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PREFACE 

This is the second of two papers dealing with mathematical methods 
that can be used to analyze hierarchical systems. 

In this paper, the authors consider the case in which the lower level 
of a hierarchical system of decision makers is composed of a number of 
controllable subsystems. If these subsystems are not bounded by corn- 
mon constraints then the analysis is reduced to that  of a two-level sys- 
t em consisting of a regulatory center and one lower subsystem. Two 
types of control are  discussed in this case: control of resource use and 
control through price setting. If, however, there are shared resource- 
type constraints then i t  is assumed that  the subsystems choose coopera- 
tively from the  set  of Pareto-optimal alternatives. The problem for the 
regulatory center is then to maximize its goal function over this set. A 
number of ways of solving this problem are proposed, and a computa- 
tional algorithm is given. 

ANDRZEJ WIERZBICKl 
Chairman 
System and Decision Sciences 
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1. INTRODUCTION 

In this paper (a continuation of [I]), we consider the case in which the  

lower level of a hierarchical system involves a number of controllable subsys- 

tems. 

If the lower subsystems are not bounded by common constraints then the  

analysis reduces to tha t  of a two-level system consisting of a regulatory center  

and one lower subsystem. This case is discussed in Sections 2 (control of 

resource use) and 3 (control through prices). In cases where there are shared 

resource-type constraints we assume that  the subsystems make their choices 

cooperatively from the set  of Pareto-optimal alternatives. The problem for the  

regulatory center  then lies in maximizing its goal function over that  set. For a 

linear goal function it is sufacient to consider only extremal points of the  

Pareto set: an algorithm for doing this i s  outlined in Section 4. 

Another technique is based on the decomposition of the problem by intro- 

ducing pricing policies for the use of resources. The prices leading to optimal 

subsystem demands for resources without exceeding total resource availability 

can be determined by solving a classical competitive equilibrium problem. A 

computational algorithm for solving this problem is presented in Section 5. All 

sections have the same structure: they begin with a model which introduces 

the formal problem under consideration, the computational diffculties are then 

illustrated by means of an example. and finally a solution algorithm is outlined. 



2. AN AJ&OlUTHM FOR ALLDCATION OF SCARCE RESOURCES 

2.1. The model 

We shall consider a hierarchical model of a production planning problem. 

which assumes a hierarchical control structure.  Let the central control body 

no influence the production of branches nj , j = 1, ..., n through the allocation 

of primary resources and by setting acceptable levels for environmental pollu- 

tion, while requiring that a given level of supply is achieved. 

We shall also assume that the prices of products in the  national economy 

are  based on the consumption of both final products and intermediate products. 

We shall characterize the activity of every branch by a vector of intensity zi .  

Then we have 

where ui is the final consumption vector, z i  is the level of pollution, and r i  is 

the consumption of natural resources. 

The yji represent the amounts of intermediate products transferred 

between branches, where 

Let us  assume tha t  the  center regulates both the level of pollution produced by 

individual components 

and their  consumption of natural resources 

The goal of the center is to meet  t he  consumption requirements of society 
0 +, i.e., 



i = l  
rnin 0  + rnax , 

rn urn ,r 

while the branches attempt to maximize their overall benefit: 

where price levels ( p , q )  are coefficients of commensurability of the benefits of 

separate branches and are determined by another economic mechanism. 

This problem may be viewed as a game GI. An algorithm for solving this 

game is given below. 

2.2. A n  algorithm for solving the resource allocation problem 

The problem formulated above may be written in the following general 

form: To determine 

max [ rnin f .,,I = ,ax F,U)  . 
UED x ~ T ( u )  j , l  u E D  

where 

n 
T ( U ) = ( ~ E T ~ ( U ) I  2 c j z j =  max 2 c j y j j  

j=1 ~ E T o ( u )  j=1 

Consider the function &(u) = g&l k j z j ,  z E T ( u ) .  This function may not 

be defined for all values of u E E ~ ,  as the set T O ( u )  may be empty. In particu- 

lar, if the problem ( 2 . 1 ) - ( 2 . 4 )  does not have a solution for any value of u,  then 

F O ( u )  is not defined at all. We shall assume further that u0 E D exists such that 

T ~ ( U O )  # 4, where ~ ( u ' )  is a bounded set. If T ( u )  contains more than one ele- 

ment then the function F O ( u )  may take several values. We shall use the follow- 

ing notation: 

F ( u )  = rnin F o ( u ) '  . 
t ~ T ( u )  



Let us now illustrate the problem by means of an example. 

I t  is clear from Fig. 1 that function Fo(u) may be multivalued; the inter- 

mediate function F(u )  which should be maximized (the bold line in the figure) 

appears to be piecewise linear and multiextremal. 

Figure 1. The Functions F O ( u ) ,  F(u)  (bold line) and FO(u)  (dashed line) for Ex- 
ample 1. 

It is now easy to see [,hat Fa(u) ,  defined as max k .z. (the dashed 
t ~ T ( u )  

line in Fig. I), is also a piecewise linear function. 



We shall use the following notation and definitions in the remainder of this 

section. 

If we take basis J = J,...,J, j for the problem 

n 
rnax C C,Z, 
Z E T O  j= l  

with a matrix l q j l l  of range m, then the standard form of problem (2.5) is 

assumed to be 

where 

i.e., the matrix l 1 i j  11 (where 2% = -CjLJ rijzj + q i )  the vector sj . j = 1 ..... n. 
and the vector of right-hand sides q i ,  i = 1, ..., m ,  are known. A basis is said to 

be permissible if A 0 i = 1 . .  m and is called a . pseudobasis if 3 - 
Aj 2 0 , j = 1, ..., n. We shall say that the basis J is optimal if i t  is a permissible 

pseudobasis. There is a solution z of problem (2.5) corresponding to each 

op tirnal basis. 

The following theorem enables us  to deal with an optimization problem 

rather than a maximin problem. 

First define the problems 

n 
rnax (cj - 6kj)zj 

~ E T o ( u )  j=1 

rnax 2 cjzj 
~ E T o ( u )  j=1 



and the set  

n n 
@(u) = lr € T O ( u )  I x ( c j  - 6 k j ) z j  = max ( c j  - d k j ) y j  1 . (2 .8 )  

j=1  YE TO(^) j = 1  

We can then state  the following theorem: 

Theorem 1. There e&ts a  do > 0 such that f o r  all 0 < 6 < d o  w e  hawe 

$ =x. 1 = 1  k . z - ,  I I w h e r e z  E T d ( u )  i s s i n g l e - v a l u e d a n d F ( u )  = Fgb(u). 

The proof of this theorem is given in [2]. 

Theorem 1 provides a basis for a solution algorithm for the problem out- 

lined above. The main idea of the algorithm is to construct the set of all pseu- 

dobases of problem (2 .6 )  whose admissible sets include the initial set. The res- 

trictions which define the admissible region are linear and so the optimization 

problem of the center remains a linear programming problem. 

The skeleton of the algorithm is outlined below. 

Step 1 .  Find a pseudobasis J = {sl , . . , , s , l  of problem ( 2 . 7 )  a t  u = uO, where 

T o ( u 0 )  # $. 

Step 2. Extend the  set  J of indices to S = f j  I A j ( c )  = 0j. 

Solve the problem 

x ks zs + min 
s € s  

(The pseudobasis J of problem (2 .6)  will be constructed by this method) This 

basis will be optimal at  all u € D for which ~ , ( u )  2 0. Both these functions and 

functions I (u )  = xy EJ kqzS , (u )  are linear with respect to u .  

Step 3. Solve the Linear programming problem 

Step 4 .  Construct a sequence of pseudobases P of problem ( 2 . 6 )  by tinding all 

the neighboring pseudobases to every current pseudobasis. This may be done 

by successive exclusion of the s, and inclusion of the numbers r generated by 



the double-simplex method: 

4 ( k  ) -- - mi n 
fir 

Step 5. Solve the problem given in Step 2 for every pseudobasis P in this 

sequence. 

Step 6. Find max Fop 
JE P 

I t  is shown in [2] that  an algorithm constructed on the above lines will find 

rnax F(u). Note that  although neither 6 nor 60 is present in the algorithm, only 
U E D  

the pseudobases of problems (2.6) are considered. because if pseudobasis J of 

problem (2.6) is found then the algorithm uses this basis at  Step 4 to obtain 

neighboring bases of problem (2.6). In actual fact, for every si i t  is necessary 

to find a number r (by the double-simplex method) which is included in the 

basis set according to the formula: 

- 4 ( c  -6k) 
A,(c -6k ) 

f i r  = 7, min CO [ - Ti, ] 
It i s  easy to see that  since Aj(c - 6k) = Aj(c) - 6Aj(k) is linear and if 6 is 

sumciently small, the above procedure is equivalent to the lexicographical pro- 

cedure carried out in Step 3. 

Note that  another algorithm for solving this problem, based on a different 

way of Anding the maximin of F(u) ,  is given in [4]. 

3. A PRICING ALGORITHM 

3.1. The model 

We shall consider a hierarchical model of price Formation in the agricul- 

tural sector. 

Assume tha t  each agricultural enterprise i functions with an intensity 

zi , i = 1, ..., n. Let ui = ~~z~ represent the production volume OF enterprise i 

and ri = @zi  represent the amount of resources consumed in the production 

process by the i - th enterprise. Assume that the wholesale prices or the 



products p and the prices of resources (water, fertilizer, etc.) q are determined 

by the center in such a way as to get maximum profit From the sale of agricul- 

tural products to the consumer a t  a fixed vector of retail prices v :  

The agricultural branch wishes to maximize its benefits 

[@ , aiz i )  - (q , rill -+ max 
i=l z 

under the condition imposed by the center: 

where h is a given level of fulfillment of the state production program 

uj , J = 1. ..., m. When solving this problem we shall assume that the restric- 

tions on resources are not limiting. 

3.2. A n  algorithm for solving the pricing problem 

The problem of centralized control of production through price setting 

may be written in the  following general form: To determine 

n k  
rnin z x (kUuL +koj )z j  , 

where 

We define the functions Fo(u) and F ( u )  as Follows: 



n k  
F(u)  = min C C (kLj + koj)zj . 

z ~ T ( u )  j=l  1=1 

Function FO(u) may not be single-valued a t  certain values of u if T(U) has 

more than one element. Any value of Fo(u) a t  Axed u may be represented in 

the following form (here and elsewhere we shall assume that To # $ and To is 

bounded): 

where 2 0; Cj=l X, = I; and Il.....It are the optimal bases of the  following 

linear programming problem: 

n k  
maximize C C (cLjuL + cOj)zj . 

~ E T o  j=l ~ = l  

We shall assume that the given problem is nondegenerate. Since 

F (u )  = min Fo(u)  
z € T ( u )  

then 

where I, is a member of the se t  of optimal bases of problem (3.7) at f ixedu.  

We shall make use of the definitions and notation given below. 

If we are considering a certain basis J = Jl, ..., Jn of problem (3.1), then it is 

assumed tha t  we know its standard form, i.e., matrices T,, . q i ,  A;(c), A;(k). 

This means that problem (3.1) can be written in the form: To determine 



I t  is clear that if J, E J then b i ( c )  = ~ j , ( k )  = 0 .  i = 1 . .  m 1 = 0 ...., k . 

We shall denote the optimal set  with basis J for problem (3.7) in set  D by 

and define the se t  of indices S = Ij I b , ( (c )  = 0 ,  1 = 0, .... k 1. It is clear that J C S. 

i.e., S is an extension of J. 

If S contains more than m elements, then the following auxiliary problem 

may be necessary: 

k 
minimize C (k l ju l  + k o j ) 3  . 

z E T o ,  j ~ S & = l  

where 

A basis composed of elements of set S is a pseudobasisof problem (3.10) if 

Finally, we shall introduce the  following notation: 

Let us now consider the  form of functions Fo(u)  and F ( u ) .  

Example 2. To construct 

F o ( u )  = (u - 2 ) z 1  + (-5u + 1)x2 , 

where 

T ( U )  = lz E T ~ I  -w l  + 2 w 2  = max ( - u y l  + 2 w z ) ]  

The form of F0(u)  is given in Fig. 2: it is easy to see tha t  ~ ( u )  is multiextremal 

and discontinuous. 



F7gure 2. The functions Fo(u)  and F(u )  (bold line) for Example 2. 

Assume that D  has an inner point u ,  i.e., some point u *  E D  exists such 

that 

Assume also that we know some point uO E D. The skeleton of the pricing algo- 

rithm is then as outlined below. 

S e p  1. Find an optimal basis J of problem (3.7) at  u = uO. 

S e p  2. Find the optimal set  Ty for basis J in set D, and then find an extension 

S of basis J. (This extension defines a set of bases which are optirnal a t  the 

same value of u as basis J. Note that, from the definition of S, the optirnal sets 

of all bases defined by S coincide with Ty.) 

S e p  3. If Ty has an inner point. Bnd sets TI for pseudobases I of extension S in 

problem (3.7). A method for checking the existence of an inner point of S is 

described in [14] - this can be reduced to the following linear programming 

problem: To find 

S e p  4. Construct all neighboring bases to basis J using the direct simplex 

method. 



Successive application of Steps 2-4 leads to the construction of a sequence 

of bases P of problem (3.7) whose optimal sets completely cover s e t  D. It can 

be shown that F1 = max F, gives the optimal value for the objective of the 

center in the original problem. To prove this we shall consider a certain 

sequence u t ,  t = 1.2. .... which is completely contained in a given Ty, so that  

lim F ( u t )  = F1. Now take an arbitrary sequence u t ,  t = 1,2 ...., ut E D. For the  

elements of this sequence ut which belong to arbitrary Ty we deduce. from the 

dellnition of function F (u ) ,  that  F ( u )  I F1 as F(u)  < Fy I F1, and thus the limit 

of this sequence is not greater than F1. 

4. CONSI'RUCTION OF THE EXTREM3 POINTS OF THE P-0 !3ET 

4.1. Aggregated multiregional model of the world economy (4 x 6) 

Within the framework of research carried out by the United Nations on pos- 

sible strategies for world development and international economic cooperation, 

a group of American economists headed by W. Leontief has developed a global 

interbranch model for determining world economic development indices for 

1970-2000 [5]. Structurally, the model consists of a se t  of regional blocks con- 

nected by flows of money and goods. Each regional block is composed of two 

parts: the  input-output balance of the branches, and the macroeconomic equa- 

tions. 

The basic model considers 15 regions, of which eight may be regarded as  

developed and seven as developing, and 45 branches of production. Each 

regional block is described by 175 constraints and 229 variables. The interre- 

gional interactions in the model are  fixed by specifying the  ratio of imports to  

gross domestic output on the  one hand and the ratio of regional to world export 

on the other. Different macroeconomic variables are  then Axed in the solution 

procedure, to ensure that  the system of linear algebraic equations has a unique 

solution. We choose as fixed variables those indices which characterize the 

economic development of the regions (e.g., the rate of increase of t he  gross 

national product, the rate of investment, net balance of payments, prices of 

resources, etc.). 

The basic model described above was developed from a number of earlier 

trial models. The first of these was the two-region, three-branch model sug- 

gested by Leontief in his Nobel lecture as an example of world economic ties. 

The next step was to extend the model to include four regions and six branches. 



The main features of the  basic model (macroeconomic equations and 

input-output balances) were reflected in this model. although there were no 

equations describing financial links. 

However, we believe that  the approach used in the  basic model is too nar- 

row to analyze the possibilities of interregional exchange because (i) trials with 

the smaller versions of the model do not provide any opportunity to analyze the 

whole set of conditions and (ii) fixing the proportions of imports and exports 

restricts the scope of economic interaction. 

Research by the Institute of Economics and the Organization of Industry, of 

the Siberian branch of the USSR Academy of Sciences, has shown that undesir- 

able restrictions can be eliminated if the regional economic development cri- 

teria are formulated explicitly, and some constraints on structural exchange 

are introduced. The problems of global optimization and economic cooperation 

between regions can then be solved using this model by finding equilibrium 

exchange prices. 

This approach differs from the  original model in that  i t  enables one to 

obtain not only feasible solutions but also efficient (Pareto) solutions which pos- 

sess equilibrium properties [6,7]. 

This study was based on the use of two models: one including 15 regions 

and 22 branches (15 x 22 model) and the  other ten regions and ten branches. 

Both models were obtained by aggregating branches and regions from the basic 

model. 

However, i t  is rather  more dimcult to investigate the  structure of the 

Pareto se t  than to search for certain Pareto points; it is not possible to use very 

detailed versions of the model for this purpose and instead variants of the 4 x 6 

model have been employed. These variants allow efacient use of complex 

screening algorithms and provide the opportunity to investigate the general 

structure of the se t  of efacient exchanges and equilibrium points. 

As mentioned above, the 4 x 6 model was the  first step in the construction 

of the 15 x 45 model, and consequently its macroeconomic part is essentially 

much simpler in form. In this model the world is divided into two developed 

regions (North America (I) and all other developed countries (11)) and two 

developing regions (Latin America (111) and all other developing countries (IV)). 

The macroeconomic variables of the models include investment I, capital K, 

employment L and consumption A. The vector of outputs z consists of traded 



goods from four branches (agriculture, the extraction industry, light industry 

and heavy industry), and the "output" of the service and pollution purification 

branches. Transport is included in the service branch, which consequently has 

to pay for interregional transportation. Export and import volumes are denoted 

by E = (El ,..., E4) and M = (MI ,..., Mr).  respectively. 

The input-output equations for region s have the following form: 

Here = 1 1 4 ; 1 1  is a matrix of technology-dependent cost coefficients, the 

a$ is a vector of transport costs, and is a vector of investment shares. The 

population of the s-th region is denoted by p S ;  this parameter can be varied in 

different versions of the model. c S  and 8 are vectors of consumption shares 

which depend on the consumption level and the size of the population, respec- 

tively. Thus. the model uses a linear function to approximate the  generally 

nonlinear dependence of the consumption structure on the consumption level 

and the population size. Here X i  of = 0, i-e., the population dependence afl'ects 

only the relative demand for various products. In addition. limits can be 

imposed on outputs from both above and below. 

Here 7 represents the  extraction industry while J includes all those branches - 
whose output is a final product. 

The macroeconomic constraints consist of a restriction on the availability 

of labor, a link between output and capital, and a relation between capital and 

investment: 



Here ( c z .  cg, c;) and (af, ak, a?) are  regional coefficients for the  consu rnp  

tion of labor, capital and  investment, respectively; these  depend on the  regional 

consumption level and  population size. Vectors l s  a n d  k S  represent t he  use of 

labor and capital by the  branches, and  LS is the  total  amount  of labor available. 

which i s  assumed to  be fixed. The replacement cost  of capital is represented by 

rS. 

The relation between exports and imports is 

where P = (p l,p2,p3,p4) is a price conversion vector. We also have 

We shall take the  objective functions of the  regions to be maximization of 

the consumption levels AS. 

Thus the  global economic model reduces t o  a i inear  multicri teria problem. 

4.2. Definitions and examples 

Let a bounded polyhedral se t  X be  defined by the  following system of l inear 

constraints: 

where A is  an  rn x n matrix, b is a vector, z E F a n d  there  a re  k linear func- 

t i o n a l ~  F ~ ( z )  = c 'z, ..., F k ( z )  = ckx. The problem is to  find all t h e  extreme 

points of the  Pareto  se t  for functionals F1(x), ..., F k ( z )  on set  X. 

An algorithm which does th is  can be constructed using the  following 

theorem [a-lo]. 



Theorem 2. 

(i) If z is an efficient paint then a vector h E E ~ ,  h > 0, zt=l = 1 ,  ezists 

such thaf z is a solution of the linear programming problem 

(ii) For any A E Ek , h > 0 , ELl hl = 1,  ths solution z *  of problem (4.2) is an 

eflcient point. 

The set of parameters A in the theorem is assumed to be bounded but not 

closed. Open sets of parameters are not suitable for use with numerical algo- 

rithms and thus we derive the following corollary of the theorem, which is the 

basis for our solution algorithm. 

Corollary 

(i) If z is a n  eficient point then a vector h E D = f h  E Ek 1 hL 1 11 exists such 

that z is a so lu tkn  of problem (4.2). 

(ii) For any A E D ,  a solution z of problem (4.2) is an efficient point. 

Assume that X is nondegenerate, i.e., vector b cannot be represented as a 

linear combination of less than m columns of matrix A .  Then an;. extreme 

point z is associated with a unique basis J = J . J  and 

%z, = b ,  z, = 0 .  z, > 0. 

Definition 1. The set  

is an optimal set of basis J .  

Here 7 is the complement of J, i.e., J n 7 = $ and J u 7 = {l ,..., nj. If 

ZJ = 4 - l b  and T, n D # $. then J will be called an optimal basis. The extreme 

point z which  correspond.^ to this basis will also be. an efficient point as it is a 

solution of problem (4.2) a t  any h E T, n D. 

Thus the problem of constructing the extreme points (if X is nondegen- 

erate) is reduced to that of h d i n g  all optimal bases. 

De6nition 2. A permissible basis is said to be a neighboring b m k  to another 

permissible basis if they differ in only one component. 



Let J be a permissible basis. Then for any j E 2, there exists a neighboring 

basis I such that j E I. This basis may be determined using the simplex rule: if 

vectors i j .  q  are solutions of the equations AJij  = + and A n  = b ,  then i is such 

that q i / ~ , j  = min q L / ~ t j .  Such an i must exist because X is bounded and 
lslsm 

unique (this is a consequence of X being n ~ n d e ~ e n e r a t e ) .  

Thus I = [ J\ Ji 1 u j and each permissible basis has n - m neighbors. 

Definition 3 Any neighboring basis I to an optimal basis J is said to be an 

optimal neighbor ing  basis  if the intersection of the optimal sets of J and I is 

not empty. i.e., D n Ty n TI # #. I t  is clear that if I and J are optimal neighbor- 

ing bases, then a convex hull of their extreme points or an edge connecting the 

corresponding extreme points will belong to the Pareto set. 

We shall now give some examples which illustrate these definitions. 

Ekample 3. The Pareto set consists of "moustaches". In this case there are 

bases which are optimal and neighboring but which are not optimal neighboring 

bases as defined above. We have 

and the following three linear functionals: 

The reachable set  for these functionals is shown in Fig. 3; the bold lines 

represent the corresponding set  of Pareto values. Set Xis  shown in Fig. 4; the 

bold lines represent the Pareto set. 

Example 4. Here we consider neighboring bases whose optimal sets coincide 

and bases whose optimal sets are of dimension less than k (where k is the 

number of functionals). The Pareto set then consists of sides and edges. We 

have X = tz E I?) x l  + xq = 1 . z2 + z5= 1 , z3 + zg = 1 , z 2 0 {  and the following 

two linear functionals: 



Figure 3. The reachable set of the system of functionals in Example 3 - the 
bold lines represent the corresponding set of Pareto values. 

Figure 4. Set X from Example 3 - the bold lines represent the Pareto set. 

Set X has eight extreme points of which five are extreme points of the 

Pareto set. The reachable se t  of the system of functionals is shown in Fig. 5, 

while set  X is shown in Fig. 6. Bold lines denote the Pareto set in the space O F  

functionals (Ffg. 5) and in the space of variables (Fig. 6). The sets  



T,, n ~ ,  I = 1 ,..., 5 are illustrated in Fig. 7. We see that sets Ty3 and TY, coincide 

and are of dimension 1; all the other sets are of dimension 2. 

Figure 5. The reachable set of the system of functionals in Example 4 - the 
bold lines represent the Pareto set in the space of functionals. 

Figure 6. Set X from Example 4 - the bold lines represent the Pareto set in the 
space of variables. 



Figure 7. The sets  T .  n D , 1 = 1 ,..., 5, from Example 4. 

The basic idea of the algorithm is as follows: some A '  E D is chosen and a J 

is found such that  A *  E T,,. All the neighboring optimal bases are then found 

Next, all the neighboring optimal bases to these bases are found. and so on until 

all the neighboring optimal bases to all of the previously identified bases have 

been found. 

The skeleton of the algorithm is then as follows: 

S a p  1. Choose A *  E D and find an optimal basis J for the following problem 

(A*C )z -r max 
z EX 

Step 2. Put  basis J in the sequence (the list of bases that have already been 

found). 

Step 3. Take from the  sequence any basis J whose neighboring bases have not 

been found. If there is no such basis then the problem is solved and all the 

optimal bases have been found. 

S e p  4. Find all the neighboring bases to basis J and put thern in the sequence 

if they are not already there. 

The search for the neighboring optirnal bases is carried out as follows: 



(a) All t he  constraints on set  Ty which can be turned into strict equalities for 

points belonging to Ty n D are found. 

(b) A variable j corresponding to each of the above constraints exists and 

determines the neighboring basis I. Both bases 1 and J are optimal on the 

se t  

Step 5. Check tha t  the neighboring optimal bases have been found for J, and go 

to Step 3. 

Computations based on the world economic model have been carried out 

using the algorithm discussed in [14]; the tests are analyzed in [El. Some inac- 

curacies have been found in the construction of the Pareto points in test  

number 3 in [a]; i t  has been shown that of the 70 extreme points found only 29 

are Pareto points (computing time 1 min. 26 sec. on a BESM-6 computer); there 

are  also 121 semi-efficient points (3 min. 10 sec.) and 189 extreme points (2 

min. 40 sec.). 

5. THE SEARCH FOR EQUILIBRIUM POINTS 

5.1. Main definitions and theorems 

The world economic models discussed in the previous section can be writ- 

ten in the  following form: 

Here zi is a vector of regional economic conditions, describing production, 

consumption, investments, etc.; ei is an export vector; mi is an import vector; 

f is an index representing the economic level of the  i-th region (e.g., the level 

oP consumption, overall regional product, etc.); p is a vector of prices for 

traded products; A ~ ,  G ~ ,  H~ are matrices; c i  and b i  are vectors, and 

c i  2 0 ,  i = 1 ,..., N. 

Assumption 1. The system of constraints comprising (5.1). (5.2). i = 1. ..., N, and 

the common balance constraint: 



is consistent, and the reachable set of variables f l , . . . ,  f N  of system (5.1), (5.2), 

(5.4) is bounded and includes a vector f > 0. 

Demtion 4. The set of vectors (p *, z % ,  e % ,  m c i ,  f i e ,  i = 1 ...., N) is such that: 

(i) for each i = 1. ..., N, the vector (z5 ,  e *, m $ ,  fi? is a solution of the i-th 

local problem: 

f i  + max (5.5) 

subject to (5.1), (5.2), (5.3) 

(ii) the point where the general balance restriction 

is satisfied is called an equilibrium point of the economic interaction 

model. 

Remark 1. Equilibrium points need not necessarily exist; equilibrium points 

associated with negative prices are also possible. 

Let us now write down the dual problem to linear programming problem 

(5.5): 

Here yi  is a vector of estimates of constraints (5.1) and zi is an estimate of 

constraints (5.3). 

Remark 2 Problems (5.7), i = 1, ..., N, depend on the value of parameter p :  it is 

possible that the problem is consistent a t  some values of p and unbounded a t  

others. 

Remark 3. If problem (5.7) is consistent and its functional is limited, then the 

solution ( y i  , zi) is not necessarily unique. 



Remark 4. Consider the restriction y i c i  1 1. If the functional of problem (5.7) 

is greater than 0, then this will be an equality; if the functional equals 0, then 

(y q,  ziq will be among the  solutions, where y  ' c i  = 1 .  

DeBnition 5. An equilibrium point ( p , z , l , m ,  f i ,  i = 1 ,..., N) is said to be an 

equiLibrium poinf of class Z > 0 if for each i = 1, ..., N a solution ( y  , z )  of prob- 

lem (5.7) a t  p = p t  exists such that z b >  0. All other equilibrium points are 

called equilibrium points of class Z = 0. The regional linear programming prob- 

lem depending on the following parameters plays an important role in the 

search for equilibrium points: 

p -, max 

The problem dual to  this is 

N C ,+bi + min , 

i = l  

Note tha t  i t  follows from Assumption 1 that these problems are  consistent 

at  any v E V and tha t  the value of the functional is positive. The following algo- 

rithm is based on theorems given in [ll.]: 



Theorem 3. Let 0 ,  z ,  e ,  m ,  f , i = 1 ,..., N) be a n  e q u d ~ r i u m  point  of class Z > 0 

and v = ( f  re.. . .  f {)/ (CEI f i>. m e n  

( i )  the vec tor  (ELI fL*, z ' ,  e %, rn*, fro, i = 1, ..., N )  is a solu t ion  of problem 

(5.8) at v = v 

(ii) among  the solu t ions  of problem (5.9) a t  v = v *  is a vec tor  

( q  *, 7 %, [;, i = 1 ,..., N) s u c h  that 

(a) ti+ > 0, i= 1, ..., N 
* *  

(b) q " b i  - tiuiP = O ,  i = 1 ,  ..., N ,  

where  p = xLl q b is t he  optimal va lue  of  t he  funct ional  in problem (5.9). 

Theorem 4. Let vec tor  ( q  *, q ?, ti*, i = 1, ..., N). be a so lu t ion  of problem (5.8) at 

u E V. where  

(i) [:> 0, i = 1, ..., N 

% * *  
(ii) q C i b *  - t  v i p  = 0 ,  i = 1 ,..., N. 

V ( p * , z ' , e ' , m ' , f ; ,  i = 1 ,  ..., N ) i s a s o l u t i o n o f p r o b l e m ( 5 . 8 ) a t v = v * t h e n  

( q * , z L i , e a , m ' i , f ~ ,  i = 1 ...., N ) i s a n e q u i l . i b r i u r n p o i n t o f c l a s s Z > O .  

Definition 6. A parameter v E V is called an e q u d i b r i u m p a r a m e t e r  if the condi- 

tions of Theorem 4 are satisfied. 

I t  follows from Theorems 3 and 4 that for each equilibrium point of class 

Z >'0 there is a corresponding equilibrium parameter. The converse is also 

true: for each equilibrium parameter there is a t  least one corresponding 

equilibrium point of class Z > 0. 

To check whether a parameter u E V in problem (5.8) is an equilibrium 

parameter it is first necessary to obtain the dependence of the solution of the 

dual problem on the parameters. We shall divide the  set of parameters V into 

optimal polyhedra of separate bases. The set  of solutions to the dual problem 

for parameters from the interior of the polyhedra either contains one point or 

has the form of a convex hull of a number of extreme points. I t  is easy to see 

that each extreme point depends inversely on the parameters. The solution of 

the dual problem for parameters from the edges of the polyhedra is a convex 

hull of two extreme points; each extreme point is related to the parameters by 

a fractional-linear law. 



5.2. The skeleton of the algorithm 

Step 1. v *  E V is chosen, and an optimal basis of problem (5.8) is found a t  

v = v  . 

SCep 2. The dependence of the basis variables on v  is determined: 

The same is done for the dual variables: 

Step 3. A polyhedron Ty is constructed in the V-optimal space of basis J. The 

essential conditions of set  Ty = IZ: (v) 2 O j  are determined. i.e.. those condi- 
$ 

tions whose violation changes the set. 

Step 4. The system of neighboring pseudobases is constructed as in the 

resource allocation algorithm (see Section 2). (We consider the essential condi- 

tions and the set in space V where these bases are optimal.) 

Step 5. Repeat Steps 2-4 until the set of parameters V is completely covered by 

sets Ty,. 

Step 6. The equilibrium parameters v in space Ty n V should be checked using 

conditions (i) and (ii) from Theorem 2. 

To implement an algorithm based on this skeleton we have to find a solu- 

tion of a system of algebraic equations, the order of which depends on the 

structure of set Tv. Various methods of solving such a system for sets Ty of 

dimension (k - 1) . (k - 2). 0 have been suggested: however, there are as yet 

no methods available for other cases. 

Experiments with the 4 x 6 world economic model have led to some 

interesting conclusions about the equilibrium price structure [12,13]. 
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