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THE MAXIMUM PRINCIPLE FOR A DIFFERENTIAL INCLUSION PROBLEM

Halina Frankowska

CEREMADE
Université Paris IX-Dauphine
75775 Paris CX (16) France.

The Pontriagin principle is extended to the case of minimization of

solutions to differential inclusions by using a concept of derivative of set-
valued maps.

Introduction

Consider a control system with feedbacks
(0.1) x(t) = £(x(t),u(t)) , u(t) € U(x(t))

where f : R" xRT +R" and U : R" 3R™ is a set valued map. Let § be the set

of all solutions to (0.1) and assume z € S solves the following problem :
minimize {g(x(0),x(1)) : x € S}
g being a function on .R2n taking values in R U {+»} .
If there is no feedback, i.e. if U does not depend on x , and the datas
are smooth enough the celebrated maximum principle (see Pontriagin and others [16 ])

n
tells us that for some absolutely continuous function q : [O0,1] = R the

following holds true :

-aw = 1 Gm,ien* aw
(0.2)
<q(t),f(x(t),u(t))> = max <q(t),f(z(t),u)>
u€u

(0.3) (-q(0),q(1)) = g'(z(0),2z(1))
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- R - -
vhere u 1is the corresponding control, L%£ (z(t),u(t))] denotes the transpose
of the Jacobian matrix of £ with respect to x at (z(t),u(t)) , and g' is

the derivative of g .

To study the necessary conditions in a more general case we have to consider the

set valued map F : R® 3 R" defined by :

F(x) := {f(x,u) : u €U(x)}
and the associated differential inclusion
0.1)" x € F(x)

Under some measurability assumptions on f and U it can be shown that the solu-

tions to (0.1) and (0.1)' coincide.

This approach to optimal control problem was firstly proposed by Wazewski in [ 2] ]
who was followed by many authors. (See for example [2 ], [3 ], [51], 6], [81],
i1, (131, (wel, (171, [21 D).

For obtaining results similar to (0.2), (0.3) in the set valued case we need a
notion generalizing the differential to a set valued map F : R 3R" and its

transpose.

In this paper we use such a generalization, called the asymptotic differential

. . . *
DF(x,y) and asymptotic co-differential DF(x,y) of F at (x,y) & graph(F) .
We consider also the related notion of asymptotic gradient Bag of a real valued

function g .
The necessary conditions then take the following form :

There exists an absolutely continuous function q : [0,1] +R" satisfying

the following conditions :
0.2)" - 4(t) € DF(z(t),2(e)* (a(1))
(0.3)" (-a(0),q(1)) € 3, g(z(0),z(1))
The outline of the paper is as follows. We devote the first section to some back-

ground definitions which we shall use. We state 1n section 2 the main theorem

concerning the necessary conditions satisfied by an optimal solution to a
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differential inclusion problem. We show also how this problem can be embedded in
a class of abstract optimization problems. This general problem is studied in
section 3. Section 4 provides an example of application. In particular we extend

in this paper to the non convex case some results obtained by Aubin-Clarke [3 ].

1 . Asymptotic differential and co-differential of a set valued map.

o

In what follows E denotes a Banach space, B denotes the open unit ball in E

. . *
and < , > the duality paringon E x E .

The tangent cone of Ursescu to a set K CE at a point x €K 1is defined by

(1.1) () = N U N [% (K-x) + €B ]
€E>0 8§>0 h€]0,d
6> 0

The above cone is sometimes called the mtermediate tangent cone since it lies

between more familiar contingent cone (of Bouligand)

T, (x) = N U [% (K-x) + €B ]
€>0 heE)o,d |

and tangent cone (of Clarke)

CK(x) 1= N [%-(K—x') + EE ]
x'€ B(x,p) NK

N
e>0 0
0 h € ]0,8 [

VVC

8
p
Indeed

CK(x) c IK(x) C TK(X)

(see [4 ], [6 ] for properties of CK(x) , TK(x)). The cone IK(x) is less known.
We only state here

(1.2) Proposition., The following statements are equivalent :
(1) v ETL(x)

(1i) For all sequence hn >0 converging to zero there exists a

sequence Vv, € E converging to v such that x + hn Vo €K

for all n .

(xthv) = 0

e u . 1
(111) lim T dK

h + 0+



In the study of some nonsmooth problems we are often led to deal with convex

tangent cones. We define one of them.

(1.3) Definition. The asymptotic tangent cone to a subset K at x €K is
given by

IZ(x) e {u € ) :u o+ I(x) C ()}

I:(x) is closed convex cone. One can easily verify that CK(x) - I:(x) C IK(x) C
T (x)

We now define the differential and co-differential of a set valued map F from

E to a Banach space E]

(1.4) Definition. The asymptotic differential of F at (x,y) € graph(F) is

the set valued map DF(x,y) : E 3 E, defined by

. . )
v € DF(x,y)(u) 1if and only if (u,v) € Igraph(F)(x’y)

The asymptotic co~differential of F at (x,y) & graph(F) 1is the set valued map

* x* > % .
DF(x,y) : El + E defined by

*
q € DF(x,y) (p) iff <q,u>-<p,v> <0 for all v € DF(x,y) (u)

(1.5) Remark. We give in [11 ] another characterization of DF(x,y)* . Let
. * . . .
us only mention that q € F(x,y) (p) means that (q,-p) 1is contained in the
- w 3
negative polar cone to Igraph(F)<x’y) , the asymptotic normal cone to

graph(F) at (x,y) .

Let g : E >R U {+=} , x € Dom(g) . Define

g(y) +R,_ when y € Don(g)
F(y) = {

@ when g(y) = +=
Then graph(F) = Epi(g) (Epigraph of g ).

(1.6) Definition. The subset

3,80 = DF(x,g(x)N*(1)

is called the asymptotic gradient of g at x .
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In the case when g 1is regularly Gateaux differentiable, i.e. it has the Gateaux

w
derivative g'(x) € E and for all u €E

' -
lim g(x"hua () <g'(x),u>,
u'+ u
h + 0,
we have ‘
2 8(x) = {g'(x)}
There is also another way to introduce Bag(x).

Following Rockafellar [19 ], when a function ¢ : U x V +R U {+=} is given,

we define

lim sup inf ®(v',u') := sup inf sup inf (V) |
vi-v u'+u e>0 8§>0 v'€EB(v,8) u'€ B(u,e)

Consider g : E +R U {+=} , x € Dom(g) . For all u €EE set

g(x+hu') - g(x)
h

lim sup inf

i g(x)(u)
h >0+ u'>u

and

ig(x) (w) sup (i g(x)(u+v) - i g(x)(v))

v

The function i:g(x) : E+>R U {4} is called the asymptotic derivative and enjoys

the following nice properties

Tppi(g) %»8(0) = Epi (ijg(x)
3 elx) = {q € £ <q,u> < ifg(x)(u) for all u € E}

(see [11 1)



2 . The differential inclusion problem.

Let F :R" IRn be a set valued map and, let ¢ :R" +R be a Lipschitzean
function, g : R” x R" >R U {+=} . We denote by S the set of all solutions to

the differential inclusion

x € F(x)
s = {xew(0,1) : x(t) € F(x(t)) a.e.}

For a function z € S the contingent cone to S at =z  is given by

Tg(z) = {w € Wl’](O,l) : for some sequence h_ >0 converging
to zero there exists a sequence v € S such that
z+h w €5 , lim w_=w }

n n n
n > o

Assume z € S solves the following problem

1
minimize {g(x(O),x(l)) + I ¢(x(t))dt : x € S}
o

In order to characterize 2z we assume the following surjectivity hypothesis

(H) For some p > 1 and all u,e € LP there exists a solution

w € w]’p(O,l) to the "linearized"problem
(i)  W(0),w(1)) € Dom (i%g(2(0),2(1)))

(ii) w(t) € DF(z(t),z(t)) (w(t)+u(t))+e(t) a.e.
and
(iii) if u =e =0 then every w satisfying (i), (ii) belongs

to TS(z)

Remark. The last part of the above hypothesis holds in particular when

z2(t) € Int(Dom F) and F 1is Lipschitzean in Hausdorff metric. Indeed if

&(t) € DF(z(t),é(t))(w(t)) then there exists a sequence (uk,vk) S L] converging
to (w,&) such that [(z,é) + % (uk,vk)](t) € graph(F) for all k >0 .



t

Let yk(t) = w(0) + J vk(T)dT and uk(t) - uk(t) - yk(t) . Ciearly o * 0

o
in Ll when k -+ +o and

dist (2(0) + ¢ 7 () , F(2(0) + § 3, (®)) < F o (®)

where L denotes the Lipschitz constant of F . Then by Corollary 2.4.1 [2 ]
there exists a constant C and functions X € S such that for all k =21

1
% () - 2(t) - ¢ 5, (©] < %-[ak(t> + [o ak(T)dT]
1
% (0 - 2(0) - ¢y, (] < § [o oy (Ddr

and therefore w € TS(Z)

(2.1) Theorem. Assume that surjectivity hypothesis (H) is verified. Then there
1’1)"'(0,1) (where -% +-% =1 ) of the adjoint inclusion
*

exists a solution q €W

- 40 € 3p(z(1)) + DE(2(0),2() (a())  a.e.

(-q(0),q(1)) € 3_g(z(0),z(1))

Proof. We first reduce the above problem to an abstract optimization problem
which has many other applications. The reduction is done in two steps. Set
E=1P@O,;RY , Ww=uwlPO, ;R , T=R"xR", y(w) = (w(0),w(1))
Lw = w for all w €W .

Step 1. We claim first that if w(t) € DF(z(t),z(t))(w(t)) for all t €[0,1 ]
then

i, £(2)(W) + i gky2) (W) > 0

Indeed by (H) there exist sequences hn >0 and v € W converging to zero and

w respectively such that =z + hn vo €S . Since 2z is a minimiser we have

£(z+h w ) + glyz + hnywn) = f(z) +g(yz). Thus

f(z+hw') + g(yz+hyw')- £(2) - g(yz) >

lim sup h

w'>w
h » O+
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and therefore using Lipschitzeanity of f we obtain

0 < lim sup inf w2+hwt)l - e(yz) lim sup

h+0+ w'+w

< _1.: g(yz) (yw) + i: f(z) (w)

w'r w
h + 0+

f(z+hw') - £(z2)

h

Step 2. Let F : E T E be defined by F(x) = {y €E : y(t) € F(x(t)) a.e.} .

Thus z solves the following problem

minimize {f(x)+g(Yx) : X EW , Lx € F(x)}

Consider the closed convex cone

C = {(x,y) €EE x E : y(t) € DF(z(t),2(t)) (x(t)) a.e.}

Using the measurable selection theorems (see for example [20 ]) one can verify

that CC1 )(z,i) . (See [11 ] for the details of the proof). Let

graph(F

be the negative polar to C( . We claim that if a function q €W

satisfies the following inclusions
(-3,-9) € 3, £(2) x {0} + C

(=q(0),q(1)) € 3_ gly2)

1

Pw(0,1;

-
rY

then q satisfies also all reauirement of Theorem. This can be directly proved

using a contradiction argument (see [11 ]).

Thus to achieve the proof we have only to verify the existence of q €W

1

Px (0, 1;R™)

as above. This will be dome in the next section where an abstract problem is

treated.



3 . The abstract problem.

Consider reflexive Banach spaces W,H,E,T where W 1is continuously embedded into
H by the canonical injection i ., Let L € L(W,E) , vy € L(W,T) be continuous

linear operators and Y satisfies the

"trace property" Y has a continuous right inverse and the kernel

wo of Y is dense in H

-

We denote by io (Lo) the restriction of i (respectively L ) to W, Define

* * *
E, = {p€EE : L,p€EH T

* +* b 4
Thus Lo maps EO to H . (For the problem considered in § 2 H = E ,

* * . *
Eo = wl’p*(O,l;'Rn) and Loq = -q on Eo ). We have the following abstract Green

formula (see [1 ]) :

There exists a unique operator B* € L(EZ,T*) such that for all
*
uEW,pEEO

*
<LopsU> - <p,Lu> = <B*P,YU>
Let a closed convex cone C CH x E and functions w : W-+R, y : T + R U {+=}
be given. We assume that the epigraphs of T,y are closed convex cones and

. * * *
define the closed convex processes G : H JE s G T E IH by

v € G(u) if and only if (u,v) €C

* . . -
r €G (q) if and only if (r,—q) €°C
We assume that the element w =0 1is a solution of the problem
minimize {w(w) + YP(yw) : Lw € G(w)}

(3.1) Theorem. Assume that the following surjectivity assumption holds true :

for all (u,v,e) € H x H x E there exists a solution w € W to

the problem :
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(i) Lw €EG(wtu) + e

(ii) w € Dom(m) ’ yw € Dom(y)

*
Then there exists q € E  such that

* *
La € 3, W0) + G (q)

*
- B84q € 3, ¥(0)

Remark. For the problem considered in § 2 we have :

(@) = 8@ W) 5 WE) = ey (D) 5 3,m(0) = 3,f(2)

3, ¥(0) =9 g(yz)
The proof of Theorem 3.1 follows immediately from the following Lemmas.
(3.2) Lemma. Under the asgumptions of Theorem 3.1 the set A defined by
A r= 1% m(0) + Y3 p(0) + (i*r-L*q : r €c*(@))

(where 1 is the adjoint of i ) is closed in W

. * . x *
Proof. Let a =ia +y a +ir -L q, » where a €3,m0) , o €3.y0),

(rn;qn)e ¢ , n=1,2,... . Assume lim a_ = a 1in W* . We claim that

n -+ o
{(an,rn,—qn)}n >1 is bounded. This will be proved if we show that for all

(u,v,e) EHx HxE

(3.3) sup (<an,v> +<ro,u> + <qn’e>) < +
n 2l

Let w be such that Lw € G(w+u) + e , w € Dom() , yw EDom(y) . Then e =Lw -y ,
where (w+u,y) € C . Therefore <@ V> 4 <o u> 4+ <q,e> = <ap,V> 4+ <rp,u> 4
*
<L qW> = <QL,y> = <a,viw> 4+ <a;,yw> + <(rn,—qn),(u+w,y)> - <a_,w> <
n(v+w) + Plyw) - <a ,w> and (3.3) follows. Thus by reflexivity we may assume that

(an,rn,qn) =~ (a,r,q) weakly in H* X H* X E* . By Mazur lemma [9 ] and convexity

of aaﬂ(O) s C" we have a € Baﬂ(O) » (r,-q) € C . Let g be the continuous
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ight i f Th "oy al - *( - i*a - " + L* ) i kl
right inverse of v . en a =0oya =o0(a -ia -1ir, q,) 1is weakly

convergent to some a' € Baw(O) . Hence a €A .

(3.4) Lemma. The following statements are equivalent :
(1) 7(w) + Yy(yw) 2 0 for all Lw € G(w)
. *
(2) There is q € Eo such that
* *
Loq € Baﬂ(O) + G (q)

*
- 849 € 3 y(0)
Proof. If (1) holds,then using the separation theorem we show that
* * * * *
0€i23 m0) +y 3 Y(0) +i1G6(q ~-Lg

* *
Let qE€E , a€ aan(O) , a' € Baw(O) , T €G (q) be such that
& * K * * R R . . .
ia+ya' +ir-Lq=0.Thus Loq =10+ ir. Since Wo is dense in H
P . * * *
it implies that Loq €H and by consequence q € Eo . Moreover the Green
*
formula implies 0 = <qg,w> + <a',yw> + <(r,-q), (w,Lw)> = <a'+B8 q,yw> for
*
all wE€W. Since YW =T we proved a' + B q =0 and thus (2)
*
To prove the converse,assume (2) holds. Then for some q € Eo » & € Ban(O) ,
a' € 3_v(0)

* *
Lq=a+r , -Bq-=a

* % * * * * *
and by Green formula a+r=yvyBq+Lq=Lq-vya'", a+ya'=Lgq-r1r.
. *
Thus if Lw € G(w) we have m(w) + Y(yw) = <a,w> + <a',yw> = <g+y a',w> =
*
= <L q-r,w> = - <(r,-q),(w,Lw)> 2 0 , which proves (1) and achieves the proof

of Lemma 3.4.

Thus the proof of Theorem 3.1 is completed.
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4 . An example,

. n . .
Let U be a compact subset in R , A be .n x n matrix, B be n x m matrix

and let two lipschitzean functions ¢ : R™> R, g : R” xR" »R be given.

Consider the following problem :

1
4.1 minimize [g(x(0),x(1)) + J w(x(t))de |
o

over the set of solutions to the control system

(4.2) x(t) = Ax(t) + Bu(t) , u(t) € U

The corresponding differential inclusion then has the form
x € F(x) , F(x) = Ax + BU

Assume a trajectory-control pair (z,G) solves (4.1), (4.2).

(4.3) Theorem. There exists an absolutely continuous function q such that

q(t) € 3 p(z(t)) - A*q(t) a.e. in [0,1 ]
<q(t),s> <0 for all s € Iy (Bu(t))

(-q(0),q(1)) € 3 _g(z(0),z(1))

Proof. To use Theorem 2.1 we verify directly that DF(z(t),é(t))(v) =

Av + I;U (Bu(t)) . Fix any s > 1 and let p > 1 be defined from the equation

= 1 ., Clearly for all u,e € LP  there exists w € Wl’p(O,l) solving

roblem

o w|—

w(t) € Aw(t) + Au(t) + e(t) + 1§U (Bu(t))

On the other hand if w 1s such that

w(t) € Aw(t) + I:U (Bu(t))
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then we can find a sequence Buk € L] converging to w(t) - Aw(t) such that

Bu(t) + %-Buk(t)) € BU a.e.. Let vy be defined from the equation

Gk(c) = Aw (t) + By (t) , w (0) = w(0)

Then 2z + hkwk is a solution to (4.2) and it implies that the hypothesis (H)
* -

from § 2 is verified. On the other hand if r € DF(z(t),z(t)) (-q) then for

all v €R" , 8§ € I:U(Bﬁ(t)) we have <(v,Av+s),(r,q)> €0 and hence

*— - . .
<v,r+A q> + <s,q> < 0 . It implies that
. * - | - / - -
DF(2(t),2(t)"(-0) = -Aq ;a4 € (Bu(t)))

and by Theorem 2.1 the proof is complete.

REFERENCES :

[1] J.P. Aubin, Applied Functional Analysis, Wiley Interscience, 1979.

[2] J.P. Aubin and A. Cellina, Differential Inclusions, Springer Verlag,
1984,

[3] J.P. Aubin, F.H. Clarke, Shadow prices and duality for a class of optimal

control problems, SIAM J. of Control, 17 (1979) n°® 5,
pp. 567-586.

[4 ] J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, Wiley Interscience,
1984,

[5] H. Berliocchi, J.M. Lasry, Principe de Pontriagin pour des systémes régis
par une équation différentielle multivoque, CRAS, Paris,

vol. 277 (1973), 1103-1105.

[6] F.H. Clarke, Nonsmooth analysis and optimization, Wiley Interscience,
1983 .




[7

[8

[9

[10

[11

[12

[13

[ 14

[15

[16

[17

[18

[19

14—

F.H. Clarke, The maximum principle under minimal hypothesis, SIAM J.

of Control, 14 (1976), 1078-1091.

F.H. Clarke, Optimal solutions to differential inclusions, J. Opt. Theory

I.

Ca

Appl. vol 19, n° 3 (1976), pp. 469-478.

Ekeland, R. Temam, "Analyse convexe et probl&mes variationels",

Dunod, Paris, 1974.

. Frankowska, Inclusions adjointes associ@es aux trajectoires d'inclu-

sions différentielles, Note C.R. Acad. Sc. Paris, t. 297

(1983), pp. 461-464.

. Frankowska, The adjoint differential inclusions associated to a minimal

trajectory of a differential inclusion, Cahiers de CEREMADE
n® 8315, 1983.

. Frankowska, The first order necessary conditions in nonsmooth varia-

tional and control problems, SIAM J. of Control (to appear).

. Frankowska, C. Olech, Boundary solutions to differential inclusions,

J. Diff. Eqs. 44 (1982), pp. 156-165.

. Ioffe, Nonsmooth analysis : differential calculus of nondifferen-
tiable mappings, Trans. Amer. Math. Soc., 266 (1), 1981,
pp. 1-56.

.P. Penot, P. Terpolilli, Cdnes tangents et singularité&s, CRAS. Paris,

vol. 296 (1983), pp. 721-724.

. Pontriagin, V. Boltyanskii, V. Gamkrelidze, E. Mischenko, The mathe-

matical Theory of Optimal process , Wiley Interscience

Publishers, New-York, 1962.

.T. Rockafellar, Existence theorems for general control problems of

Bolza and Lagrange. Adv. in Math. 15 (1975), 312-323.

.T. Rockafellar, Convex analysis , Princeton University Press,

Princeton, New-Jersey, 1970.

.T. Rockafellar, Generalized directional derivatives and subgradients of

non convex functions. Canad. J. Math., 32 (1980), 257-280.



[20 ]

[21 ]

D.H. Wagner,

T. Waéewski,

-15-

Survey of meagurable selection theorems, SIAM J. of
Control, 15 (1977), 859-903.

On an optimal control problem, Proc. Conference "Differen-
tial equations and their applications", Prague, 1964,
PP. 229-242.



