC K(xo+po)(uo+qo) .
The same result holds when the derivative is replaced by the con-
tingent derivative. a

Proof.

We recall that p belongs to the normal cone NK(x) if and only

if x = (x+p) .

K
g) Assume that 9 belongs to CNK(xO,pO)(uO). Let us consider
a sequence of elements (yn,hn)GEX><]0,w[ converging to (x0+p0,0).
We set X, 3= wK(yn), which converges to Xg = nK(xo+po) and p, :=
Yo = Xp¢ which converges to Po- Then there exist sequences of
elements u, and q, converging to u, and qq such that p, t hnqn
belongs to NK(xn+hnun) for all n, i.e., s.ch that WK(yn) + hnun =

ﬂK(yn+hn(qn+un)) for all n. Hence u, belongs to CWK(xo+po)(u0+q0).
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E) Conversely, assume that U, belongs to CﬂK(xo+p0)(uO+qo).
Let (xn,pn,hn)ezgraph NK x ]0,»[ converge to (xo,po,O). Since

X + p, converges to X + Pgr there exist sequences of elements

u, and W, converging to U and U + dq such that X + hnun =

ﬂK(xn+pn) + hnun = Ty

converges to u, and we deduce that p_ + hnqnesNK(xn+hnun) for

(x +p *h w_ ) for all n. Then q  := w, - u,

all n. Hence S belongs to CNK(xo,po)(uO).

Corollary 12

Let us consider the set-valued map associating to x Eﬁ} the

n
+

0 . .
qo belongs to CNIRn (x ,po) (uo) if and only if

0
normal cone N (x) to Hﬁf at x. Let po belong to Nﬂﬂl(x ) . Then

_{o} if x; > 0 (and thus, p; = 0)
aq if xi =0, pi < 0 and u, # 0
qie?
. o} o
IR if X, = 0, p; < 0 and u;, = 0
h . o o _ _
{o} if x; =0, p; =0 and u; =0
A
Proof
We observe that ﬂﬂﬁ}(x1""’xn) = (N(X1),...,H(Xn)) where
T(X) = 0 when x < 0 and 7(x) = x when x > 0. Since Cr(x)(u) =0
when x < 0, u when x > 0 and Crn(0)(u) = @ when u # 0 and Crv(0) (0) =0,

we obtain the above corollary.
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3. EPI-CONTINGENT DERIVATIVES AND EPI-DERIVATIVES OF REAL VALUED
FUNCTIONS

We can use the concept of contingent derivatives and deri-
vatives for single-valued maps V from DOM VCX to IR: we obtain,

for instance

(1) vy €DV (x) (uy) = lim inf | V(X+hﬁ) - V(x) |

h - 0+
u->u,

In many problems such as minimization problems, the order relation
plays an important role. This is the reason why we associate with
a proper function V : X+ R U {+=} the set-valued map V. defined
by Y+(x) = V(x) + R, when V(x) < +« and y+(x) = g when V(x) = 4w,
Its domain is the domain of V and its graph is the eopigraph of V.
We consider its contingent derivative DY+(x,V(x)), whose images
are closed half-lines. Therefore, for all uOEEX, DY+(x,V(x)(u0)

is either IR, or a half line [vo,w[, or empty. We set
(2) D,V(x) (u) := inf {v[veDV (x,V(x)) (u)}

It is equal to -« if DY+(x,V(x)) =R, to vV
[Vo,w[ and to +« if DY+(x,V(x))(u) = fg.

0 if Dy+(x,V(X)) (un) =

Definition 1

We shall say that D+V(x)(u) is the "epi-contingent derivative"

of V at x in the direction u.

We begin by computing epi-contingent derivatives.

Proposition 2

If V is a proper function from X to RU {+=}, then

V(x0+hu)-V(xo)
(3) D V(xo)(uo) = lim inf .
h > 0+ h

u-u

0
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The function u-+D+V(xO)(u) is positively homogeneous and lower

semi~-continuous when D+V(x0)(u) >=-w for all ueX.

A
Proof
Indeed, let VOGEDY+(XO,V(XO))(HO); then, V€1 >0, €5 >0,
Ya > 0, there exist uEu0 + szB and h < a such that
v (x0+hu)-V(x0)

voe“'+ + €,B. This implies that

h

Vi{x.+hu) - V(x,) Vi(x.+hu) = V(x,)
0 0 . . 0 0
v0 > - £ > inf inf - €q -
h h<a llu-u,ll <e h
— 0"'="2
V(x0+hu)-V(x0)
Therefore Vo > lim inf - €9 Let us set for the
h - 0+ h
u>ug,
V(x0+hu)-V(x0)

time a := lim inf .

h + 0+ h

u>ug
So, we have proved that a < D+V(x0)(u0). On the other hand, we

know that for any M > a, for all o, ¢ >0, there exist h <a, and
116u0 + &B such that

V(xo+hu)-V(x0)

< M
h —

V+(x0+hu)-V(x0)
Hence M € = . This proves that aeEDY+(x0,V(x0))(u0).

h

Since it is smaller than all the other ones, we infer that a==D+V(x0)(uOI
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If V is C1 at xo, then
(4) Yu X D V(x4) (uy) = (VV(XO),uO) .

If V is convex, then

inf

( V(x0+hu)-V(x0))
h>0 h

(5) VuOEEX ’ D+V(x0)(u0) = lim inf
u-~>u,

We deduce from Propositions 2-2 and 2-3 the following state-

ments.

Proposition 3

Let us assume that V is Lipschitz on a neighborhood of

x0 € Int Dom V. Then

Vi(x +hu0)-V(x0)

(6) Vu.€X , D.V(x.)(u.) = 1lim inf 0
0 + 0 0
h ~ 0+ h

and the epi-contingent derivative is finite.

Proposition 4

Let V be a proper function from X to IRU{+»} and K be a subset
of X. Let V]K denote the restriction of V to K (in the sense that
V]K(x) equals V(x) when x €K,» when x £ K).

Then

(7) ¥x, €K, VVOGETK(XO), D+V(x0)(u0) < D+V|K(x0)(u0) .

If VvV is C1 at Xy, We have

(VV(xO) g > if u, ETK(xo)

+o0 if uOETK(xo)
A
We state the obvious property of the epi-contingent derivative

at a minimizer.



Proposition 5

Let V be a proper function from a Banach space X to IRU{+=}.

If x Dom V minimizes V on X, then

(9) YueXx , 0 < DV(x)(u) .
A
More generally, the e-variational principle of Ekeland can

take the following form:

Theorem 6

Let V be a proper lower semicontinuous function bounded
below from a Banach space X to IRU{+«} and X, belong to Dom V.

Then, for any € >0, there exists xEGEDom V satisfying

i) Vix.) + ellx_=x4ll < V(xg)
(10)
ii) Wu€X, OiD+V(x€)(u) + ellull

Proof

By Ekeland's theorem (the e¢-variational principle), there
exists x_€Dom V satisfying (10) i) and V(x_) = min[V(x)+ Hx—xEH].
xeX
Let u € Dom D+V(x€). Then, for any n>0, 6§ >0, a >0, there
exist h<ao and v€u + 6B such that

V(x£+hv)-v(x )

€

A

. D+V(X€)(U) +n .

Ekeland's theorem implies:
V(x€+hv)-V(x€)

—e8 = ellull < =¢llvll < .
- - h

Therefore, we infer that

0 < D+V(x€)(u) + ellull + €6 + n .

By letting ¢ and n converge to 0, we obtain the desired inequality. W



We define in the same way epi-derivatives of functions V
from X to RU{+»}. Since the images of the derivative CV (xO,V(xo))
are either IR, or a half-line [vo,w[, or empty, we set:

(11) C V(xg) (uy) := inflv|[veCy, (x;,V(xq)) (ug)} .

It is equal to =« when CV (XO,V(XO)) = IR, to Vo when

CY+(X0,V(XO))(UO) = [vo,w[ and to +« when CY+(XO,V(XO))(HO) = g.

Definition 7

We shall say that C+V(x0)(u0) is the "epi-derivative" of V

at Xq in the direction ug- a

The epigraph of u-+C+V(x0)(u) is a closed convex cone because
it is the graph of the set-valued map u-+CV+(x0,V(x0))(u), which
is a closed convex process. We deduce at once the following

important property.

Proposition 8

The epi-derivative u-+C+V(x0)(u) is a positively homogeneous
lower semicontinuous convex function when C+V(x0)(u) > = for

all u €X. 4

It is easy to check that the co-differential of V+ at (xO,V(xo))

. * .
is a closed convex process from IRto X , defined by its values

* *
CY+(XO,V(X0)) (=-1) and CY+(XO,V(X0)) (1). We observe that

*
CY+(X0,V(X0)) (-1) = g and that the support function of

*
CY, (x4, V (x4)) " (1) (when it is not empty], is equal to C,V(xy) (). W

Definition 9

E 3
We say that the closed convex subset of X defined by:

W xg) 1= CV, (x4,V(xp)) " (1)
={p eX*IVuGX,(p,u>§_C+V(XO) (u) }

is the generalized gradient of V at Xq-
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It is empty whenever there exists a direction U, for which

When V is continuously differentiable at Xqr then VuOGEX,
C+V(x0)(u0) = <VV(xo),u0> and, consequently,

8V(xo) = {VV(xO)} .

This motivates the term "generalized gradient". .When V is convex,

it coincides with the subdifferential of V at Xg-

Proposition 10

Let us assume that V is Lipschitz on a neighborhood of
X5 € Int Dom V. Then

v(x+huo) -V (x)

(13) Yu, €X, C+V(x0)(uo) = lim sup

X‘*XO

h >0+

and the epi-derivative is finite. Furthermore, the following

properties hold true

i) VuOGEX, (x,u)-+C+V(x0)(u) is upper semi-

(14) continuous at (xo,u)
ii) u-+C+V(xo)(u) is continuous

iii) C+(—V)(x0)(u) = C+V(x0)(—u) .

In terms of generalized gradients, these properties become

i) x> 93V (x) is upper hemicontinuous at Xq
(15) ii) av(xo) is (closed convex and) bounded

iii) 8(—V)(x0) = -BV(XO) .

Proof

Since V is Lipschitz on a neighborhood of Xy € Int Dom V,

there exist ag >0 and 2 >0 such that, for any a, B, n satisfying
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o + B(I|u0||+n) < ag, we have: ¥X €x, + aB, ¥vhel0,B], VuEuO + nB,

|V(x+hﬁ)-V(X)| < 2 llugli+n)

(16)

a) Let v, belong to the derivative qy+(x0,V(x0)) of v, at

0
(xO,V(xO)). This means that for all ¢, n >0, there exist a, B >0

such that, for all xEx0 + aB, ¥vhe ]0,B], there exists u€Eu, + nB

such that
V, {x+hu) ~ vV (x)
v, € mt + €B .
h
_ V(x+hu,) = V(%)
Hence v > V(x+hu) v (x) - g > 0 - £ = &n
0 - h - h

(because V is Lipschitz around xo).

V(x+hu0)'-V(X)
and thus

Consequently, Ve 2 lim sup

x-+x0 h
h > 0+
V(x+hu0)-V(x)
C,V(x,) (u,y) > lim sup .
+ 0 0" —
X >*X h
0
h - 0+
V(x+hu,y) =~ V(x)
Conversely, let us set a := lim sup ’
x-+x0 h
h - 0+

which is finite by inequality (16). Then we can associate to any

€ >0 constants a, B >0 such that

V(x+hu0)-V(x)

a+ ¢ >
h

This implies that a belongs to CV+(x0,V(x0)). Hence formula (13)

ensues,
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b} The upper semicontinuity of (x,u)-+C+V(x)(u) at (xo,uo)

follows at once from formula (13).

Also, inequality (16) implies that
(17) C,V(xgy) (uw) < 2liull

and thus, that u->C_V(x,) (u) is continuous. To prove (14) iii)

we Observe that

-V(x+hu0) - (-V(x)) V((x+hu0)-+h(—u0))-V(x+hu0)

h h

Since x + hu0 is in a neighborhood of Xq when x is a neighborhood

of Xq and h is small, we deduce that C+(-V)(x0)(u0) = C+V(x0)(—uo).
c) Since C+V(x0)(-) is proper, it is the support function

of BV(xo). .

Remark

More generally, we can prove the following formula for epi-

derivatives of arbitrary functions.

For that purpose, it is expedient to use the notation:
(18) (x,\) lxo = A>V(x) , X > X, and >\—>V(xo)
and the definition 2.6 of lim sup inf.

Proposition 11

Let Xq belong to the domain of a function V from X to RU{+x}.

Then

(19) C+V(x0) (uo) = lim sup inf V(X+Iﬁu) - .

(X,A)lxo u->u
h > 0+

0

The proof is left as an exercise.
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When V is lower semicontinuous at x formula (19) becomes

OI

V(x+hu) = V(x)
B .

(20) C+V(x0)(u0) = lim sup inf
X > X u->u

Vix) »V(x
h -+ 0+

0
o)

It may be useful to use another concept of derivative, easier

to manipulate than the epi-derivative.

Definition 12

Let V be a proper function from X to RU{+>} and let x,

belong to Dom V. We set

V{x+hu) - A
h

(21) B+V(x0)(u0) := lim sup
(x,x)¥x0

u-~>u,
h -0+

We shall say that B+V(x0)(u0) is the strict epi-derivative

of V at X, in the direction of u, and that V is strictly epi-

differentiable at X if the function u-+B+V(xO)(u) is a proper

function from X to IR uU{+x},.

We always have

(22) YueXx , D V(xy) (u) < C V(xy)(u) < B V(xy) (u) .

Clearly, a function V which is Lipschitz around X, is strictly
epi-differentiable at Xq. The introduction of this concept is

justified by the following result.

Proposition 13

Let us assume that the function V is strictly epi-differen-

tiable at x. €Dom V.

0
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Then
(23) Dom B+V(x0) = Int Dom C+V(x0)
and
(24) VuoesDom C+V(x0), C+V(x0)(u0) = lim inf B+V(x0)(u0) .
u->u
0
Furthermore, for any uerInt Dom C+V(x0),
i) (x,u)-+C+V(x)(u) is upper semicontinuous at (xo,uo)
(25)
ii) u-+C+V(x0)(u) is continuous at u, -
If we assume that Dom B+V(x0) = X, then
(26) 8(-V)(x0) = —BV(xo) .
A
Proof
a) Let U, belong to the domain of B+V(x0). Equation (21)

implies at once that Dom B+V(x0) is open and that (x,u)-+B+V(x)(u)

is upper semicontinuous at (xo,uo).

b) Formula (21) implies that

(27) B+V(x0)(u0+u1) < B+V(x0)(u0) + C+V(x0)(u1) .
We deduce that any u interior to the domain of C+V(x0) belongs

to the domain of B+V(x0). For that purpose, take u0<EDom B+V(xo)
and X >0 such that u- 2 U, belongs to the domain of C+V(x0). Then
inequality (27) implies that

B+V(x0)(u) < C+V(x0)(u—ku0) + AB+V(x0)(u0) < 4o,
i.e., that u belongs to the domain of B+V(x0). Hence the domain

of B+V(x0)
Inequality (27) implies also that the epigraph of B+V(x0) is dense

coincides with the interior of the domain of C+V(x0).

in the epigraph of C+V(x0). Consequently,



lim inf B+V(x0)(u) < C+V(x0)(u0) .
u->ug,

Since u->C+V(x0)(u) is lower semicontinuous, equality (24) ensues.

Furthermore, by letting X go to 0 in the above inequality, we get:
(28) ¥u € Dom B+V(x0) ’ B V(xo)(u) = C+V(x0)(u) .
Inequality (24) implies that

(29) W(x,) = {peEX |Vuex,(p,u)<BV(xy) (W} .

o)
Hence property (26) follows from

(30) ¥u € Dom B+V(x0) , B+V(x0)(—u) = B+(-V)(x0)(u) .

For proving it, let us set Vo i B+V(x0)(-uo); for all € >0,
there exist Ay 80, Ng >0 such that, for all y € Dom Vrﬁ(x0+a0B),

V(y-hu) -V(y)
h

hel0,8ul, ueuy + nyB, < Yo

Let us take ae]O,aO], 86]0,80] and ne]O,BO] such that

a + B(llu0||+n) Hence, for all x€Dom VN (x0+uB) , A GV(XO) + oB,

| A

Ay -
satisfying A > -V(x), he€l0,8], uéEuO + nB, we have, by setting

Yy := X + hu,
-V (x+hu) - A V(x) - V(x+hu) _ V(y-hu) =-V{y)
h = h = h = VptE
because y belongs to Dom Vrﬁ(x0+a0B). This implies that
B+(—V)(x0) < Vg i= B+V(x0)(-u0). By exchanging the roles of V

and -V, we have proved equality (30).



Proposition 14

Let P be a closed convex cone. Assume that V is nonin-
creasing with respect to P in the sense that V(x+y) < V(x) for
all yeP. Then let X, belong to Dom V. Then

(31) Yu, €P , CVI(xy) (ug) < 0 .
and
(32) IV (%) cPp~ .

If Int P # @, then

(33) VuOGEInt P , B V(xo)(uo) <0 .

Proof

Indeed, for any X €xy t+ 0B, )\EV(XO) + oB, A>V(x), h€]0,Bl,

uo € P, we have

V(x+hu0) - A V(x+hu0)-V(x)
< < 0
h - h -

because V is nonincreasing. Hence C+V(x0)(u0)_§o. If u, belongs
to the interior of P, there exists o > 0 such that u, + noB(:P.

Hence, for all u<5u0 + nOB, we would have

V(x+hu) - X < V{(x+hu) -V (x)
h - h

< 0
and thus, B+V(x0)(uo) < 0.

We deduced the property of epi-contingent derivatives and
epi-derivatives from the properties of contingent cones and
tangent cones. Conversely, we can derive properties of contingent
cones and tangent cones from those of contingent derivatives and

epi-derivatives because we remark that when X, belongs to a sub-
set K,
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(34) D+wK(xO,O) = wTK(xo) and C+wK(xO,O) = ch(xO) ,

where wL denotes the indicator of the subset L. We also mention

the following useful properties.

Proposition 15

*
a) If peX satisfies (p,xo) = max (p,y’, then p belongs

to the normal cone NK(xO). yEK

b) Assume now that X is a Hilbert space.

If y¢K and if x€mg(y) is a projection of y to K, then y-x

(x).

belongs to the normal cone NK
A

Proof.

*
a) If peX satisfies (p,x,) = max {(p,y), then x; €K mini-
yEK

mizes on K the linear functional x +(p,x) and thus, oeza(—le)(xO) -

0

—p>+ NK(xO) by propositions 4 and 5.

b) Since the function V:x~+lly=xll =: V(x) is continuously
differentiable at all x # y and since xezn?(y) minimizes V on K,

= X°Y
we deduce that 0(53(V|K)(X)(:VV(X) + Ny (x) Tx=YI + N, (x). Hence.
y-Xx €Ny (x) .

Proposition 16

Let V be a proper upper semicontinuous function from X to
R U{+»}. We set

(35) K := {xeX|V(x) <c} .
Let x,; €K satisfy V(xo) = c. Then

(36) Ty (%) C{VEX|D+V(X) (v) <0} .
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If we assume that

(37) Bqux such that C_V(xy) (ug) < 0

and V is upper semi-continuous at Xqgr then inclusion:
(38) {u€X|C+V(x0)(u)iO}CCK(XO)
holds true.

Proof

We first check that if u, satisfies C+V(x0)(uo) <0, then U,

0
belongs to CK(XO). Let us set Vo = -C+V(xo)(u0) > 0. For all

E:E]O,VO[, there exist o >0 and B >0 such that, for all xEExO +

oB, h€]0,8[, there exist5116uo + €B such that V(x+hu) < V(x) +

h(-v0+€). Hence, for all xezBK(xO,a), he]0,B8[, there exists

uEEuO + €B such that V(x+hu) < V(xo), i.e., x + hueK. Therefore,

u, belongs to CK(XO).>

Now, if u satisfies C+V(x0)(u)_i0, then, for all r€]0,1[,
Uy := (1-X\)yu + Auo satisfies C+V(x0)(ux) <0 by convexity and thus
uAEECK(uO)' Hence we deduce that u belongs to CK(uO) by letting

A converge to 0.

4, GENERALIZED SECOND DERIVATIVES OF REAL-VALUED FUNCTIONS

Let V be a proper function from X to R {+»}. We consider

*
the set-valued map 23V from X to X associating to each xoezx the
generalized gradient of V at Xq-
Therefore, if (xo,po) belongs to the graph of 3V, the deri-
vative C(SV)(xo,pO) of 3V at (xo,po) plays the role of a second

derivative of V.

Definition 1

We shall say that the derivative
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(1) 2%V (x,py) = C(3V) (x4,Bp)

of the map 3V at (xo,po)ezgraph (3V) is the generalized second

derivative of V at (xo,po). a

*
Therefore, 32V(x0,p0) is a closed convex process from X to X .

It is clear that when V is twice continuously differentiable
at Xgr then Py = VV(XO) and BZV(xo;po) coincides with the Hessian

E 3
VZV(XO), mapping X to X .

Proposition 2

Let V be a proper lower semicontinuous convex function from
* »
X to RU{+»} and V 1its conjugate function. Then aZV(xo,pO) is

a monotone closed convex process and

(2) azv*(po,xo) = (Bzv(xo,po))-1 .

Furthermore, if qOGEBZV(XO,pO)(uO), then

i) D,V(x,) (uy) = (pyruy)

. . *

ii) DV (po)(qo) = (po,x0>
Proof

a) Let (ul,ql)(i=1,2) be two pairs of the graph of azv(xo,po).

Let hn converge to 0+. Then we know that there exist sequences

1
n'’

of elements u; and v; converging to u' and v' such that (x0+hnu
p0+hnq;) belong to the graph of 9V for i = 1,2. Since the graph
of 9V is monotone, we deduce that

2, 1 2 1 2, _ 1 2 1 2
hn<qn qn’un-un> - <pO-I-hnqn_'(po"-hnqn)'X0+hnun_(X0+hnun)> > 0

Hence 32V(x0,p0) is monotone.

. ' . [} * ¥ 1
Inequality (2) is straightforward since 3V is the inverse

of 3V.
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5. THE INVERSE FUNCTION THEOREM

We denote by pB and pBo the closed and open balls of radius

respectively. We set A (A,B) := sup inf ||x-yll. Note that
XEA y&B
d (A,B) = 0 means that A is contained in the closure of B.

We shall extend the usual Inverse Function Theorem for con-
tinuously differentiable single-valued maps to the case of set-

valued maps. We need the following definition.

Definition 1

Let F be a proper set-valued map from X to Y and let (xo,yo)
belong to the graph of F. We say that F is "pseudo-Lipschitz"

around (xo,yo) if there exist a neighborhood W of Xy two neigh-

borhoods U and V of Yor UCV, and a constant £ >0 such that

i) ¥XeW, Fx)NU # g
(1)

ii) ¥x,,x, €W, & (F(x,) NU,F(xy) NV) < 2llxy=%,l .
A

Note that, if F is single-valued on W, it will be pseudo-
Lipschitz if and only if it is ¢-Lipschitz on W.

Theorem 2

Let F be a proper set-valued map with closed graph from X

to Y and let (Xn’Yo) belong to graph (F). We assume that

i) both X and Y are finite dimensional

ii) the derivative CF(xO,yO) of F at (xo,yo) is

surjective (i.e. Im CF(xO,yo) =Y).

Then g is pseudo-Lipschitz around (xo,yo).

We start with the following lemma.
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Lemma 3

Let us assume that the spaces X and Y are finite dimensional,

Let (xo,yo) belong to the graph of F. We assume that
(3) the derivative CF(xO,yo) maps X onto Y.

Then, for all d >0, there exist constants ¢ >0 and n >0 such

that, for all (x,y) €graph (F) satisfying
Ix=xgll + ly=yol < n
and for all v €Y, there exist u €X and w €Y satisfying
(4) v €DF (x,y) (u) +w, llull < cllvl and lwl < alivll .

Proof

Since CF(xO,yO) is a closed convex process, Robinson-Ursescu's

Theorem implies the existence of y > 0 such that
(5) YB CCF(x4,v,) (B) .

Let us introduce the subset

(6) K «= (B x yB) Ngraph CF(xO,yO)

Since the spaces X and Y are finite-dimensional, the subset
K is a compact subset of the tangent cone CF(xo,yO) to F, the
graph of F, at (xo,yo), which is the lim inf of the contingent
cones TF(x,y) to the graph of F at points (x,y) converging to
(xo,yo). Hence we can associate to every o >0 a positive number n
such that for all (uo,vo)EEK, (x,y)EEBF(xo,yo;n), we have
(uo,vo) €ETr(x,y) + a(BxB).

Now, take v in Y. Then Vo i ﬁ%% belongs to yB and by (5),

there exists uy €B such that (uo,vo) belongs to K. Then, for all
(x,y) EBF(xo,yo;n), there exist u, € 0B and v, €aB such that

(u -ua,vo-vu)EETF(x,y), i.e. such that

0
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voezDF(x,y)(uo-ua) tv, -

_ vl _ vl
We set u := ~ (u0 ua) and w = v Ve

Then v €DF (x,y) (u) + w, llull < T*o

a
Ivil and livll < $lvl . m

Theorem 2 then becomes a consequence of the following gen-

eral Inverse Function Theorem, valid in all Banach spaces.

Theorem 4

Let F be a proper set-valued map with closed graph from a
Banach space X to a Banach space Y. Let (xo,yo) €graph (F) be
fixed. We assume that there exist constants o€ [0,1[, n >0 and
c > 0 such that, for all (x,y) egraph (F) satisfying Hx—xOH +
I y-yOII < n, for all veyY, there exist ueX and weY such that

i) v eDF(x,y)(u) + w

(7)
ii) llall < clivl  and liwll < allvl
Let us set
= =) et ;= F] c +2a
T = 3(7ascy ' Fo ¥) = F (¥) N (xo T rB)
(8)
-1 R 3 (c+2a)
and F1 (y) == F (y) N (XO + T -a rB)
Then, F~ | is pseudo-Lipschitz around (x,,y,). Namely,
i) W¥y€y, +rB, F61(Y) # 8
. o) -1 -1
(9) ii) ¥y, Y,€y, + rB, & |F, (v4),Fq (y5)

ct2a Iy =yl
T=a "¥17Y3
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Proof

Let Y4 and Yy belong to the open ball Yo * rB. Assume for

the time being that there exists X4 satisfying

-1 =1 ._ c+ 2a
(10) x1<5F0 (y1) := F (y1)rw(x0+£rB) where 2 := T=o .
(This is possible when we take Y = Y and X, = xol) We asso-
Ily1-y2H
ciate with any p(E]Hy1-y2H, 2r[ the number e :=
Hy1-y2H-+£p
which satisfies
3y =y,
1 22 1-o
(11) — % ° T¥c¥a
2n

We apply Ekeland's Theorem to the continuous function V defined on
the graph of F by V(x,y) := Hyz-yH.

Since it is complete, there exists (X,y) € graph (F) such
that

1) IF-y, I + cUF=x,l + 17-y,0) < lly,=y,l
(12) ii) W¥(x,y) €graph (F), H?—yzu < ly=y,ll

+ e(llx=xIl + lly=yl)

Inequality (12)1i) implies that

- = 1 _ 2n
”X-X.I” +I|y y1ll iglly1 y2|| :'—3— .
Therefore
1R-x0ll + 17-yll < 20 + fIx =%, + ly,-yl
0 Y=¥oll = 73 0¥ Yo=Yy
2n c+20 _ 2n 1+a+c _ 2n n _
< T+('1—-E+1)r"3'+ T-a T =3 T3°0
Consequently, we can use property (7) with v := y2-§: there

exist u and w satisfying
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i) y, - YEDF(X,y) (1) + w
(13)
ii)  lull < clly,-yll and liwl < ally,=yll .

By the very definition of the contingent derivative DF (X,Y), we
can associate to any 8 >0 elements hel10,9], uﬁeGB and V6€5B
such that the pair (x,y) defined by:

x =X+ hu+hu, , y-= v o+ h(y2-§) - hw - hvg

belongs to the graph of F. Using this pair in inequality (12)ii),

we obtain
ly,=7l < (1-m)ly,=¥ll + hilwl + he (hall + ly,=31 + lwl)
+ n(+e)livgl +llugdy .

We divide this inequality by h > 0 and let § converge to 0. We

obtain
Hy2—§H < (e(c+1) + a(1+e))Hy2-§H .

T-a

ince < —
Since € c+1-a

, we infer that y, = y and thus, that x is a

solution to the inclusion yzezF(E); by setting Y, = y in inequal-

ity (12)1i), we get
- 1 B
Ix-x,l < (= Dllyq=y,ll = 20 < 20 .
Therefore, X belongs to F—1(y2)rﬁ(x1+22rB)(:F;1(y2) and thus,
d(x,,Fo (v )) < Ix-x 0l < (2= 1)lly,=y Il = %o
1051 Wo!! 2 11 2 g Y17%3

By letting p converge to Hy1-y2H, we deduce that

-1
(14) d(xq,F7 (vy)) < 2y =y ll -
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We can always take (x1,y1) := (xo,yo). We thus have proved
15 + rB Fol(y) 1= F 0 (y.) N x, + S22 rp)
(15) ¥¥, €Yy B, Xyefy ¥yl = Yo! 0 X T ATy

(because Iy ,=ygll <« instead of 2r).

In other words, the set-valued map F0 has non empty images
when y ranges over the open ball Yo + rB. 1Inequality (14) implies
that

-1 -1 _ -1 c+2a _

As a first consequence, we obtain the usual Liusternik

Theorem.

Corollary 5

Let f be a continuously differentiable map from an open sub-
set @ of a Banach space X to a Banach space Y. Assume that for
XoEQI

(16) Vf(xo) is surjective

Then there exist neighborhoods U and V of x UCV, and W of

OI
f(xo) such that, for all y €W, there exists a solution x€U to

the equation f(x) = y and such that

-1 -1
(17)  ¥yq,y, €W, A (£ (yq) N0, £ (y,) V) < lly -yl .
Proof

Let K be a closed neighborhood of Xq contained in Q. We
apply Theorem 4 to the restriction F of f to K. Since Vf(xo) is
surjective, there exists a constant c¢ > 0 such that for all vey,
there exists a solution u of the equation VE(xglu = v satisfying
lull < cllvil. Let a >0 be given and n >0 such that HVf(x)-Vf(xO)H_ia
when erB(xO,n)(:Int K. Then the assumptions of Theorem 4 are

satisfied because v = Vf(x)u + w where [lul < cllvl and
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w = (Vf(x)-—Vf(xo))v is such that |lwl < allvll . |
By taking n=«, we obtain the following corollary.

Corollary 6 (normal solvability)

Let F be a proper closed set-valued map from a Banach space X
to a Banach space Y. We assume that there exists a constant c >0
such that, for all (x,y) €graph (F), for all ve&€Y, there exists
u€X satisfying v€DF(x,y) (u) and llul < cllyll. Then F maps X
onto Y and its inverse F_1 is a Lipschitz set-valued map with

Lipschitz constant equal to c.

Let us mention also the following consequence of the proof

of Theorem 4.

Corollary 7

Let F be a proper closed set-valued map from a Banach space
X to a Banach space Y. Assume that there exists a constant c >0
such that

¥(x,y) egraph (F), Ju€X satisfying
-y €DF (x,y) (u) and | u| < cllyll .

Then the set F_1(0) of zeros of F is nonempty and

1

(19) ¥x €Dom (F), d(x,F '(0)) < cd(0,F(x)) .

Remark

When F = f|K is the restriction to a closed subset K of a
continuously differentiable single-valued map f, assumption (18)

becomes

¥x €K, 3ueETK(x) such that -f(x) = Vf(x)u

(20)

and llull < cll £(x)l
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We then deduce that there exists a solution x €K to the equation
f(x) = 0 and that

(21) ¥x €K, d(x,f'1

(0)) < clixll .
In the book by Aubin and Cellina (1983), it is shown that
assumption (20) implies the existence of a trajectory of the

implicit differential equation

VE(x(t))x'(t) = -£(x(t))
(22)

x(0) = X given in K
satisfying
(23) ¥t >0, x(t) belongs to K
and
(24) ax(t),£71(0)) < et x(0)

We observe that the differential equation (22) is the con-
tinuous version of the Newton method and that inequality (24)

implies the convergence of the Newton method. u

Remark

When the graph of F is compact (i.e., when the domain of F
is compact and F is upper semicontinuous with compact values),-

we need only to assume that
(25) ¥(x,y) €graph (F), IueXx satisfying -y €DF (x,y) (u)

for deducing that FT1(0) is nonempty.

Indeed, we minimize on the graph of F the function (x,y)~lyll
and we denote by (X,y) €graph (F) a minimizer. We proceed as in

the proof of Theorem 4 with € = 0.
|



The use of set-valued maps abolishes the formal distinction
between the Inverse Function Theorem and the Implicit Function

Theorem.

Let X, Y and Z be three Banach spaces and G be a set-valued
map from X xY to Z. The Implicit Function Theorem deals with the
behavior of the map that associates to any (y,z) €Y xZ the set
of solutions x to the inclusion z€G(x,y). This amounts to study

the inverse of the set-valued map F from X to Y x 2 defined by
(26) (y,z2) EF(X) = z€G(X,Y) .

Since the graphs of the set-valued maps F and G coincide as
subsets of X xY x Z, there are close relations between the deri-
vatives of F and G at (xo,yo,zo), since the graphs of these two
derivatives coincide with the tangent cone to the graph of G at

(xO,yO,zo). Then we can state the Implicit Function Theorem.

Theorem 8

Let G be a proper set-valued map with closed graph from X xY

to Z and (xo,yo,zo) belong to the graph of G. We assume that

i) Both X,Y and Z are finite dimensional

(27) ii) Wv, we¥ x2, JueX such that
weECF(xo,yO,zo)(u,v) .

Then

(28) F ' is pseudo-Lipschitz around (xqs (yqr24)) .

A

In the case when G is a continuously differentiable function,

we obtain the following useful corollary.

Corollary 9

Let g be a C1 function from an open neighborhood of (xo,yo)
in X XY to Z satisfying



s

(29) vyg(xo,yo) is surjective from Y to Z2 .

Then there exist neighborhoods V0 and V4 of Yor V0<:V1, neighbor-

hoods U of Xq and W of ZO and a constant c¢ > 0 such that

(30) ¥x €U, ¥z EW, Jyevo such that g(x,y) = 2
and, if we set F_1(x,z) := {yeY¥Y|glx,y) =z},

Vx1,x26V ’ z1,22€W ’
(31)

_‘] _‘] .
A& (F (x1,z1)rWV0, F (x2,22)rWV1)>i 2(”x1—x2H + Hz1—22H)
Proof

It is analogous to the proof of Corollary 5 and follows

from Theorem 4 applied to the set-valued map F from Y to X xZ
defined by

(x,2) EXx2|g(x,y) =2z} when YyE€L

g when v &L

where K and L are closed neighborhoods of z, and Yo on which g
is C' . The graph of F is closed and assumption (7) is satisfied:

let (u,w) €XxZ be chosen and define veEY as a solution to the
equation

(33) Vyg(xo,yo)v = w - ng(xo,yo)u
satisfying
(34) vl < cHw—ng(xo,yo)uH

thanks to the Banach open mapping principle. We set W o=
Vg (x,y) (u,v) - Vg(x4,y4) (u,v). We see that

(35) (u,w) EDF (y; (x,2)) (v) + (0,W)



with
(36) Ivil < ¢ max (1,”ng(x0,y0)ﬂ)(HuH-+HwH)

and, o being given,

(37) 10, < Vg (x,y) = Vg(xy,y) I (lull +lwll) < odllul +Iwl)

provided that (xX,y) remains in a small neighborhood of (xo,yo).
Hence Theorem 4 implies that F"1 is pseudo-Lipschitz around
(xo,(yo,zo)), which is what the conclusion of Corollary 9 states. H

This being said, it is not always obvious to obtain "nice"
formulas for the derivatives. For instance, let X and Y be
Banach spaces, A be a continuous linear operator from X to Y,

* *
G:X+X and H: Y~+Y be set-valued maps.

We consider the set of solutions x€ X to the inclusion
*
{38) pEG(xX) + A H(Ax+y) ,

*
where p is given in X . The first idea is to apply an Inverse

%
Function Theorem to the set-valued map E from X to X xY defined

by
(39) E(x) = {(p,y) |peG(x) + A H (Ax+y) }

Unfortunately, there is no "nice" expression for the tangent

*
cone to the graph of E in X xX x Y.

*
But we can introduce an auxiliary variable ge€Y and write

inclusion (38) as the equivalent inclusion

i) peG(x) + A'g
(40)

1

ii) ye-ax + H '(q)

The set of solutions (x,g) to this problem is denoted by F-1(p,y,A),
* *
where F is the set-valued map from X xX to X xYx L(X,Y) defined

by



if and only if (40) holds.

(41) (p,y:A) EF(x,q)

We shall characterize the derivative of F in terms of the
derivatives of the set-valued maps G and H{or H ') respectively.
Lemma 10

Let Xqrd be a solution to the system of inclusions
_ *
i) pOEG(xo) + AOqO

(42)
ii) yOE-Ax0 + H_1(q0)

The following conditions are equivalent

(43) (dp,dy,dA)GECF(xo,qo;pO,yo,Ao)(dx,dq)

*

. * %*
i) Sp - 8A 'qOGECG(XO,pO—AOqO)(Gx) + Aodq

(44)
., -1
ii) dy-de-xoes—Aodx-FCH (qo,y0+Ax0)(6q)

Proof

a) We prove that (43) implies (44). We choose sequences
) *
(xn,qn,pﬁ,yﬁ,hn) converging to (xo,qo,po-A quYO+AXOrO)- By

%

; .= .= ' .= v
setting An : AO’ Pn = P, + Aoqn and Y, T Y, onn, we see
that (xn,qn,pn,yn,An,hn) converges to (xo,qo,po,yo,AO,O).
Therefore, by (43), there exist sequences of elements Gxn, an,

Gpn, dyn and dAn converging to 8x, 8q, Sp, Sy and §A such that
i) p' + h_(8p_-Ar8q -6A q +h 6A 8q.) €G(x_+h_0x_)
Pn n'°Pn7%0%g nIn"n®4n°9n *n" %% n
-1
- ' .
ii) A hn(éyn+A06xn+6An xn+hn6An6xn)eEH (qn+hn6qn)

Hence the system of inclusions (44) holds true.
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b) Conversely, let us consider the system of inclusion (44)
and let us prove (43). We choose sequences (xn,qn,yn,pn,An,hn)
converging to (xo,qo,yO,AO,O). Then we know that there exist
sequences of elements Gxn, an,dun and v converging to &x, 4q,

* *
dp - SA qy - Aodq, and Sy + cSAx0 + A_6x respectively. We set

0
i) 6A 1= SA, which converges to §A
ii)  8p_ = u_ + GA" *sq_ + h_8A"S hich
ii) P, = U A "d, + An q, n A q,. whic
(45)
converges to &p
iii) 6yn =V, - cSAxn - Anchn - hndAxn, which converges to §x
Hence

(pn+hn6pn,yn+hn6yn,An+hn6A)ezF(xn+hn6xn,qn+h6qn)
and consequently, inclusion (43) holds true.

Corollary 11

* *
Let X and Y be finite dimensional and G:X+X and H:Y->Y
be set-valued with closed graph. Let (po,yO,AO) belong to
*
X xY¥x[L(X,Y). Assume that there exists a solution (XO'qO) to

the system of inclusions

*

i) pOGG(xo) + AOqO

(46)
1) yy€-Agxy + H '(qy) -
If the matrix of closed convex processes
c * *
€ (xgsPyRgdp) 29
-1

-A, CH(AOx0+yO,qO)

is surjective, then there exist neighborhoods U and V of (xo,qo),



_53—
UCV, and W of (po,yo,Ao) such that the set-valued map

-1
(47) (p,y,A) EW->F (p,y,A) NU

has nonempty values and is pseudo-Lipschitz. Furthermore, the

derivative of F_| is given by

5 . . 1 /sp-sa”
X CG(xo,po—Aoqo) A0 ' p-6Aa dq

(48) €

8g —AO CH(Ax0+y0,q0) Sy+48Aa * Xq

6. CALCULUS OF CONTINGENT AND TANGENT CONES, DERIVATIVES AND
EPI-DERIVATIVES

The applications of nonsmooth analysis to nonlinear analysis
to which we have devoted the preceding section motivate the de-
velopment of a calculus of contingent and tangent cones, of con-
tingent derivatives and derivatives of set-valued maps and of

epi-contingent derivatives and epi-derivatives of real-valued

functions.

We summarize this calculus in the Appendix, adding the formulas

of convex analysis for the sake of comparison.

Proposition 1

a) Let KCLCX be two nonempty subsets. Then

(1) VxOEK, TK(XO) CTL(XO) .
b) Let K := U Ki be the union of subsets Ki‘ Then
ier
(2) ¥x, €K, U T, (x,) CT,(x,) .
0 ieT Ki 0 K'70

If T = {1,...,n} is finite, equality holds true.



c) Let K := N Ki be the intersection of subsets Ki' Then
ier
(3) ¥x, €K, TK(xo) cn TK.(XO)
1el 1
d) Let K := Ki be a finite product of subsets Ki' Then
iel
i n i i
(4) ¥x :=(x) €K, T (x.)C I T, (x7) and C_,(x,) = 1 C., (xx).
0 0 jer K0T oy Ry 70 K700 e %3 70

Proposition 2

Let X and Y be Banach spaces, A be a C1—map from an open
subset Q@ of X to Y and KCQ be a subset of X. Then

(5) ¥x. €K, VA(xO)TK(xo)CTA(K) (A(xo))

0

Proof

Let Vo belong to T

vn-+v0 such that x0 + hnv

seqguence of elements u o= (A(x0+hnvn)—A(x0))/hn converges to

K(xo); there exist sequences hn-+0+ and

n belongs to K for all n. Then the

A(xo)v and A(xo) + hnun belongs to A(K) for all n. Hence A(xo)v0

0

belongs to TA( (Axy) . [ |

K)

In particular, if A€ (X,Y), we obtain the formula

(6) ¥x € K, AT, (x) CTA( (A(x))

K K)

We now study the contingent cone to the preimage of a set by a

smooth map:

Proposition 3

a) Let X and Y be two Banach spaces, LCX and MCY be two
subsets and A be a C1-map from an open neighborhood of L to Y.

We set



(7) K := {xEL|A(x) EM} = LNA™ (M)

(8) ¥x €K, TK(X)CTL(x)ﬁVA(x)-1TM(A(x)) i

C s . . 1
b) Let X and Y be finite dimensional spaces, A be a C -map
from an open subset QCX to ¥, LCQ and MCY be closed subsets

of X and Y respectively.

We assume that there exists xOGELrWA_1(M) such that

(9) VA(xO)CL(xo) - CM(AxO) =Y .
Then
=1
(10) CL(xo) nvA<xO) CM(Axo) CCK(XO) .
Proof

a) By Proposition 1, TK(x)(ZT (x) because KCL. By Proposi-

L

tion 2, VA(x)TK(x)CTA (Ax) CT, (Ax) because A(K) CM. Hence

(K) M
-1

TK(x)CIVA(x) TM(Ax) and consequently, formula (8) holds true.

b) We introduce the set-valued map F from X to Y defined by

(11) F(x) := A(x) =M when x€L, F(x) := # when x&L .

1

We observe that F  (0) = K. We shall prove that there exists a

neighborhood UO of X in L such that
(12) VX €Uy, d(x,F ' (0)) < id, (Ax) .

Indeed, we take Yo = 0 and xOGEF-1(O). The inverse function
theorem implies that F_1 is pseudo-Lip..chitz around (O,XO).
Then there exist a neighborhood U of Xgr @ ball of radius r in

Y and a constant £ >0 such that:
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vy € rB, VXEF_1(y)ﬂU, a(x,F 1 (0)) < 2yl .

We can choose U so small that HA(x)-—A(xO)H <r when X ranges over U.

Any x€LNU belongs to F—1(A(X)—NM(A(X))) and

IAa(x)=m, (AN < HA(x)=-A(x I <x

M

Therefore, we know that for all erUO := LNG,
a6, (0)) <clAl) -my (A(x))-0l = 4, A(x) .

1

c) Let u, belong to Cp(x,) NVA(x,) Cy(Ax,). There exist

0
@ >0 and B >0 such that x + hu, belongs to U, := L NU when

Hx-xOH < a and h< B. Since F-1(0) = LrWA_1(M), we deduce from

(12)

d (x+hu (Ax+hVA(x0)u0)

r~1(0)) dy (A (x+hu ) )

’ d
0 < e < M

h h h

HA(x+hu0)-A(x)-hVA(xO)uOH
+ c L]
h

The first term on the right-hand side converge to 0 because
VA(xO)u0 belongs to CM(Axo) and the second converges also to 0
because A is continuously differentiable. Hence U, belongs to

C (uy). B
F~1(o)y O

Corollary 4

Let X and Y be finite dimensional spaces, A be a continuously
differentiable map from X to Y and M be a closed subset of Y. Let
AX belong to M., If

(13) Im VA(xO) - CM(AXO) =Y

then
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1
(14) VA (x CM(Axo) cC _q (xg)

-
0 a~ o

Corollary 5

Let L and M be two nonempty closed subsets of a finite dimen-

sional space X and X belong to L NM. If
then

(16) CL(xo)rWCM(x0)<:CLmM(XO) .

Corollary 6

Let Ki(i=1,...,n) be n nonempty closed subsets of X and X

n
belong to N Ki' We posit the following assumption

i=1
n
(17) Vv1,...,vn€EX,‘ .Q (CK'(XO)'-Vi) 0 .
i=1 i
Then
n
(18) _9 Cx. (xg) €C (x4) .
i=1 i
K.
i=1"1
Proof

Let D CX™ denote the closed vector space of constant sequences

> R . . R R - > n
X 1= (X,...,X). Then K is identified with K := DN II Ki' We ob-
> n i=1
serve that C+(§) = D and that C n (§) = I CK (x). Assumption
D T K i=1 i
. i
(17) implies that i=1
- > > n n
(19) C+(x) - C n (x) =D - 1T CK (x) = X .
D T K. i=1 i
. i
i=1

Therefore Corollary 5 implies that



n
(20) Bn I C, (x) CC N IR (x)
=1 Ki B i=1

i.e., inclusion (18).
We shall derive from the properties of the contingent and
tangent cones a calculus of contingent derivatives and derivatives

of set-valued maps.

Proposition 7

a) Let F be a set-valued map from X to ¥ and B be a C1-map

from an open neighborhood @ of Im F CY to Z.

Then

(21) vu, €X, VB(yg) +DF (xo,yo) (uo) CD(BF) (xO,Byo) (uo) .

If

(22) F is Lipschitz around erEInt Dom F with compact values
and dim Y < 4+« then

(23) Yu, €X, VB(YO) *DF (X4, ¥g) (ug) = D (BF) (XO’BYO) (uo) .

b) Let F be a set-~valued map from X to ¥ and A be a C1-map

from X, to X. Then, if Ax0 belongs to Dom F,

0

(24) Yu, €X

If we assume that either

(25)a) F is Lipschitz around Ax0 ’

or

(25)b) VA(x,) is surjective and dim X, < +> ,
then

(26) Yu,€Xy, D(FA) (x4,y) (uy) = DF(Ax,,v) (VA(Xq) (ug) .



Proof

a) Let (1 xB) be the map: (xX,y) €XxqQ~» (x,B(y)) €¥YxZ. The
graph of the set-valued map G := BF is related to the graph of F
by the relation: graph (G) = (1 xB)graph (F). By Proposition 2,

we know that (1 XVB(yo))T (xo,yo) is contained in

graph (F)
Tgraph(G)(Xo'BYo)- This implies formula (21).

b) Let w, belong to D(BF)(xO,ByO)(uO). There exist sequences

0

hn-+0, u, ~>u and W, T W, such that hnwn belongs to B(F(x0+hnun)) -

0
B(yo) for all n. Hence there exists VnE(F(xo+hnun))—y0)/hn such
that hnwn = B(y0+h v.) - B(yo). Since F is Lipschitz around Xqr
v, belongs to F(x,) - y, + hnHunHB, which is contained in a com-
pact set, because the values of F are compact and the dimension
of Y is finite. Hence a subsequence (again denoted by) v, con-

verges to some v,, which belongs to DF(xO,yO)(uO), and thus, the

0

sequence of elements W, converges to VB(yO)-vO = Wy Therefore

D (BF) (xo,Byo) (uo) CVB(yo)DF(xO,yo) (uo) .

c) Let Ax1 :XO xY>XxY be the map defined by (A x 1) (xo,y)

(Axo,y). The graph of the map G = FA is related to the graph of

1

F by the formula graph G = (A x 1) 'graph F. By Corollary 4, we

1

know that T (x4,Y) C(VA(xO) x1) 'T (F)(AXO'YO)' This

graph (G) graph

implies formula (24).

d) To prove (26) let us pick w, in DF(AxO,yO)(VA(xO)uO).
There exist sequences hn-+0+, vn-+VA(xO)u0 and W, > Wg such that
hnwn belongs to F(A(x0)+hnvn) -~ Y- Assume first that F is

Lipschitz around Xgr We deduce that

F(A(x0)+hnvn)) CF(A(xO+hnun)) + zllA(x0+hnuo)-A(xo)-hnvnllB .
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Hence there exist a sequence of elements wﬁ converging to W, such
' -

that hnwnGEF(A(xo+hnu0)) Yy) for all n. Thus w, belongs to

D(FA)(xo,yo)(uo). Assume now that VA(xO) is surjective. Then

Corollary 5.5 implies the existence of a constant £ >0 such that,

for n large enough, there exists a solution x, to the equation

Alx ) = A(x,) + h v satisfying Ix =xpll < gh_ v, . Since

dim Xqg < *+®, we deduce that a subsequence of elements u, := IL

converges to some element Ugi since Yo t hnwnezFA(xo+hnun) for

all n > 0, we deduce that W belongs to D(FA)(xo,yo)(uo). [ ]

We now investigate the chain rule formula for the derivative.

Proposition 8

Let XO’ X and Y be three finite-dimensional spaces, F be a
set=-valued map with closed graph from X to Y and A be a continu-

ously differentiable map from X, to X. Let x, belong to A_1DmnF

and yoezF(xo). We assume that
(27) Im VA(xO) - Dom CF(AxO,yO) =X .
Then

i) Yug € Xy, C(FA)(xo,yo)(uo) DCF(Axy,yy) (VA(x4)ug)

(28) .. * * * *
ii) ¥qyEY , C(FA) (x4,vq) (qp) CVA(xO) CF(Axo,yo) (qg)
Proof
Since graph (FA) = (A><1)-1graph (F), we apply the second
part of Proposition 3, which states that (VA(xO) ><T)_1 Cgraph(F)

(Axo,yo) is contained in Cgraph(FA)(XO’YO)’ i.e., formula (28),

provided that property

(29) Im (VA(xO) x 1) = XxY

- Cgraph(F)(AXO’YO)



—6‘]—

is satisfied. But it follows from Assumption (27), which also
implies

*
)

(CF(Ax,,yq) * VA(xg)) = VA(XO)*CF(AXO’YO)* .

Proposition 9

Let F be a proper set=-valued map from X to ¥, K be a subset

of X and Xy belong to KNDom F. Then

(30) D(F|K)(x0,yo)(u0)CDF(xO,y0)|T (*

(un) .
g (Xg) 0

If X and Y are finite dimensional, the graph of F is closed,

K is closed and

(31) CK(xo) - Dom CF(xO,yo) = X ’
then

*
and, for all qOEY ’

(33) C(FIK)(xo,yo)*(qo)<:CF(x0,y0)*(q0) + NK(XO) .

Proof

We observe that graph (F|,) = graph (F) n (K xY). Then

K

Tgraph(F|K)(x0’Y0)<:Tgraph(F)(X0’Y0)‘W(TK(XO) xY), from which
we deduce formula (30). We observe that Assumption (31) implies
that

Cyraph(r) (X¥or¥g) ~ Cglxg) x¥ = Xx¥ .



Therefore, Corollary 5 implies that

from which we deduce formula (32). Assumption (31) allows us to

deduce formula (33) from formula (32).
»n

Proposition 10

a) Let us consider n set-valued maps F, from X to Y.

n n
(34) Yu,€X, D U F; (xqr¥g) (Ug) = U DF.(x4,74) (ug)
i=1 i=1

b) Let us consider n set-valued maps Fi with closed graph
from a finite dimensional space X to a finite dimensional space Y.
Let (xo,y0

Assume that

) belong to the intersection of the graphs of F,.

¥(u,,v;) €XxY (i=1,...,n), 3J(uy,vy) €EXxY
(35) such that

VOGCFi(xo,yO)(u0+ui)--vi for i=1,...,n .

Then
n n
(36) Yu, €X, C(121Fi)(xo,y0)13 Q1CFi(x0,y0)(u0) .
A
Proof
We note that graph(LJFi) = Ugraph (Fi) and graph (r\Fi) =

M graph (Fi) and we apply Proposition 3 and Corollary 6 respec-

tively.
Y »
We deduce at once a calculus of epi-contingent derivatives

and epi-derivatives of real-valued functions V from the calculus

of contingent derivatives and derivatives of the set-valued map



y+ defined by y+(x) = Vi(ix) + HH_ when V(x) < +« and y+(x) = g

when V(x) = {+=}.

Proposition 11

a) Let V be a proper function from Y to RU{+«} and A a C1-
map from X to Y. If Axo belongs to the domain of V, then

(37) Yuj, €X, D _V(Ax,) (VA(x4) (uy) < D (V + A) (x4) (ug)

0
b) Let X and Y be finite-dimensional spaces, A be a C1-map
from X to Y and V: Y > RU{+»} be a proper lower semicontinuous

function. Let x, belong to A_1(Dom V). If we assume that

(38) Im VA(xO) - Dom C+V(Ax0) =Y ,
then
(39) Vuoesx, C+V(Ax0)(VA(x0)u0) > C+(V° A)(xo)(uo)
and
*

(40) 3(V . A)(xO)CIVA(xo) av(Axo) .

Observe that Assumption (38) is satisfied when either V is
Lipschitz around A(xo), because in this case Dom C+V(Ax0) =Y,

or VA(xO) is surjective.

Proposition 9 implies the following formula for epi-derivatives

of restrictions.

Proposition 12

Let X be a finite-dimensional space, V a proper lower
semicontinuous function from X to R U{+»} and KCX a closed

subset. Let X belong to KNDom V. We assume that

(41) Dom C+V(x0) - CK(xo)

Then
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(42) VuE€C (xg), CL(V[L) (%5) (u) < CVI(x4) (u)
and
(43) 8(V|K)(x0)<:8V(x0) + Ny (xg) .

In particular, these formulas hold true when V is Lipschitz

around x,.
0 A

Proposition 13

Let V be a proper function from the product X xY of two Banach

spaces to IRU {+=}. We set

(44) W(y) := inf V(x,y) .
xeX

If xyeEX minimizes x> V(x,y) on X, then

(u45) ¥ ey, D+W(y)(v) < inf D+V(x

IY) (u,v)
uex Y

Proof

Let u and v belong to X and Y respectively. Then the follow-

ing inequalities hold true:

V(xy+hu,y+hv)-—V(xy,y)

W(y+hv) - W(y) < .

h h

This implies that for all (uo,vo) in XxY ,
D+W(y)(V0) < D+V(Xy,y)(u0,vo) ]
and consequently, inequality (45).

Remark

When v = 0, we obtain Proposition 3.5 as a consequence. The
analogous statement holds true for the supremum of a family of

functions. Let
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(46) U(y) := sup VIx,y) = v(?cy.y) .
xeX
Then
(47) vyvey, D+U(y)(v) > sup D+V(§ (y) (u,v) .
Y
uex ]

We now provide a formula on the epi~derivative of a supremum

of a finite number of functions.

Proposition 14

Let us consider n proper lower semicontinuous functions from

a finite dimensional space X to RUY{+=}. We set

U(x) := max Vi(x). We assume that
i=1,...,n
n
(48) X belongs to M Int Dom Vi .
i=1
Let us set J(xo) i= {i=1,...,n|Vi(xo)==U(x0)}. Assume also that
¥i EJ(xO) ’ VuiEX, there exists ug
(49)

such that uo—uifEDom C+Vi(x0) for all iGEJ(xO)
Then

(50) Vu, €X, CU(xg) (uy) < max C.V,(xq) (ug)
1€J(xo)

and

(51) 3U(x.) Cco U V. (x.) .
0 i€ (x,) 0

Proof

Assumption (48) implies that when.i.ﬁJon), then (xo,U(xo))
belongs to the interior of EpVi, so that the tangent cone

CEp(Vi)(XO’U(XO)) is equal to X x IR. Assumption (49) implies

that
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V(ui,xi) €X xR (i=1,...,n), there exists
(52) (uo,xo) such that (uo-ui,xo-xi) belongs to

cEp(Vi)(XO’U(XO)) for all i=1,...,n .
Indeed, ug is given by property (49) and we take

XO := max (C+Vi(xo)(u0-ui)-+xi) .

ieJ(xo)

Therefore, we are allowed to use Corollary 6, since

n
EpU = N Ep(V,). Then
i=0
n
ieg(x,) tPvy) OO ioq ER(V,) For ¥o epv (X0 /U (X

This inclusion implies inequality (50), from which we deduce in-
clusion (51), because the support function of a union is the

supremum of the support functions.

We mention the following corollary.

Corollary 15

Assume that the n proper lower semicontinuous functions are

Lipschitz around Xqe Then

(53) VuOGEX, C+U(xo)(uo) < max C+Vi(xo)(u0)
1€J(xo)
and
(54) U (x,.) Cco U IV. (x,) .
0 i€r(xy) 0

A
We now turn our attention to the behavior of epi-contingent deri-
vatives and epi-derivatives of the sum of two functions. This
time, we need the concept of strict epi-~differentiability.



Proposition 16

Let V and W be proper functions from X to IRRU{+»}, Then
(55) D+V(x0)(u0) + D+W(x0)(u0) < D+(V-+W)(x0)(u0) .

Assume that W is strictly epi-differentiable at X and that

(56) Dom C+V(x0)rﬁDom B+W(x0) # @ .
Then
(57) C+(V-+W)(xo)(u0) < C+V(x0)(u0) + C+W(x0)(u0)
and
(58) 2 (V + W) (xo) CaV(xo) + aW(xo) .
A
Remark

Assumption (56) is satisfied when W is Lipschitz around Xq-

Proof

The formula for epi-contingent derivatives is obvious. We
observe that for all ug belonging to Dom C+V(x0) N Dom B+W(x0),

we have
(59) C+(V-+W)(x0)(u0) < C+V(x0)(u0) + B+W(x0)(u0) .

Now, let u&Dom C+V(x0)rﬁDom C+W(x0) and A€]0,1[ be fixed. Since
Dom B+W(x0) = Int Dom C+W(x0), we deduce that (1-A)u + Auo belongs

to Dom C+V(x0)f7Dom B+W(x0), so that formula (59) implies that

C+(V-+W)(x0)((1-k)u+ku0) < (1=MC V(xg) (u) + AC,V(x4) (uy)

+ B+W(XO)((1-K)U+KUO) < (1—K)C+V(xo)(u) + KC+V(x ) (u

o) (9g)

+ (1-A)C+W(xo)(u) + AB+W(XO)(u0)

by formula (27) of Section 3.
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By letting )\ converge to 0, we deduce formula (57), which im-
plies formula (58), because the support function of a sum is the
sum of support functions.

Remark

Observe that Assumption (56) implies that
(60) Dom C+V(x0) - Dom C+W(x0) = X .

In the same way, we can prove without using the Inverse Function

Theorem that the assumption

1

(61) Dom C+V(xo)rWVA(x0)— Dom B,W(x,) # #

implies that

(62) C+(vv+w A)(xo)(uo) < C+V(x0)(u0) + C+W(Ax0)(Ax0)(VA(XO)uO)
and that
(63) D(V+W A (x,) COV(xy) + VA(xO)*aW(Axo)

without assuming that the spaces are finite dimensional.

7. COMMENTS

Nonsmooth analysis started at the end of the sixties for
extending the successful subdifferential calculus to nonconvex
and nonsmooth functions or for using convenient "tangent cones"”
for expressing the necessary conditions. Let us quote, among
many other works, Dubovickii and Miljutin (1971), Ioffe and
Tihomirov (1972), Neustadt (1976), etc.

The concept of generalized gradient and normal cone intro-
duced by Clarke (1975) gave a new impetus in the field and was
at the origin of a considerable amount of work. Other attempts
for defining other concepts of generalized gradients were made

by Russian mathematicians, see for instance Demianov-Vassiliev



-69-

(1981) and Pchenichny (1980). The part of this chapter dealing
with generalized gradient and normal cones is based on the works
of Clarke (1975), (19764), (1977b), (1981a), regrouped in Clarke
(1983), and the works of Rockafellar (1979a,b,c) and (1980).

The importance of the role of the Bouligand tangent cone (Bouligand,
1932) in viability theory for differential inclusion is stressed
in the book by Aubin and Cellina (1984). The fact that the tan-
gent cone is the Kuratowski liminf of the contingent cone was
discovered by Cornet (1981), Penot (1981) and Rockafellar and

Wets (unpublished). Many works were devoted to tangent cones

and derivatives. (Auslender, 1978a,b; Crouzeix, 1977 (for quasi-
convex functions), Frankowska, T.A. d); Gauvin, 1979; Gollan, 1981;
Halkin, 1976, Hiriart-Urruty, 1978, 1979a,b,c; Hiriart-Urruty and
Thibault, 1980; Hogan, 1973; Ioffe, 1981a, T.A.a,b; Janin, 1982;
Lebourg, 1975, 1979; Lemaréchal, 1975; Penot, 1974, 1978a,b,c:

Shi Shu Chung, 1980; Thibault, 1979; Warga, 1976, 1978a; Watkins,

Many concepts of generalized derivatives of vector-valued
maps have been proposed and studied. Let us mention the fans,
introduced by Ioffe, 1979, 1982 (see also Aubin, 1982b), 198i1c,
Hiriart-Urruty T.A.b, Kutateladze, 1977, Sweester, 1877, Thibault,
1982, T.A.a.

The concept of contingent derivative of set-valued map was
introduced in Aubin (1981) and the concept of derivative in Aubin
(1982a).

Other concepts of derivatives of set~valued maps were pro-
posed by de Blasi (1976), Boudourides and Shinas (1981), Merica
(1980) , Nurminski (1978), Penot (T.A.a), Petcherskaja (1980),
Shinas and Boudourides (1981), Thibault (T.A.b).

The inverse function theorem is taken from Aubin (1982a).
See also the paper of Clarke (1976), Halkin (1976), Ioffe (1981c),
Warga (1978) and the recent works of Rockafellar (unpublished).
Epi-contingent derivatives are quite useful for the theory of
Hamilton-Jacobi equations (see Aubin, (1981) and Aubin and Cellina,
(1984)) and are related to the concept of generalized solutions
introduced in Lions P.L. (1982).
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APPENDIX

Summary of the Calculus of Contingent and Tangent Cones, of
Contingent Derivatives and Derivatives of Set-Valued Maps and
of Epi-Contingent Derivatives and Epi-Derivatives of Real-
Valued Functions.
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