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PREFACE

This is the second of two papers dealing with mathematical methods
that can be used to analyze hierarchical systems.

In this paper, the authors consider the case in which the lower level
of a hierarchical system of decision makers is composed of a number of
controllable subsystems. If these subsystems are not bounded by com-
mon constraints then the analysis is reduced to that of a two-level sys-
tem consisting of a regulatory center and one lower subsystem. Two
types of control are discussed in this case: control of resource use and
control through price setting. If, however, there are shared resource-
type constraints then it is assumed that the subsystems choose coopera-
tively from the set of Pareto-optimal alternatives. The problem for the
regulatory center is then to maximize its goal function over this set. A
number of ways of solving this problem are proposed, and a computa-
tional algorithm is given.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences
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MATHEMATICAL METHODS FOR THE ANALYSIS OF
HIERARCHICAL SYSTEMS II. Numerical Methods for
Solving Game-Theoretic, Equilibrium, and Pareto

Optimization Problems
F.I. Ereshko and A.S. Zlabin

Computing Center of the USSR Academy of Sciences, Moscow, USSR

1. INTRODUCTION

In this paper (a continuation of [1]), we consider the case in which the
lower level of a hierarchical system involves a number of controllable subsys-

tems.

If the lower subsystems are not bounded by common constraints then the
analysis reduces to that of a two-level system consisting of a regulatory center
and one lower subsystem. This case is discussed in Sections 2 (control of
resource use) and 3 (control through prices). In cases where there are shared
resource-type constraints we assume that the subsystems make their choices
cooperatively from the set of Pareto-optimal alternatives. The problem for the
regulatory center then lies in maximizing its goal function over that set. For a
linear goal function it is sufficient to consider only extremal points of the

Pareto set: an algorithm for doing this is outlined in Section 4.

Another technique is based on the decomposition of the problem by intro-
ducing pricing policies for the use of resources. The prices leading to optimal
subsystem demands for resources without exceeding total resource availability
can be determined by solving a classical competitive equilibrium problem. A
comiputational algorithm for solving this problem is presented in Section 5. All
sections have the same structure: they begin with a model which introduces
the formal problem under consideration, the computational difficulties are then

illustrated by means of an example, and finally a solution algorithm is outlined.
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2. AN ALGORITHM FOR ALLOCATION OF SCARCE RESOURCES

2.1. The model

We shall consider a hierarchical model of a production planning problem,
which assumes a hierarchical control structure. Let the central control body
I, influence the production of branches II; . j = 1,...n through the allocation
of primary resources and by setting acceptable levels for environmental pollu-
tion, while requiring that a given level of supply is achieved.

We shall also assume that the prices of products in the national economy
are based on the consumption of both final products and intermediate products.
We shall characterize the activity of every branch by a vector of intensity zti,

Then we have

A
ul = Azt - Y vy
=1

rt =4z

where u? is the final consumption vector, z! is the level of pollution, and rtis

the consumption of natural resources.

The Yii represent the amounts of intermediate products transferred

between branches, where

R
A4zsz

Yis
J=1 7

Let us assume that the center regulates both the level of pollution produced by

individual components
noo.
Yz, k=1..K
1=1

and their consumption of natural resources

r{s . t=1.,L
1

o8

1

The goal of the center is to meet the consumption requirements of society

u.,?,. i.e.,



while the branches attempt to maximize their overall benefit:

'il Nl(p4izt - il yi) + (qi yji)] » max
i= j= j=

1

where price levels (p,g) are coefficients of commensurability of the benefits of

separate branches and are determined by another economic mechanism.

This problem may be viewed as a game Gl' An algorithm for solving this

game is given below.

2.2. An algorithm for solving the resource allocation problem

The problem formulated above may be written in the following general

form: To determine

n
zas|mig, £ o) m &
where
r(u) = {z < To(w)| 3 S cjul (22)
u)=izx € u C;Z; = max C;Ys 2.2
0 i=1 7 VETo(u) j=q iYi
n k
Tolu) =fz €E*|z=>0, ) a;%; = b; + Y by . i=1..,m] (2.3)
i=1 1=1
k
D=fueFEflu=0,Y dyuy <d,,r=1..p] . (2.4)
i=1

Consider the function Fy(u) =} 7y k;z;, z € T(u). This function may not
be defined for all values of u € £*, as the set To(u) may be empty. In particu-
lar, if the problem (2.1)—(2.4) does not have a solution for any value of u, then
Fo(u) is not defined at all. We shall assume further that «® € D exists such that
To(u®) # ¢, where T(u9) is a bounded set. If 7(u) contains more than one ele-
ment then the function Fo(u) may take several values. We shall use the follow-

ing notation:

Flu) = zren;(rzl‘) Folu)
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Let us now illustrate the problem by means of an example.

Exampie 1
8
j=1
8
Z CjZ; =z1+522+523+32:4+22:5+z6
Jj=1
T +zZytzgtz x5+ zg=1
T.(u) =4 3z, +4z5+ 7z, +8z5+ 10zg=u

z ek, z>0
D=fuecF| 0<u <10}

It is clear from Fig. 1 that function F‘o(u) may be multivalued; the inter-

mediate function /(1) which should be maximized (the bold line in the figure)

appears to be piecewise linear and multiextremal.

1 ] | | I—.
8 10 u

AL

Figure 1. The functions Fg(u), F(u) (bold line) and F“(u) (dashed line) for Ex-
ample 1.

It is now easy to see that F’(u), defined as max 3 %, k;z; (the dashed
z€T(u)

line in Fig. 1), is also a piecewise linear function.
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We shall use the following notation and definitions in the remainder of this

section.

If we take basis J = {J,...,J, ] for the problem

n
max C; X
ZETQ J'z=:1 73

(2.5)
n

To={z €E™| z=0, ) 2;Z; = by, i=1l..m{ ,
i=1

with a matrix “"ij" of range m, then the standard form of problem (2.5) is

assumed to be

n
max [-—E b;z; + An+1] ,
i=1

ZETO

where
m .
A; E CuTiy —Cj . JEJ
=1
As‘ =0, i=1,...m
m
Ansr = 21 SN AT
i=

i.e., the matrix "1,,” (where Zg = 'Ejz.l TijZj + "h‘)- the vector S5, j=1..n,
and the vector of right-hand sides n;, 1 = 1,...,m, are known. A basis is said to
be permissible if A;>0,1=1..,m, and is called a . pseudobasis if
AJ- >0,j=1,..n. We shall say that the basis J is gptimal if it is a permissible
pseudobasis. There is a solution z of problem (2.5) corresponding to each
optimal basis.

The following theorem enables us to deal with an optimization problem

rather than a maximin problem.

First define the problems

n
. — Ok . .
zg}%(t)jgl (cJ ; J)zJ (2.6)
n

zeTo(u) ;21



and the set

T¥(u) = {z eTylu)| i (cj = 6k;)z; = max 2 (c; -6kj)y;d . (28)
i=1

yeTy(u)

We can then state the following theorem:
Theorem 1. There exists a 05> 0 such that for all 0<d<dy we have
F§ = 21 = k;z;, wherez € T8(u) is single-valued and F(u) = Fé(u).

The proof of this theorem is given in [2].

Theorem 1 provides a basis for a solution algorithm for the problem out-
lined above. The main idea of the algorithm is to construct the set of all pseu-
dobases of problem (2.8) whose admissible sets include the initial set. The res-
trictions which define the admissible region are linear and so the optimization

problem of the center remains a linear programming problem.
The skeleton of the algorithm is outlined below.
Step 1. Find a pseudobasis J = {s,,..,s,,} of problem (2.7) at u = u9, where
To(u®) # ¢.
Step 2. Extend the set J of indices to § = {5 |A,(c) = 0J.

Solve the problem

Y kgzg - min
S€S

Y, azT =b; + 2 buul , i=1,...m
SES

(The pseudobasis J of problem (2.6) will be constructed by this method.) This
basis will be optimal at all « € D for which zs‘(u) > 0. Both these functions and

functions f (u) = Y5, es ks, Zs, (1) are linear with respect to wu.

Step 3. Solve the linear programming problem

Fos=max ¥ keag(u)
v qed

= fju €D|zst(u) 20,1 =1,..,m]
Step 4. Construct a sequence of pseudobases P of problem (2.6) by finding all

the neighboring pseudobases to every current pseudobasis. This may be done

by successive exclusion of the s; and inclusion of the numbers r generated by



the double-simplex method:

z =min[— Aj(C)]

Tu <0 th

A (k)

T

mi
Tif —A,(C )/T‘, =z iy
Step 5. Solve the problem given in Step 2 for every pseudobasis P in this

sequence.

Step 6. Find max Fy .
'Y Tep oJ

It is shown in [2] that an algorithm constructed on the above lines will find

mag F(u). Note that although neither § nor §; is present in the algorithm, only
ue

the pseudobases of problems (2.8) are considered, because if pseudobasis J of
problem (2.6) is found then the algorithm uses this basis at Step 4 to obtain
‘neighboring bases of problem (2.8). In actual fact, for every s; it is necessary
to find a number 7 (by the double-simplex method) which is included in the

basis set according to the formula:

_Afe-sk) [-Aj(c—dk)

Tir Ty <0 Tij

It is easy to see that since A;(c —6k) = A;(c) — 64;(k) is linear and if § is
sufficiently small, the above procedure is equivalent to the lexicographical pro-

cedure carried out in Step 3.

Note that another algorithm for solving this problem, based on a different

way of finding the maximin of F(u), is given in [4].
3. A PRICING ALGORITHM

3.1. The model

¥We shall consider a hierarchical model of price formation in the agricul-

tural sector.

Assume that each agricultural enterprise i functions with an intensity
zt,i=1,..n. Let ut = Aiz? represent the production volume of enterprise 1
and r* = Btz* represent the amount of resources consumed in the production

process by the i-th enterprise. Assume that the wholesale prices of the
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products p and the prices of resources (water, fertilizer, etc.) ¢ are determined
by the center in such a way as to get maximum profit from the sale of agricul-

tural products to the consumer at a fixed vector of retail prices v:

n .
Y (v.ut) 5 max
1=1 p.g

The agricultural branch wishes to maximize its benefits

3 [p . 42%) = (g . 7)) » mex

i=1

under the condition imposed by the center:
noo.
Z 'U.;' > A'U-Jo ’
=1

where A is a given level of fulfillment of the state production program
u; . J=1.m. When solving this problem we shall assume that the restric-

tions on resources are not limiting.

3.2. An algorithm for solving the pricing problem

The problem of centralized control of production through price setting

may be written in the following general form: To determine

n k
i kyouy +kas)z: a1
i‘é :217'1(?4) jz=:1 lz=:1 ( Che % )ZJ (@)

where

T{u) ={z € Tyl i Xk: (e juy + cg;)z; = max i ‘Z‘ (cjuy + coj)yji- (3.2)

ji=ti=1 velaj=11=1
3
To=tz €E"|z20, ) ayz; =b;,1=1..m} (3.3)
i=t
k
D=fueE|u=0,) dyu <d;,i=1,..p]| (3.4)
=1
We define the functions Fg(u) and F(u) as follows:
n k
Fo(u) = Z 2 (liul + koJ)Z ., T E T(’U.) (35)

J=1 I=1
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n k
Flu) = min, jgl lz=;1 (kyy +koj)z; - (3.6)

Function Fp(u) may not be single-valued at certain values of u if T(u) has
more than one element. Any value of Fo(u.) at fixed u may be represented in
the following form (here and elsewhere we shall assume that Ty # ¢ and Ty is

bounded):

Folu) = éxi( $ 8 ey +koy)zy)

j=1 i=1

where \; 20 Zl‘=1)‘i =1 and /;,....J; are the optimal bases of the following

linear programming problem:

n k
maximize ), (cjwy +cgplz; (3.7)
€Ty j=1 1=1

We shall assume that the given problem is nondegenerate. Since

Flu) ==1;n;(r11‘) Folu)
then

n k
a Jj=1 =1

where /; is a member of the set of optimal bases of problem (3.7) at fixed u.
We shall make use of the definitions and notation given below.

If we are considering a certain basis J = Jy,....J,; of problem (3.1), then it is
assumned that we know its standard form, i.e., matrices 7;;. 7;. A}(c), A}(k).

This means that problem (3.1) can be written in the form: To determine

n k
sup min ) ) —(Af(k)y + AXk))z; + f} AL (k) + A9, (k) (3.8)
ueDzel(u) j=1 1=1 =1

rw) =tz < 7ol $ i —(8K(e) + A% )z, + ‘i AL ye Yy + A,4(c)
=1 =1 =1

= max 2 fl - (A}(c)ul + Af(c))yj + lf: A,‘Hl(c)ul + A.,?ﬂ(c)j
=1

yeTOj:] {=1

n
To={z € E™*| ) Tyz; =m;.i=1...m,z220} . (3.9)
i=1



-10 -

It is clear that if J; € J then Af(e) = a4 (k) =0, i = L...m, L = 0....k.

We shall denote the optimal set with basis J for problem (3.7) in set D by

k
T, = tu € D 12—:1 Aew +A)(c) =0, £J3 .

and define the set of indices S = ijIAJl-(c) =0, l =0,....k}. Itisclear that J C S,
i.e., S is an extension of J.

If S contains more than m elements, then the following auxiliary problem

may be necessary:

k
minimize }; ) (kjuy + koj)z; . (3.10)
€T  jeSi=1

where

n
Tos=iz€E‘"|zj =0,j£S.,z,20if s €S, a;Z; =b;, 1 =1,..,m]
i=1

A basis composed of elements of set .S is a pseudobasis of problem (3.10) if

S( S A +AXK) =0, j € SNT
=1

Finally, we shall introduce the following notation:

Ty={u €D| —( Zk: A}(Ic)ul +A,9(Ic))20,j €S\ [}
=1

Let us now consider the form of functions Fg(u) and F(u).
Example 2. To construct
Fo(u) =(u - 2)z, + (-5u + 1)z, ,
where
T(u) = {z € Tyl —uz, + 2uz, = max (— uy, + 2uy,)}

31-222"'3.'3:2

= >
To zep|z=0, T,+zTot+zy=5

The form of Fp(u ) is given in Fig. 2: it is easy to see that /(u) is multiextremal

and discontinuous.
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)

Figure 2. The functions Fjy(u) and F(u) (bold line) for Example 2.

Assume that D has an inner point u, i.e., some point u’ € D exists such
that

k
Yodgu'<dy. o i=lo.p, u'>0, L=1..k
=1 »

Assume also that we know some point 1% € D. The skeleton of the pricing algo-

rithm is then as outlined below.
Step 1. Find an optimal basis J of problem (3.7) at u = u°.

Step 2. Find the optimal set T, for basis J in set D, and then find an extension
S of basis J. (This extension defines a set of bases which are optimal at the
same value of u as basis J. Note that, from the definition of S, the optimal sets
of all bases defined by S coincide with T, .)

Step 3. If T, has an inner point, find sets T; for pseudobases / of extension S in
problem (3.7). A method for checking the existence of an inner point of S is
described in [14] — this can be reduced to the following linear programming

problem: To find

m k
F, =max max () Y (ku +ko)z;)l;
v I TvnTI =13 J 7773

Step 4. Construct all neighboring bases to basis J using the direct simplex
method.
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Successive application of Steps 2—4 leads to the construction of a sequence
of bases P of problem (3.7) whose optimal sets completely cover set D. It can
be shown that £, = max Fy gives the optimal value for the objective of the
center in the original problem. To prove this we shall consider a certain
sequence ut, t = 1,2...., which is completely contained in a given Ty. so that
lim Fut) = F,. Now take an arbitrary seguence ut, t = 1,2,...,u; € D. For the
elements of this sequence u! which belong to arbitrary T, we deduce, from the
definition of function F(u), that F(u) = F, as F(u) < F, < Fy. and thus the limit

of this sequence is not greater than F;.

4. CONSTRUCTION OF THE EXTREME POINTS OF THE PARETO SET

4.1. Aggregated multiregional model of the world economy (4 x 8)

Within the framework of research carried out by the United Nations on pos-
sible strategies for world development and international economic cooperation,
a group of American economists headed by W. Leontief has developed a global
interbranch meodel for determining world economic development indices for
1970-2000 [5). Structurally, the model consists of a set of regional blocks con-
nected by flows of money and goods. FEach regional block is composed of two
parts: the input—output balance of the branches, and the macroeconomic equa-

tions.

The basic model considers 15 regions, of which eight may be regarded as
developed and seven as developing, and 45 branches of production. FEach
regional block is described by 175 constraints and 229 variables. The interre-
gional interactions in the model are fixed by specifying the ratio of imports to
gross domestic output on the one hand and the ratio of regional to world export
on the other. Different macroeconomic variabies are then fixed in the solution
procedure, to ensure that the system of linear algebraic equations has a unique
solution. We choose as fixed variables those indices which characterize the
economic development of the regions (e.g., the rate of increase of the gross
national product, the rate of investment, net balance of payments, prices of

resources, etc.).

The basic model described above was developed from a number of earlier
trial models. The first of these was the two-region, three-branch model sug-
gested by Leontief in his Nobel lecture as an example of world economic ties.

The next step was to extend the mode!l to include four regions and six branches.
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The main features of the basic mode! (macroeconomic equations and
input—output balances) were reflected in this model, although there were no

equations describing financial links.

However, we believe that the approach used in the basic model is too nar-
row to analyze the possibilities of interregional exchange because (i) trials with
the smaller versioﬁs of the model do not provide any opportunity to analyze the
whole set of conditions and (ii) fixing the proportions of imports and exports

restricts the scope of economic interaction.

Research by the Institute of Economics and the Organization of Industry, of
the Siberian branch of the USSR Academy of Sciences, has shown that undesir-
able restrictions can be eliminated if the regional economic development cri-
teria are formulated explicitly, and some constraints on structural exchange
are introduced. The problems of global optimization and economic cooperation
between regions can then be solved using this model by finding equilibrium

exchange prices.

This approach differs from the original model in that it enables one to
obtain not only feasible solutions but also efficient (Pareto) solutions which pos-

sess equilibrium properties [8,7].

This study was based on the use of two models: one including 15 regions
and 22 branches (15 x 22 model) and the other ten regions and ten branches.
Both models were obtained by aggregating branches and regions from the basic

model.

However, it is rather more difficult to investigate the structure of the
Pareto set than to search for certain Pareto points; it is not possible to use very
detailed versions of the model for this purpose and instead variants of the 4 x 6
model have been employed. These variants allow efficient use of complex
screening algorithms and provide the opportunity to investigate the general

structure of the set of efficient exchanges and equilibrium points.

As mentioned above, the 4 x 6 model was the first step in the construction
of the 15 x 45 model, and consequently its macroeconomic part is essentially
much simpler in form. In this model the world is divided into two developed
regions (North America (I) and all other developed countries (II)) and two
developing regions (Latin America (III) and all other developing countries (IV)).
The macroeconomic variables of the models include investment /, capital X,

employment L and consumption A. The vector of outputs z consists of traded
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goods from four branches (agricuiture, the extraction industry, light industry

and heavy industry), and the "output” of the service and pollution purification
branches. Transport is included in the service branch, which consequently has
to pay for interregional transportation. Export and import volumes are denoted

by £ =(£,....E,) and M = (M,....M,), respectively.

The input—output equations for region s have the following form:

TOR

zf= L oGz + il o] +oipt + EF ML i=1.d

27
1

J

4
ag;z; + y3F +ciA° +03p° + ) afi (E5 + M)
i=1

—

8
oo
{]
Ca,
it Mo

Mo

z§ = ag;z; + ¥§° + c§AS + ogp®
1

b|

Here AS =||a.fj|| is a matrix of technology-dependent cost coeflicients, the
af; is a vector of transport costs, and 7° is a vector of investment shares. The
population of the s-th region is c{enqted by p¥; this parameter can be varied in
different versions of the model. ¢¥ and ¢° are vectors of consumption shares
which depend on the consumption level and the size of the population, respec-
tively. Thus, the model uses a linear function to approximate the generally
nonlinear dependence of the consumption structure on the consumption level
and the population size. Here Zi a? =0, i.e., the population dependence affects
only the relative demand for various products. In addition, limits can be

imposed on outputs from both above and below:

<z, jJeJ

z P

L

Z;=z;, jeJ

Here J represents the extraction industry while J/ includes all those branches

whose output is a final product.

The macroeconomic constraints consist of a restriction on the availability
of labor, a link between output and capital, and a relation between capital and

investment:

8
p) l;z;+cz S +oipS < L®
-~

8
'21 kizi + cgA® + ofp® = K°
J=
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Here (c}. cf. c§) and {0}, o}, of) are regional coefficients for the consump-
tion of labor, capital and investment, respectively; these depend on the regional
consumption level and population size. Vectors {% and k% represent the use of
labor and capital by the branches, and L¥ is the total amount of labor available,
which is assumed to be fixed. The replacement cost of capital is represented by

rs.

The relation between exports and imports is

> Pl - H)=0

i=1
where P = (p,,paps.py) is a price conversion vector. We also have
4

4
NOMf=)Y B, i=1..4
1 s=1

We shall take the objective functions of the regions to be maximization of

the consumption levels AS.

Thus the global economic model reduces to a linear multicriteria problem.

4.2, Definitions and examples
Let a bounded polyhedral set X be defined by the following system of linear
constraints:

Az =% (4.1)

z=0 |,

where A is an m X n matrix, b is a vector, z € E™ and there are k linear func-
tionals Fy{z) =c'z,...Ffi(z) =c¥z. The problem is to find all the extreme

points of the Pareto set for functionals 7 (z),....F, (z) on set X.

An algorithm which does this can be constructed using the following
theorem [8-10].
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Theorem 2.
(i) If z° is an efficient paint then a vector A€ B, A >0, Y K, N\, = 1, exists

such that z° is a solution of the linear programming problem

z - max . (4.2)

(ii) For any A€ E* , A >0, Y[, A, =1, the solution z° of prablem (4.2) is an
efficient point.
The set of parameters A in the theorem is assumed to be bounded but not
closed. Open sets of parameters are not suitable for use with numerical algo-

rithms and thus we derive the following corollary of the theorem, which is the

basis for our solution algorithm.

Corollary
(i) If z° s an efficient point then a vector A € D = {A € E*| A, > 1] ezists such
that z° is a solution of prablem (4.2).
(ii) For any A € D, a solution z° of problem (4.2) is an efficient point.
Assume that X is nondegenerate, i.e., vector b cannot be represented as a
linear combination of less than m columns of matrix A. Then any extreme
point z is associated with a unique basis J = {1 0dpm),  and

Avxy=b. .'z:y=0. zy>0.

Definition 1. The set

T, =N € E¥| A{(xe) =0, =

is an optimal set of basis J.

Here J is the complement of J, i.e., JAJ=¢ and JUJ ={l,..,n}. If
;= Ay‘lb and T, N D # ¢, then J will be called an optimal basis. The extreme
point z which corresponds to this basis will also be an efficient point as it is a

solution of problem (4.2) at any A € T, nD.

Thus the problem of constructing the extreme points (if X is nondegen-

erate) is reduced to that of finding all optimal bases.

Definition 2. A permissible basis is said to be a neighboring basis to another

permissible basis if they differ in only one component.
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Let J be a permissible basis. Then for any j € J. there exists a neighboring
basis [ such that j € /. This basis may be determined using the simplex rule: if
vectors ij,n are solutions of the equations AJ'LJ- = .»'ilJ and Am = b, then € is such

that n;/ 7; = min 7/ 7. Such an i must exist because X is bounded and
1<i<m
unique (this is a consequence of X being nondegenerate).
Thus / = {/\J;] Vv j and each permissible basis has n —m neighbors.

Definition 3. Any neighboring basis / to an optimal basis J is said to be an
optimal neighboring basis if the intersection of the optimal sets of J and [ is
not empty, i.e., D N Tv N T; # ¢. It is clear that if / and J are optimal neighbor-
ing bases, then a convex hull of their extreme points or an edge connecting the
corresponding extreme points will belong to the Pareto set.

We shall now give some examples which illustrate these definitions.

Example 3. The Pareto set consists of "moustaches”. In this case there are
bases which are optimal and neighboring but which are not optimal neighboring

bases as defined above. We have

X={zgcE* z,+zp+z5+2,=1,220]
and the following three linear functionals:
F(z)=2+z, -2z, —2z4
Folz)=2-2z, +z5 - 224

The reachable set for these functionals is shown in Fig. 3; the bold lines
represent the corresponding set of Pareto values. Set X is shown in Fig. 4; the

bold lines represent the Pareto set.

Example 4. Here we consider neighboring bases whose optimal sets coincide
and bases whose optimal sets are of dimension less than k (where k is the
number of functionals). The Pareto set then consists of sides and edges. We
have X = {z € £9| Z;+z4=1.23+x25=1,253+2g=1,z>0{and the following

two linear functionals:
Filz)=2+z,+z,~-2z4

Fz(Z) =z—21—22+223
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F3

Figure 3. The reachable set of the system of functionals in Example 3 — the
bold lines represent the corresponding set of Pareto values.

Figure 4. Set X from Example 3 — the bold lines represent the Pareto set.

Set X has eight extreme points of which five are extreme points of the
Pareto set. The reachable set of the system of functionals is shown in Fig. 5,
while set X is shown in Fig. 6. Bold lines denote the Pareto set in the space of

functionals (Fig. 5) and in the space of variables (Fig. 6). The sets
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Tm npD, L =1,.,5are illustrated in Fig. 7. We see that sets TVs and Ty‘ coincide

and are of dimension 1; all the other sets are of dimension 2.

Fixh

Figure 5. The reachable set of the system of functionals in Example 4 — the

bold lines represent the Pareto set in the space of functionals.

Figure 8. Set X from Example 4 — the bold lines represent the Pareto set in the

space of variables.
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Figure 7. The sets Tfn np,t=1,.,5 from Example 4.

The basic idea of the algorithm is as follows: some A’ € D is chosen and a J
is found such that A" € T,- All the neighboring optimal bases are then found.
Next, all the neighboring optimal bases to these bases are found, and so on until
all the neighboring optimal bases to all of the previously identified bases have
been found.

The skeleton of the algorithm is then as follows:

Step 1. Choose A* € D and find an optimal basis J for the following problem

(\’c)z » max
zeX

Step 2. Put basis J in the sequence (the list of bases that have already been
found).

Step 3. Take from the sequence any basis J whose neighboring bases have not
been found. If there is no such basis then the problem is solved and all the

optimal bases have been found.

Step 4. Find all the neighboring bases to basis J and put them in the sequence

if they are not already there.

The search for the neighboring optirnal bases is carried out as follows:
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(a) All the constraints on set Ty which can be turned into strict equalities for

points belonging to T, N D are found.

(b) A variable J corresponding to each of the above constraints exists and

determines the neighboring basis /. Both bases J and J are optimal on the

set

Dnia(xe)=0, telNj, Alac)=0j

Step 5. Check that the neighboring optimal bases have been found for J, and go
to Step 3.

Computations based on the world economic model have been carried out
using the algorithm discussed in [14]; the tests are analyzed in [8]. Some inac-
curacies have been found in the construction of the Pareto points in test
number 3 in [8]; it has been shown that of the 70 extreme points found only 29
are Pareto points (computing time 1 min. 26 sec. on a BESM-8 computer); there
are also 121 semi-efficient points (3 min. 10 sec.) and 189 extreme points (2

min. 40 sec.).

5. THE SEARCH FOR EQUILIBRIUM POINTS

5.1. Main definitions and theorems

The world economic models discussed in the previous section can be writ-

ten in the following form:

Atz? + Gle' + H'm' + cif; <b? (5.1)
z'20, e*=0, mt=0, f,=20 (5.2)
p(et ~mi)=0 . (5.3)

Here zt is a vector of regional economic conditions, describing production,
consumption, investments, etc.; el is an export vector; m? is an import vector;
f; is an index representing the economic level of the i-th region (e.g., the level
of consumption, overall regional product, etc.);. p is a vector of prices for
traded products; A%, Gi, H* are matrices; ¢! and b! are vectors, and

ct=20, i=1,.,N.

Assumption 1. The system of constraints comprising (5.1), (56.2), i = 1,...,N, and

the common balance constraint:
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N N .
Y ei=) m (5.4)
i=1 i=1

is consistent, and the reachable set of variables f,,....f y of system (5.1), (5.2),
(5.4) is bounded and includes a vector f > 0.

Definition 4. The set of vectors (p*, z%, e® m®%, 5 i = 1,...,N) is such that:

(i) for each i =1,...N, the vector (z%, e% m™*, r.) is a solution of the i-th

local problem:

J; # max (5.5)

subject to (5.1), (5.2), (5.3)
(ii) the point where the general balance restriction

N , N
Yei=)Ym" (5.6)
=1 i=1

is satisfied is called an equilibmium point of the economic interaction

model.

Remark 1. Equilibrium points need not necessarily exist; equilibrium points

associated with negative prices are also possible.

Let us now write down the dual problem to linear programming problem
(5.5):

yiA 20, yiGt-2z;p=0, Yy'H' +2,p=0
(5.7)

yiet>1, yt=>0, 2, >0, y*bt » min

Here yi is a vector of estimates of constraints (5.1) and z; is an estimate of
constraints (5.3).
Remark 2 Problems (5.7), i = 1,...,N, depend on the value of parameter p: it is

possible that the problem is consistent at some values of p and unbounded at

others.

Remark 3. If problem (5.7) is consistent and its functional is limited, then the

solution (y*, z;) is not necessarily unique.
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Remark 4. Consider the restriction yici = 1. If the functional of problem (5.7)
is greater than 0, then this will be an equality; if the functional equals 0, then

(y %, 2,) will be among the solutions, where y %c* = 1.

Definition 5. An equilibrium point (p.z.l,m,fi, i= 1....,N) is said to be an
equilibrium point of class Z > 0 if for each i = 1,...,N a solution (y,z) of prob-
lem (5.7) at p =pt exists such that zi’> 0. All other equilibrium points are
called equilibrium points of class Z = 0. The regional linear pfogramrning prob-
lem depending on the following parameters plays an important role in the

search for equilibrium points:

N
veV=i{u EE‘Nl'u?_O.Zvi=1}

i=1

N N . . .. . . .
Yet=) mt, A'z'+Glet+HAmt+etf,<b, i=1.,N ,
i=1

-
U]
Uy

pv; =f;, i=1.,N, zt20, et=0, m*=20, i=1..N (5.8)
p -+ max

The problem dual to this is

n*A* 20, niGt-¢g =0, n"H +g=>0, i =1..,N

L&y =1 (5.9)

nibi -+ min
i=1
Note that it follows from Assumption 1 that these problems are consistent
at any v € ¥V and that the value of the functional is positive. The following algo-

rithm is based on theorems given in [11]:
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Theorem 3. et (p,z.e.m,f.i = 1,...N) be an equilibrium point of class Z >0

and v’ = (f{..f 0/ (EX, 1) Then

(i) the wvector (2{\’:1 L% e m®, [ i =1..N) is a solution of problem
(5.8)atv =v*

(ﬁ) among the solutions of problem (5.9) at v=v' is a wvector
(g°. 0%, E,-'. i = 1,...,N) such that

(2) ¢'>0, i=1...N
(b) 7%t — 00" =0, i = 1,.,N,
where p* = Y N, n%b? is the optimal value of the functional in problem (5.9).

Theorem 4. Let vector (g°, 7%, ¢ i = 1,.....N) be a solution of problem (5.8) at

v € V, whers

(i)¢'>0,1=1..N

(i) n %’ - %% =0, i=1,...N.
If (' z%e®*m™ . i =1,.,N) is a solution of problem (5.8) at v =v "’ then
(g%.z%, e ":.m.“',fi', i = 1,...,N) is an equilibrium point of class Z > 0.

Definition 6. A parameter v € Vis called an equilibrium parameter if the condi-

tions of Theorem 4 are satisfied.

It follows from Theorems 3 and 4 that for each equilibrium point of class
Z >0 there is a corresponding equilibrium parameter. The converse is also
true: for each equilibrinm parameter there is at least one corresponding

equilibrium point of class Z > 0.

To check whether a parameter v € V in problem (5.8) is an equilibrium
parameter it is first necessary to obtain the dependence of the solution of the
dual problem on the parameters. We shall divide the set of parameters ¥V into
optimal polyhedra of separate bases. The set of solutions to the dual problem
for parameters from the interior of the polyhedra either contains one point or
has the form of a convex hull of a number of extreme points. It is easy to see
that each extreme point depends inversely on the parameters. The solution of
the dual problem for parameters from the edges of the polyhedra is a convex
hull of two extreme points; each extreme point is related to the parameters by

a fractional-linear law.
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5.2. The skeleton of the algorithm

Step 1. v° €V is chosen, and an optimal basis of problem (5.8) is found at
*

v=v.

Step 2. The dependence of the basis variables on v is determined:

N
z",{ (v) = LE tdv,
=1

N J,
/X div
{=1
The same is done for the dual variables;

N
y; (v) =p"/ [2 d“’vl
{=1

Step 3. A polyhedron T, is constructed in the V-optimal space of basis J. The

essential conditions of set Ty = izj," (v) =2 0} are determined, i.e., those condi-
tions whose violation changes the set.

Step 4. The system of neighboring pseudobases is constructed as in the
resource allocation algorithm (see Section 2). (We consider the essential condi-

tions and the set in space V where these bases are optimal.)

Step 5. Repeat Steps 2—4 until the set of parameters V is completely covered by

sets T,,.

Step 6. The equilibrium parameters v in space ,nv should be checked using

conditions (i) and (ii) from Theorem 2.

To implement an algorithm based on this skeleton we have to find a solu-
tion of a systerm of algebraic equations, the order of which depends on the

structure of set 7,. Various methods of solving such a system for sets 7, of

v
dimension (k — 1), (k —2), 0 have been suggested: however, there are as yet

no methods available for other cases.

Experiments with the 4 x 6 world economic model have led to some

interesting conclusions about the equilibrium price structure [12,13].
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