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PREFACE 

I n  t h i s  r e p o r t ,  the Pont ryagfn  p r i n c i p l e  i s  extended t o  o p t i m a l  

c o n t r o l  problems w i t h  feedbacks  ( i . e . ,  i n  which t h e  c o n t r o l s  depend upon 

t h e  s t a t e ) .  New t e c h n i q u e s  of non-smooth a n a l y s i s  ( asympto t ic  d e r i v a t i v e s  o f  

se t -valued maps and f u n c t i o n s )  a r e  used t o  prove t h i s  p r i n c i p l e  f o r  problems 

w i t h  f i n i t e  and i n f i n i t e  h o r i z o n s .  

The r e s e a r c h  d e s c r i b e d  h e r e  was conducted w i t h i n  t h e  framework of 

t h e  Dynamics of Macrosystems s t u d y  i n  t h e  System and Decis ion Sc iences  Program. 

ANDRZEJ WIERZBICKI 
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The Pontriagin principle is extended to the case of minimization of 

solutions to differential inclusions by using a concept of derivative of set- 
valued maps. 

Introduction 

Consider a control system with feedbacks 

where f : Rn x Rm + Rn and U : Rn = IRm is a set valued map. Let S be the set 

of all solutions to (0.1) and assume z E S solves the following problem : 

minimize (g(x(O),x(l)) : x E S] 

g being a function on R~~ taking values in R U 1-1 . 

If there is no feedback, i.e. if U does not depend on x , and the datas 
are smooth enough the celebrated maximum principle(see Pontriagin and others[16 1 )  
tells us that for some absolutely continuous function q : [0,1] + R" the 

following holds true : 

I a f * - a t )  = [ , I  q(t) 

(0.2) 

<q(t) ,f (x(t),u(t))> = max <q(t) ,f(z(t),u)> 
U E U  



- * 
vhere u is the corresponding control, (z(t) ,P(t))] denotes the transpose 

of the Jacobian matrix of f vith respect to x at (z(t) ,u(t)) , and g' is 

the derivative of g . 
To study the necessary conditions in a more general case we have to consider the 

set valued map F : Rn 2 Rn defined by : 

and the associated differential inclusion 

Under some measurability assumptions on f and U it can be shown that the solu- 

tions to (0.1) and (0.1)' coincide. 

This approach to optimal control problem was firstly proposed by Wazewski in [21 ] 

who was followed by many authors. (See for example [2 1, [ 3  1, [ 5  1, [ 6  1, [ 8  1, 

1 1 1  I, 113 1 ,  [14 I, 117 1, 121 I). 

For obtaining results similar to (0.2), (0.3) in the set valued case we need a 

notion generalizing the differential to a set valued map F : Rn 3Rm and its 

transpose. 

In this paper we use such a generalization, called the asymptotic differential * 
DF(x,y) and asymptotic co-differential DF(x,y) of F at (x,y) Q graph(F) . 
We consider also the related notion of asymptotic gradient 8 g of a real valued a 
function g . 
The necessary conditions then take the following form : 

There exists an absolutely continuous function q : [ 0,1] -+ Rn satisfying 

the following conditions : 

The outline of the paper is as follows. We devote the first section to some back- 

ground definitions which we shall use. We state in section 2 the main theorem 

concerning the necessary conditions satisfied by an optimal solution to a 



differential inclusion problem. We show also how this problem can be embedded in 

a class of abstract optimization problems. This general problem is studied in 

section 3 .  Section 4 provides an example of application. In particular we extend 

in this paper to the non convex case some results obtained by Aubin-Clarke [ 3  1. 

1 . Asymptotic differential and co-differential of a set valued map. 

0 

In what follows E denotes a Banach space, B denotes the open unit ball in E * 
and < , > the duality paring on E x E . 

The tangent cone of Ursescu to a set K C E at a point x E K is defined by 

The above cone is sometimes called the intermediate tangent cone since it lies 

between more familiar contingent cone (of Bouligand) 

and tangent cone (of Clarke) 

Indeed 

(see [ 4  1, [ 6  ] for properties of CK(x) , TK(x)). The cone IK(x) is less known. 

We only state here 

(1.2) Proposition. The following statements are equivalent : 

(ii) For all sequence hn > 0 converging to zero there exists a 

sequence v E E converging to v such that x + hn v E K n n 
for all n . 

1 (iii) lim - d (x+hv) = 0 
h " 0+ h K 



In the study of some nonsmooth problems we are often led to deal with convex 

tangent cones. We define one of them. 

(1.3) Definition. The asymptotic tangent cone to a subset K at x E K is 

given by 

1;(x) := {U E IK(x) : U + IK(x) C IK(x) 1 

w 
I (x) is closed convex cone. One can easily verify that CK(x) C 1i(x) C IK(x) C K 
TK(x) 

We now define the differential and co-differential of a set valued map F from 

E to a Banach space E l  . 

(1.4) Definition. The asymptotic differential of F at (x,y) E graph(F) is 
+ 

the set valued map DF(x,y) : E + El defined by 

v E DF(x,y)(u) if and only if (u,v) E 
graph (F) (x,Y) 

The asymptotic co-differential of F at (x,y) € graph(F) is the set valued map * * +  * 
DF(x,y) : El + E  defined by 

* 
qED~(x,y) (p) iff <q,u>-<p,v><O for all vEDF(x,y)(u) 

(1.5) Remark. We give in [ 1 1  ] another characterization of DF(X,~)* . Let 
* 

us only mention that q E F(x,y) (p) means that (q,-p) is contained in the 

negative polar cone to 
graph (F) 

(x,y) , the asymptotic normal cone to 
graph@) at (x,y) . 

Let g : E + R  U {+w) , x E Dom(g) . Define 

g(y) + R+ when y E Dom(g) 

when g(y) = +w 

Then graph(F) = Epi(g) (Epigraph of g ) . 

(1.6) Definition. The subset 

is called the asymptotic gradient of g at x . 



In the case when g is regularly GBteaux differentiable, i.e. it has the GBteaux 

derivative gl(x) E E* and for all u E E 

we have 

a a g w  = (gl (XI I 

There is also another way to introduce aag(x). 

Following Rockafellar [ 19 1 ,  when a function O : U x V +R U (+w) is given, 

we define 

lim sup inf (v1,u') := sup inf SUP inf 
vl-+ v uv+ u E > O  6 > O  v1EB(v,6) u'€B(u,E) 

Consider g : E +R U (+m} , x E Dorn(g) . For all u E E set 

i+g(x) (u) := lim sup inf g(x+hul) - g(x) 
h + O+ ul+ u h 

and 

m 
The function i+g(x) : E +R U (+=I is called the asymptotic derivative and enjoys 

the following nice properties 

m 
'Epi (g) (x,g(x)) = Epi (iTg(x)) 

w 
aag(x) = (9 E E* : <q,u> < i+g(x) (u) for all u E E} 

(see [ I 1  1 )  . 
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2 . The differential inclusion problem. 

Let F : Rn =Rn be a set valued map and, let cp : Rn +R be a Lipschitzean 

function, g : Rn x R n  +R U {+-I . We denote by S the set of all solutions to 

the differential inclusion 

For a function z E S the contingent cone to S at z .is given by 

TS (z) = {W E W' I (0, l )  : for some sequence h > 0 converging n 
to zero there exists a sequence w E S such that n 
z + h n w n E S  , lim w = w )  

n n - t m  

Assume z E S solves the following problem 

In order to characterize z we assume the following surjectivity hypothesis 

( H I  For some p > 1 and all u,e E L' there exists a solution 

w E W' '~(0,l) to the "linearized"problem 

(ii) ;(t) E ~F(z(t), k(t)) (w(t)+u(t))+e(t) a.e. 

and 

(iii) if u = e = 0 then every w satisfying (i), (ii) belongs 

to TS(z) . 

Remark. The last part of the above hypothesis holds in particular when 

z(t) E Int(Dom F) and F is Lipschitzean in Hausdorff metric. Indeed if 

;(t) E ~F(z(t) ,i(t)) (w(t)) then there exists a sequence (uk,vk) E L' converging 
1 

to w ,  such that [ (2,;) + i; (uk,vk)] (t) E graph(F) for all k > 0 . 



Let yk(t) = w(0) + 
1 

vk(r)dr and %(t) = 4(t) - yk(t) . Clearly 4 + 0 

in L' when k + +oo and 

1 -  1 L 
dist (;(t) + l; yk(t) , F(z(~) + T; yk(t))) i; 4(t) 

where L denotes the Lipschitz constant of F . Then by Corollary 2.4.1 [2 ] 

there exists a constant C and functions xk E S such that for all k > 1 

and therefore w E TS (z) . 

(2.1) Theorem. Assume that surjectivity hypothesis (H) is verified. Then there 
1 1  exists a solution q E W1 P~*(O, 1) (where - + - = 1 ) of the adjoint inclusion 
p p* 

Proof. We first reduce the above problem to an abstract optimization problem 

which has many other applications. The reduction is done in two steps. Set 

E = L~(o,I; Rn) , W = w1'~(0,l; Rn) , T =Rn x R n  , y(w) = (w(O),w(l)) , 
LW = ; for all w E w . 

Step 1. We claim first that if ;(t) E DF(z(t),z(t)) (w(t)) for all t E [O, 1 ] 

then 

iy f (2) (w) + i: g(yz) (yw) 5 0 

Indeed by (H) there exist sequences hn > O  and wn E W converging to zero and 

w respectively such that z + h w E S . Since z is a minimiser we have n n 

f(z+hnwn) + g(yz + hnywn) > f(z) +g(yz). Thus 

lim sup f (z+hwf) + g(yz+hywl)- f (z) - g(yz) 
h > 0 

w'+ W 

h + 0+ 



and therefore using Lipschitzeanity of f we obtain 

o < lim sup inf B ( Y ~ + ~ ~ )  - g(yz) + lim sup f (z+hwP) - f (z) 
h + O+ w'+ w 

h 
w'+ W 

h 

h + 0+ 

+ 
Step 2. Let F : E + E be defined by F(x) = Cy E E : y(t) E F(x(t)) a.e.1 . 
Thus z solves the following problem 

minimize {f(x)+g(yx) : x E W , Lx E F(x)) 

Consider the closed convex cone 

Using the measurable selection theorems (see for example [20 1 )  one can verify 
that C C I 

graph ( F) (2,;) . (See [ 1 1  1 for the details of the proof). Let C- 

be the negative polar to C . We claim that if a function q E w"~*(o, 1 ; R") 

satisfies the following inclusions 

then q satisfies also all reauirement of Theorem. This can be directly proved 

using a contradiction argument (see [ 1 1  I ) .  

Thus to achieve the proof we have only to verify the existence of q E W' '-(o, lan) 
as above. This will be done in the next section where an abstract problem is 

treated. 



3 . The abstract problem. 

Consider reflexive Banach spaces W,H,E,T where W is continuously embedded into 

H by the canonical injection i . Let L E f (W,E) , y E ~(W,T) be continuous 

linear operators and y satisfies the 

I t  trace property" y has a continuous right inverse and the kernel 

Wo of y is dense in H 

We denote by io (Lo) the restriction of i (respectively L ) to Wo . Define 

* * * 
Thus Lo maps Eo to H . (For the problem considered in 5 2 H = E , 
* * * 
Eo = w1 "*(0,1; R") and Loq = -( on E0 ) . We have the following abstract Green 

formula (see [ 1 ] ) : 

* * 
There exists a unique operator B* E f (Eo,T ) such that for all * 
u E W ,  p E E o  

Let a closed convex cone C C H x E and functions IT : W + R , J, : T + R U {+m) 

be given. We assume that the epigraphs of I T ,  are closed convex cones and 
+ * * +  * 

define the closed convex processg.G : H + E , G : E + H by 

vEG(u) if andonlyif (u,v)EC 

r E G*(~) if and only if (r,-q) E C- 

We assume that theelement w = 0 is a solution of the problem 

minimize {IT(W) + J,(yw) : Lw E G(w) 1 

(3.1) Theorem. Assume that the following surjectivity assumption holds true : 

for all (u,v,e) E H x H x E there exists a solution w E W to 

the problem : 



* 
Then there exists q E Eo such that 

Remark. For the problem considered in S 2 we have : 

The proof of Theorem 3.1 follows immediately from the following Lemmas. 

(3.2) Lemma. Under the assumptions of Theorem 3.1 the set A defined by 

. * (where 1 is the adjoint of i ) is closed in W* . 
. * * * * Proof. Let an = 1 an + y a: + i rn - L qn , where 

an E a,n(O> , a: E aa$(0) , 

(rn,-q,)E C- , n=l,2,. . . . Assume lim a = a in W* . We claim that 
n n - t m  

{(ansrn,-qn) In is bounded. This will be proved if we show that for all 

(u,v,e) E H x H x E 

Let w be such that Lw E G(w+u) + e , w E Dom(.rr) , yw E Dam($) . Then e = Lw - y , 

where (w+u,y) E C . Therefore <an,v> + <rn,u> + <qn,e> = <an,v> + <rn,u> + 
* 

<L qn,w> - <qn,y> - - <an,v+w> + <a1 ,111) + <(rn,-q,), (u+w,y)> - <a ,w> C n n 

n(v+w) + $(yw) - <a ,w> and (3.3) follows. Thus by reflexivity we may assume that n 
* * * (an,rn,qn) A (a,r,q) weakly in H x H x E . By Mazur lemma [ 9  ] and convexity 

of aan(0) , C- we have a E aan(0) , (r,-q) E C- . Let o be the continuous 



* * * . * . * * 
right inverse of y . Then a; = o y a: - o (an - 1 an - 1 r + L qn) is weakly n 

convergent to some a' E aa$(0) . Hence a E A . 

(3.4) Lemma. The following statements are equivalent : 

( 1 )  ~(w) + $(Yw). 0 for all Lw E G(w) 

* 
(2) There is q E Eo such that 

* * 
Loq E aaa(o> + G (q) 

* 
- B q E aa$(O> 

Proof. If (1) holds,then using the separation theorem we show that 

* * 
Let q E E , a E aaa(0) , a' E aa$(0) , r E G (q) be such that 

. * * . * * * * * 
1 a + y a' + i r - L q = 0 . Thus Loq = i a + i r . Since Wo is dense in H 

0 0 * * * 
it implies that Loq E H and by consequence q E Eo . Moreover the Green 

* 
formula implies 0 = <a,w> + <a' ,yw> + <(r,-q) , (w,Lw)> = <a'+B q,yw> for 

* 
all w E W . Since yW = T we proved a' + B q = 0 and thus (2) . 

* 
To prove the converse, assume (2) holds. Then for some q E Eo , a E aaa(0) , 
a' E aa$(o) 

* * 
Loq = a + r 9 - B q = a l  

* * * * * * * 
and by Green formula a + r = y B q + L q = L q - y a ' ,  a + y a 1 = L q - r .  

* 
Thus if Lw E G(w) we have n(w) + $(yw) 2 <a,w> + <a' ,yw> = <a+y a' ,w> = 

* 
= <L q-r,w> = - <(r,-q),(w,Lw)> 2 0 , which proves ( 1 )  and achieves the proof 

of Lemma 3.4. 

Thus the proof of Theorem 3.1 is completed. 



Let U be a compact subset in Rn , A be :n .x n matrix, B be n x m matrix 

and let two lipschitzean functions ~p : Rn+ R , g : Rn x Rn +R be given. 

Consider the following problem : 

1 
(4.1) minimize [g(x(O),x(l)) + I ~p(x(t))dt 1 

0 

over the set of solutions to the control system 

The corresponding differential inclusion then has the form 

Assume a trajectory-control pair (z ,u)  solves (4.1 ) , (4.2). 

(4.3) Theorem. There exists an absolutely continuous function q such that . 

* 
q(t) E aav(z(t)) - A q(t) a.e. in [0,1 ] 

<q(t) ,s> < 0 for all s E IL(B;(~)) 

Proof. To use Theorem 2.1 we verify directly that ~~(z(t),i(t)) (v) = 

Av + 1- (~;(t)) . Fix any s > 1 and let p > 1 be defined from the equation 
BU 

1 1  - + - = 1 . Clearly for all u,e EL' there exists w E W"P(O,I) solving 
P S  
the problem 

On the other hand if w is such that 



1 
then we can find a sequence B% E L  converging to w(t) - Aw(t) such that 

1 
~;(t) + - Buk(t)) E BU a.e.. Let wk be defined from the equation 

k 

Then z + hkwk is a solution to (4.2) and it implies that the hypothesis (H) * 
from 5 2 is verified. On the other hand if r E DF(z(t) ,z(t)) (-q) then for 

all v ER" , s E I&(B;(~)) we have <(v,Av+s),(r,q)> G 0 and hence 

*- - 
<v,r+A q> + <s,q> < 0 . It implies that 

and by Theorem 2.1 the proof is complete. 
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