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Transient Flow Routing in Channel Networks

Eric F. Woodl, Brendan M. Harley2 and Frank G. PerkinsB’4

Abstract

The formulation of a mathematical model to predict
transient flows in hydraulic networks is presented. The
network formulation consists of breaking the network into
a series of connected reaches; reducing the finite difference
equations for each reach into two "reach" equations; forming
an exterior matrix consisting of the reach equations, exter-
nal boundary conditions, and interior compatibility condi-
tions; solving the external matrix for the end values of
discharge and water surface elevation for all reaches and
back-substituting for all interior values. Examples pre-
sented include the James River, USA, estuary model (twenty-
four nodes and twenty-six reaches), the Cork Harbour,
Ireland, estuary (thirteen-reach, double-~looped network),
and the Rio Bayamon basin, Puerto Rico. Results are very
satisfactory when compared to known data.
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Introduction

Routing procedures, based upon the unsteady flow equations
for continuity and momentum, have been used for many years to
solve for transient flows in open channels. Both implicit
and explicit solution techniques for the governing equations
have been widely reported in the literature {Stocker [6];
Gunaratnam [3]). The practical application of transient
flow routing schemes for large river systems has been severely
limited by the inability to adequately handle complex channel
networks. Recently reported multichannel formulations
(Quinn and Wylie [5]; Fread [2]) have considered only a main
river with a single tributary--the simple Y network. The
solution for the stage and the discharge at the internal
junction is obtained by a Newton-Raphson algorithm. The
Newton-Raphson approach has two main disadvantages, which
severely limits its usefulness in engineering analysis on
large, complex networks. These disadvantages are:

1) The formation of a large matrix of partial deriv-
atives, and

2) The repetitious solution of the matrix of partial
derivations as the algorithm iterates to the new
solution for the stage and discharges.

The procedure of matrix formulation and solution must
iterate to the new solution at each time step--an approach
that is expensive and cumbersome for large networks without
assuring that a satisfactory solution will be achieved.

Incorporating a practical solution technique for the
unsteady flow network routing problem involves the following
considerations:

1) Specifying a set of external boundary conditions,

2) Solving for the set of simultaneous algebraic
difference equations arising trom the finite
difference equations of continuity and momentum,

3) Satisfying the internal boundary condition of
stage and discharge compatibility,

4) Specifying, for implicit finite difference schemes,
the initial stage and discharge conditions. For
transient flow simulation in rivers, the required
initial conditions of stages and discharges are
generally not specifically available. The capability
to generate the initial conditions is of practical
importance. Conditions under which initial stages
and discharges can be obtained are discussed later.



The network formulation presented here is generally
applicable to finite difference schemes. 1In this paper, both
a six-point implicit scheme and a simpler four-point im-
plicit scheme were used in the solutions of the examples
presented. The network formulation is the same for both;
the six-point scheme will be presented in detail.

Single-Reach General Boundary Conditions

Consider a channel divided into (N-1) sections. 1In
the formulation of the implicit scheme there is a total of
{2N-2) unknowns; 2N-4 of these are unknown values of dis-
charge, Q, and water surface elevation, Z, at the interior
points, while one unknown is provided by each ot the boundary
conditions, leaving one unknown at each boundary point.

The St. Venant equations that govern unsteady flow are
often written in a characteristic form. They can then be
solved by a suitable finite difference procedure. One such
procedure, developed by Gunaratnam and Perkins [3], uses
a six-point scheme that resulted in the following finite
difference equation for the characteristic equations for
the interior points:
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where
At is the time step

Ax is the space step

z. is the water surface elevation at section j,
time step n

e



q? is the discharge at section j, time step n

B, is the top width of the channel
. ) . q
A% dA F L
B, 3x z=const. B, £ Bs

A is the cross-sectional area

F is the Froude number

g is the gravitational constant
Sf is the friction slope

dy, is the lateral inflow.

Equation (la) generates two finite difference equations.
One is for the forward characteristic, when

A =v +c
A* = v - ¢,
and the other is for the backward characteristic, when
A =v - ¢
A*¥ = v + c

where

v the velocity

o the celerity velocity.

For the solution of the finite ditference equations to
exist and to be unique, it is necessary to specify both the
boundary and initial conditions. In the case of subcritical
flow, the boundary conditions take the form of known time
histories of either the water surface elevation Z or the
discharge Q, or a relationship between Q and Z. These time
histories must be specified continuously over the time
interval for which the transient is to be observed. Since
the present formulation is limited to subcritical flows,
only one time history is required at each boundary. At an
upstream boundary, only the backward characteristic equation
governs; at a downstream boundary, the forward characteristic
equation governs as shown in Figure 1. Therefore, for the
upstream boundary,
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A = kup = (v = ¢)
A*¥ = A* = (v + ¢) '
up

and for the downstream boundary

A= Adn = (v + ¢)
— 1% - -
A*x = kdn (v c)

Hence the equations for the upstream and downstream
boundary points are given below:

A A
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(‘37 ax "2“') z2y * (6 T Ix 2) 22

A A
_ 1 1 _ At "up) n+l _ 1 1l . At "up) n+l
B A%, (3 Fx 2 )ql B_A* (6 T % 2)‘12
o” up o” up
_ 1l n 1 _ 1 n 1 n
= Yup (3 2t % zl) B %* <§ 9 *F qz) » (1b)
o” up
and
A A\
1l _ At “dn el S Y + At “dn zn+l
6 Ax 2 TN-1 3 Ax 2 N
1 (l _ At )‘dn) n+l 1 (1 , bt Adn) e
S + !
B \6 Bx 2) IW-17 B X 37 & 2 ) %
_ 1. n 1. ny_ 1 (1 n 1 n
= Van * (6 Zy-1 7 3 ZN) B_A¥ (‘6’ -1 7 3 qN) .
o dn
. (lc)

Equations (la), (1lb), and (lc) resulted in the set
of finite difference equations for the flood routing model.

The sets of characteristic equations given in the
formulation of the implicit scheme can be written for the
interior and boundary points; coefficients of the matrix
thus formed are displayed in Figure 2. A convenient way
of solving for the variables can be developed by partitioning
the matrix so that the interior points are isolated from
the boundary points. The coefficients of the interior points
form a (2N-4) by (2N-4) matrix which will be represented as
A. The method of solution is then similar to the method of
influence functions commonly used in structural analysisg.

In this method the vector of unknown interior points, x,
is initially solved for with the boundary points set equal
to zero.
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influence of unit values ot 2(1), Q(1),

o
where x

2°(2)
0°(2)
2°(3)
9°(3)

z° (N-1)

o
N-1
o1y

(2)

The effect of the boundary points is determined by the

Z(N),

and Q(N).

The

effect of the unit influence coefficients can be found by
the equation below:

where

§B, =

A 8x., = 6B,
i

éB

i=1,2,3,4,

-2, (2)
_a4 (2)
0

(3)




and

B

§x,=

§x .=

dxll(N—l)

dx,, (N-1)

éB

6x2

6x4

It

dx33(N-l)

dx44(N-l)




-10-

where the terms ai(j), bi(j), and ci(j) are as defined in
Figure 2.

From these equations, the value of discharge Q(j) and
water surface elevation Z(j) for interior points can be
determined in terms of their initial values (at the previous
time step) and boundary point values, as follows:

Z(3) = 2°(3) + ax; (3) « z2(1) + dxy (§) * (1)
+ dx,,(3) © zZ(N) + dxy.(3) " Q(N) ; (4a)
0(3) = 0%(3) +dx, (§) -z, +ax, (§) * o)

+dx,,(3) * Z(N) +aAx,,(3) + Q) . (4b)

It can be further seen by examination of Figdre 1 that
the boundary equations can be written in terms of only the
boundary variables, i.e.,

alZ(l) + azQ(l) + a3z(N) + a4Q(N) = Bi (5)
for the upstream boundary, and
Blz(l) + B,0(1) + Byz(N) + B4Q(N) = Bﬁ (6)

for the downstream boundary,

where

R
I

b3(l) + dxl(2) c3(1) + dx2(2) c4(l)

Q
]

b4(l) + dx3(2) c3(l) + dx4(2) c4(l)

Q
|

3 = dxll(z) c3(l) + dx22(2) c4(l)

= dx.,,(2) c3(1) + dx44(2) c4(l)

33
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Bl = dxl(N - 1) al(N) + dxz(N - 1) a2(N)

B, = dxy(N - 1) a;(N) + dx,(N - 1) a,(N)

83 = bl(N) + dxll(N - 1) al(N) + dx22(N - 1) az(N)

By = Pp(N) + dxaa{N = 1) a,(N) + dx,,(N - 1) a,(N)
B} = By - c4(1) 2%(2) - ¢ (1) 0%(2)

[ - - o - - ° -
BN = BN al(N) Z7 (N 1) a2(N) Q (N 1) .

In all cases at the boundaries either Z(l) or Q(1)
and either Z(N) or Q(N) are known. Hence in Equations
(5) and (6) there are two unknowns and two equations, and
all the boundary values can be determined. The values for
the interior points can be determined by back-substitution
into Equations (4a) and (4Db).

While this procedure may at first appear to be quite
complex and more complicated than would be required to solve
the implicit equations directly, it in fact offers a distinct
computation advantage. The operations defined by Equations
(2) and (3) are quite readily carried out because of the
bi-tridiagonal nature of the interior matrix A. The details
of the solution procedure are given in Gunaratnam and Perkins
[3], where it is shown that the number of computations re-
quired is linearly related to the size of the matrix A,
rather than its cube as in direct reduction techniques.

Hence the five solutions implied by Equations (2) and (3)
can actually be effected more rapidly than by a single
direct reduction. This advantage could, of course, have
been realized directly without treating the boundary and
interior points separately. However, by doing so, very
major advantages are realized when dealing with a network
of channels.

Multiple-Reach Compatibility and Boundary Conditions

In the case where several channel reaches are inter-
connected to form a network, it is necessary to consider the
compatibility conditions at junctions where the reaches
intersect. Consider an interior or junction node as shown
in Figure 3.

The conditions that must be satisfied at such a junction
are:
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Downstream end

Reach 'I
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~___Downstream
Reach I

Upstream end
Reach III

Figure 3. Schematic diagram of an internal node.
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(1) Continuity of mass
N .
}] 0'=0 iie., OO +0O T -0 =0 , (7)

(2) Kinematic compatibility-~-constant water surface
elevation at junctions

z7 =z = 2z . (8)

The junction conditions neglect any added losses due to
the junction. 1In order to illustrate the role of these node
equations, consider the complete network of channels shown
in Figure 4, with boundary conditions as given at the
exterior nodes.

The ends of each channel reach defined nodes which are
numbered as shown in Figure 4. Reach numbers are also de-
fined in this figure. By following a procedure similar to
that which generated Equations (5) and (6), a set of relations
involving only unknown values at the nodes can be derived.
Letting the nodal values of water surface elevation, 7,
and discharge, Q, be subscripted by the node numbers and
superscripted by the reach numbers, these nodal equations
can be shown to take the following form:

Reach I
a1 Z2(1) + a3 0(1) + a3 2(3) + oy 0¥(3) = BT (1)
I I I I I I
By Z2(1) + B, (1) + B3 2(3) + 8, 0°(3) = B (2) ,

(9)
Reach II

IT . IT IT

olz(2) + oflo(2) + aflz(3) + o503 = 81T (1)

+

ellz(2) + p3'0(2) + 85lz(3) + 8%Fo™(3) = BT (2)

(10)
Reach III
a{IIZ(3) + OLgIIQIII(B) + a§IIZ(4) _ ailIQ(4) _ BIII(l)

8172(3) + 83710 (3) + 85Tz(a) = 8} To(e) = BT (2)

(11)
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Exterior Nodes

Q1) =f(1)
Reach I—)

3 )<—Interior Node

<S—Reach III

( 4 )«—Exferior Node
z(4) = f3(t)

Figure 4. Simple Y network.
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where the a's and B's are defined for their appropriate
reaches by Equations (5) and (6).

It is also necessary to satisfy continuity at junction
(3). Hence

ot (3) + ott(3) - o3y =0 .

At the exterior nodes, the boundary conditions as a
function of Z or Q are also shown in Figure 4.
Hence

Q(1) = £, (t)
0(2) = £,(t)
z2(4) = £,(¢) . (13)

In Equations (9),(10), (12), and (13) there are
ten unknowns and ten equations. The external coefficient
matrix formed by these equations is shown in Figure 5.
Solving the external coefficient matrix, the nodal water
surface elevations and discharges can be determined. The
values at the interior points are then determined by back-
substituting in Equations (4a) and (4b).

Initial Conditions

For many cases of river flows, initial conditions of
Z and Q are not explicitly available. Often an initial
condition of steady state is assumed for purposes of
analysis. However, this is usually an arbitrary choice
which is unlikely to be realized in practice; hence the
initial conditions must be arbitrarily assumed. If the
transient flow period is much longer than the period over
which the initial conditions have effect, then a signifi-
cant portion of the transient can still be predicted
accurately, irrespective of the assumed initial conditions.

The implications of this argument for computer pro-
gramming are as follows. First, a complete set of initial
conditions must be provided; these can take the form of
known or estimated water surface elevation and discharge
at each discretized point of the channel. Second, there is
no need to provide a special routing for computing steady
state profiles. Such profiles can be obtained by starting
from an arbitrary, yet realistic, profile, and letting
the resulting transients decay while holding the boundary
conditions at fixed values for a sufficient period of time.
The implicit formulation is particularly useful in this
respect because of its ability to take large time steps.
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Modelling of Channel Structures

Structures that can affect the transients being studied,
often exist in river networks. They include small dams,
locks, and bridges. The proposed network formulation allows
these structures to be studied either by the inherent nature
of modelling the network into different reaches, or by
including the equations of flow through the structure in the
external coefficient matrix. The latter method was used to
study the effect of bridges on flood transients where the
water can back up and overtop the structure (Wood [7]).
Essentially the bridge is considered a reach and the appropriate
equations governing the head loss through the bridge (assum-
ing no storage since the reach is very short) are used in the
external coefficient matrix. A future paper will describe this
methodology in detail. The flexibility of the network form-
ulation due to the external coefficient matrix concept has
greatly increased its usefulness for general-purpose
modelling.

Application to the Hydraulic Model of the James River at the

U.S. Army Corps of Engineers Waterways Experiment Station

The computational scheme presented herein was applied
by Dailey and Harleman [1] to calculate the hydraulic
parameters for a water guality model. The hydraulic model
simulated the behavior of a small-scale physical model of
the James River. A location map of the James River is shown
in Figure 6. The length of the estuary is about 100 miles,
and the simulation model used a network of twenty-six reaches
and twenty-four nodes, shown in Figure 7, to represent the
behavior of the James River hydraulic model. The parameters
used in the schematization are listeéd in Table 1. The
fresh water inflows, given in Table 2, were assigned to the
appropriate reaches, and a tide donsisting of a sinusoidal
wave, with a range that closely matched the measured
range at the nearby Hampton Roads gage, was imposed as the
ocean boundary. The results, shown in Figures 8 through 11,
compare extremely well with those found by the physical model,
not only in tide ranges but also in lag times, which are in
the order of six hours.

Application to Cork Harbour, Ireland

Dailey and Harleman [1] also applied the network
formulation using the six-point finite difference scheme
to the Cork Harbour, Ireland, estuary. Cork Harbour has
a main channel of approximately eighteen miles between the
ocean and the City of Cork. The layout, with the reach-node
connectivity, is shown in Figure 12, The results are most
interesting because the prototype was modelled as a thirteen-
reach double-looped network. Tide predictions are published
for Cork and Cobh, with spring tide ranges of 11.9 feet and
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Table 1. James River model schematization parameters
in model units

(from Dailey and Harleman [1])

Reach Upstream Downstream | Hydraulic Ax Manning
Node Node Coefficient
1 1 2 4.18 .028
2 2 4 1.73 .028
3 2 4 2.10 .028
4 4 3 2.52 .028
5 4 5 1.88 .028
6 5 6 1.57 .028
7 5 6 2.01 .028
8 6 7 2.14 .028
9 7 8 0.74 .028
10 7 8 2.32 .028
11 8 9 1.90 .028
12 9 10 3.05 .028
13 9 11 3.09 . 025
14 11 12 4.17 .025
15 12 13 5.09 .035
16 12 14 5.19 .020
17 14 15 5.09 .020
18 15 16 4,63 .020
19 16 17 5.45 .025
20 16 18 5.51 .020
21 18 19 3.26 .020
22 18 20 5.10 .025
23 20 21 5.58 .028
24 20 22 2.80 .028
25 22 23 4,66 .028
26 22 24 5.15 .028
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Table 2. Constant fresh water inflows for the
James River model in prototype units.

( from Dailey and Harleman [1])

Inflow Point Discharge
James at Richmond 1,000 cfs
Appomattox 152
Chickahominy 56
Nansemond 89
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12.9 feet respectively and a time lag of about twenty
minutes. O'Kane [4J estimates peak discharges of 100,000
cfs for Passage West and 400,000 cfs for the ocean entrance
under spring ride conditions. The mathematical model

used a semi-diurnal tide with a range of twelve feet for an
ocean boundary. A Manning coefficient of 0.025 was estimated
for each reach. Under the extremely complex geometry, the
model results presented in Figures 13, 14, and 15 compare
favorably with known information.

Rio Bayamon, Puerto Rico

A four-point finite difference formulation for the
solution of flow networks has been applied in the simulation
of the lower reaches of the Rio Bayamon in Puerto Rico.

The network lies in the coastal plain and was modelled

as shown in schematic form in Figure 16. The Bayamon basin
is approximately 100 square miles in area and the runoff
for various storm events was simulated using the M.I.T.
Catchment Mode. These values were then input to the flood
router model at nodes 5, 9, and 10 as shown in Figure 16.
The dry-weather discharge values are close to zero for all
reaches in the network, and the river can obtain peak

flood discharges in the order of 100,000 cfs in Reach 1
with a rise time of approximately three hours. During dry
weather flows, the discharge in the network does not normal-
ly flow in Quebrada Aquas Frias (Reach 8). During flood
events, Reach 2 exceeds bank capacity and flows down
Quebrada Aquas Frias, whose flow conveyance above overbank
is guite large. The flow from Reach 2 into Quebrada

Aquas Frias is facilitated by the inability of Reach 3 to
handle the large flows from Reach 2 due to the inputs

of the Rio Hondo and Quebrada Catalina in conjunction with
the conveyance of the lower Rio Bayamon. Early flows from
the Hondo and the Catalina often raise the water surface
elevation at Node 7 which can lead to a reversal of flow in
Reach 3 and down Quebrada Aquas Frias.

The network formulation of the routing model effectively
simulated these events. Figures 17, 18, and 19 present hydro-
graphs and water surface profiles for a number of reaches.

No accurate flood-discharge or elevation measurements are
recorded, but from the available information, it appears
that the current model represents the peak-discharge and
water-surface profile histories to a satisfactory degree.

Figure 17 indicates both the input rainfall to the basin
and the discharge hydrographs for Reaches 1, 2, and 8. Note
that the peak input discharge of 73,000 cfs is attenuated
to 43,000 cfs at the lower end of Reach 2. It is further
reduced by the remaining part of the network to a peak of
10,000 cfs at the lower end of Quebrada Aquas Frias (see
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Warer Surface Elevation (feet from MSL)
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Schematic diagram of the reach-node representation
Puerto Rico.

Figure 16.

of Rio Bayamon,
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Discharge (x 1000 cfs)
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Figure 18). The peak discharges to the ocean were 3200 cfs
for Reach 4 and 13,300 cfs for Reach 5. Corresponding
water surface elevation profiles are presented in Figure 19.

Computation Time

As was mentioned earlier, the banded nature of the
interior coefficient matrix, A, allows rapid solutions. The
external coefficient matrix is, for most problems, quite
small. If the nodes are carefully numbered, the external
matrix can also be treated as a sparse-banded matrix. The
solution procedures reveal that the computation time mostly
depends on the number of meshpoints, AX's, in the network
and not on the number of reaches. This is so because the
solution of the interior coefficient matrix and the back-
substitution from the nodal water surface elevations and
discharges depend upon the total number of meshpoints, and
only the inversion of the external coefficient matrix depends
upon the number of reaches.

One test, consisting of two reaches and a total of
100 mesh points, and running for almost 200 time steps, was
executed in about .l minute on an IBM 360/195. This included
disk storage of about twenty-three profiles and hydrographs.

Summary

The network formulation presented here appears to have
sufficient flexibility to allow modelling of the various
river and estuary networks which are of practical interest.
Due to the network formulation structure with an interior
coefficient matrix for each reach and an external coeffi-
cient matrix for the networks, it is possible to incorporate
special features such as bridges, small dams, and locks into
the simulation analysis. This is obtained either by the
inherent nature of modelling the network or by including
special equations of flow through the structure of the
matrices.

The formulation of the internal and external matrices
allows for efficient computation. This is so because the
solution of the interior coefficient matrix and the back
substitution from the nodal water surface elevations and
discharges depend upon the total number of meshpoints and
only the inversion of the external coefficient matrix
depends upon the number of reaches.

The network formulation also allows ready modification
of the particular finite difference scheme used to solve the
transient routing problem within each reach of the network.
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