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ABSTRACT

Discrete~time least-squares algorithms for recursive para-
meter estimation have continuous-time counterparts, which mini-
mize a quadratic functional. The continuous-time algorithms can
also include (in)equality constraints. Asymptotic convergence
is demonstrated by means of Lyapunov methods. The constrained
algorithms are applied in a stabilized output error configura-

tion for parameter estimation in stochastic linear systems.

- iii -



CONTINUOUS-TIME CONSTRAINED LEAST-SQUARES
ALGORITHMS FOR RECURSIVE PARAMETER ESTIMATION
OF STOCHASTIC LINEAR SYSTEMS BY A STABILIZED
OUTPUT ERROR METHOD

A.J. Udink ten Cate

1. INTRODUCTION

The subject of recursive parameter estimation in dynamic systems
has received considerable attention in recent years (Eykhoff, 1974;
Goodwin and Payne, 1977; Ljung and Soderstrom, 1983). In control,
attention has been focused mainly on the estimation of parameters
of discrete-time models from sampled data (Young, 1981) with a
number of exceptions (Eykhoff, 1974; Bohn, 1982; Young, 1981).
In many cases, however, the parameters of continuous-time models
have to be estimated from experimental data. The advent of modern
computer-operated dataloggers has made relatively high sampling
rates feasible, stimulating interest in continuous-time algorithms
which operate on quasi-continuous measurements and which can
directly update a (physical) continuous model with some known and
some unknown parameters. No constraints are generally imposed in
recursive algorithms, although this is sometimes done in the frame-
work of stochastic approximation (Kushner and Clarke, 1978). 1In

many experimental situations, however, such constraints exist.

This report presents a class of continuous-time algorithms
which minimize a gquadratic functional of the difference between
the observed and the predicted output. A modified form of the

usual "equation error" adopted in, e.g., Young (1981), Lion (1967),



Landau (1979) is taken as a measure of this difference and mini-
mized. In contrast to other algorithms of this type (Young,

1981; Solo, 1980), the starting values of the estimates appear
explicitly in the functional. The algorithms are characterized

by exponential convergence of the parameter error (Anderson and
Johnson, 1982) and can be regarded as continuous versions of the
recursive least-squares method. These algorithms are then ex-
tended to handle equality constraints; inequalities can be handled
using penalty functions. By the very nature of penalty functions,
inequalities are treated mildly, which means that the estimates
are not strictly confined to the feasible area. This feature makes
the algorithms suitable for application in an output error para-

meter-estimation scheme for stochastic linear systems.

Output error estimation schemes are derived from model re-
ference adaptive systems (Shackloth and Butchart, 1965; Parks,
1966; Landau, 1976, 1979). In output errcr methods, the error is
filtered in order to ensure that the estimation procedure con-
verges. The filter is based on a pricori knowledge of the unknown
system and is designed using Lyapunov or hyperstability theories.
For discrete-time systems, Landau (1978) presented an approach
which used an extended parameter vector in order to remove the
need for a priori information. Results for discrete stochastic

systems are given in Dugard and Landau (1980).

This paper proposes an output error scheme using the extended
parameter vector approach for continuous-time algorithms. 1In the
stochastic case it is not possible to ensure convergence for the
extended parameters, which destabilizes the whole estimation scheme
and leads to biased estimates. Using the constrained algorithms
mentioned before, the extended parameters can be bounded within a
set Sc’ so that the scheme remains stable. The results of Ljung
(1977) on the asymptotic convergence of stochastic systems (Ljung
and Soderstrom, 1983) can then be used to formulate conditions on

the set Sc for the convergence of the estimation procedure.

This paper is structured as follows. Section 2 presents the
continuous-time least-squares algorithm and demonstrates its expo-

nential convergence. Section 3 extends the algorithm to include



constraints. The output error parameter-estimation algorithm
is introduced in Section 4 for deterministic systems, and in
Section 5 the analysis is carried out in a stochastic environ-

ment using a method proposed by Ljung (1977). Simulation examples

are presented in Section 6 and the paper ends with some conclusions.

2. CONTINUOUS LEAST~-SQUARES METHODS

A linear deterministic univariate system can be represented

by the equation

u(t) (2.1)

where y(t) is the measured output, u(t) is the input and s is the

Laplace operator. The polynomials A(s) and B(s) are:

2 m <
0 + b1s + bzs +...+bms , m <

o
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A more convenient notation is obtained by introducing a parameter

The coefficients a.,bj, are time-invariant or slowly time-varying.

vector

T P _

g (a1,a2,...,an,b0,b1,...,bm) r BER, E = m+n+1
and a signal vector

T 1
oT(t) = (—y(”, _y(2), ’_y(n),u(O)’u( ), 'u(m)) )
seR"
(k) _ k. _ :k k .
where y = sy = d7y/dt" and the superscript T denotes the trans-
pose. Egn. (2.1) can then be rewritten as
T
y(t) = 8 0(t) . (2.2)

The unknown parameter vector § is estimated using a model of the

same dimensions:



y(t) = 87 ()¢ (k) (2.3)
where y(t) and @(t) are estimates of y(t) and 6, respectively.
Introduce the parameter difference vector §(t) = 6 - §(t).

The "modified equation error"

e(t) = y(t) - ¥(t) (2.4)
is minimized as a measure of I§(t)ll, and it is seen from eqns.
(z.1) and (2.3) that

AT T

e(t) = y(t) = 87 (£)g(t) = 87 (L) ¢ (k) . (2.5)
Remark 1. Formulation of the polynomial A(s) in egn. (2.1) with
a, = 1 and a, # 1 leads to an equation error of a different type

to that found in Young (1981), Lion (1967) or Mendel (1973, pp.
28-30). It is readaily seen that both types are equivalent. As
is demonstrated in Sections 4 and 5, the modified form offers con-
siderable practical advantages in output error schemes.V

The modified equation error given in eqn. (2.4) is minimized

using eqn. (2.5) on the basis of the quadratic functional

t ~
J(8;t) = Ilﬁ(t)-gsllz/g-exm—nt)+fc(o) ly () =67 (£) ¢ (0) ] %exp (-n (t-0) ) do
0
(2.6)
Here és = @(0) is the starting value of é(t) g and ¢ are scalars

and n is the decay parameter, with g > 0, n 2 0 and c(t) > 0. A
related form was presented by Minamide et al. (1983). The func-

tional achieves a minimum when

3J (Sit)

( 3J
== =0 . 2.7
S 35 (2.7)

IO’)

In Appendix A it is shown how this may be accomplished using the

matrix-differential forms

(£) 6 (t)] (2.8a)

.



SLE) ~ nre) —cp (s (0P (t), PeRPP (2.8b)
under the conditions c(t) > 0, P(0) = gI (where I is the unit
matrix). It will also be shown that n 2 0 (egn. 2.13). For
reference purposes, recall that eqn. (2.8b) follows from (see

Appendix A):

1

= -np” () + clB)p(t)et(8) . (2.9)

A constant or time-decreasing function is selected as the scalar

c(t) in this report; other possibilities can be found in Solo (1980).

The convergence of the parameter difference l§(t)l towards
the origin after an initial disturbance can be investigated using
Lyapunov's second method. For a process with bounded signals, a

positive definite Lyapunov function

(£)P7 ' ()6 (t) (2.10)

is selected, where V(t) is a scalar. P—1(t) is a bounded symmetric
matrix such that P-T(t) > 0 and NP—1(t)" < L, where L is a large
positive number. Since dg/dt = —d@/dt from egns. (2.8a) and (2.5),
the time derivative of V(t) is obtained as

ar” (t)

dt

av(t) _ _,T

= 8T () (e () g () o7 (£) -

)S(t) . (2.11)
Convergence is ensured if egqn. (2.11) is negative semi-definite.
There are several forms of P(t) and c(t) that lead to this result
(Udink ten Cate, 1983). One possibility which leads to a con-
tinuous least-squares algorithm is

-1

L8~ npTTe) + v (e)a(e)eT (v) (2.12)

(0) >0, P T(0) = P~ '(0) and n = 0, v(t) > 0. It is

. C -1
demonstratea in Appendix B that under these conditions P " (t) > 0.

where P_1

Using egns. (2.5), (2.10) and (2.12), egn. (2.11) takes the form



WLE) —_avie) - [2e(8) -y (D)1 (E) . (2.13)

If yv(t) < 2c(t), c(t) > 0, the time derivative of V(t) is negative
definite, provided §(t) and ¢(t) are non-orthogonal and nonzero.
This occurs when the input signal is nonzero and contains a suffi-
cient number of distinct frequencies (Lion, 1967; Anderson, 1977;
Yuan and Wonham, 1977). 1In this case overall asymptotic stability
is ensured, which means that after an initial disturbance Hg(t)ﬂ
will converge towards zero as t—+«. For n > 0 this convergence

is exponential (Anderson, 1977).

Restating the results, we arrive at the algorithms

ot = c(t)P(t)o(t) [y(t) =67 (E)o(t)]) , c(t) > 0 (2.14a)
L) - npe-y(p s @eTer) , 2T () =p T (0) >0
n =20, 0<y(t) <2c(t) . (2.14b)
Taking y(t) = c(t) and P(Q0) = gI > 0, we minimize the quadratic
functional (z2.6), demonstrating that the continuous least-squares

algorithms have global exponential stability properties with
respect to the parameter difference.

Remark 2. The above result can also be interpreted as a special

case of minimization of the instantaneous egquation error. Define
the instantaneous error criterion as J'(d;t) = % Ez(t). The para-

meter vector é(t) is adjusted according to the gradient

grzd J (8it) ='g = -g(t) 58 ()

and from egn. (2.95)

2LLE) = _fgrad g’ (8it) = a9 (t) [y (£) =87 (£) 0 (£)]

In most common gradient methods (Mendel, 1973; Lion, 1967) the

so-called "gain" matrix A is defined as A = diag [Ai] > 0. How-



ever, a gain matrix such as P(t) > 0 in egn. (2.714b) may be sub-
stituted for A (Udink ten Cate, 1983). Convergence may be demon-
strated using Lyapunov stability methods. V¥

It should be noted that the construction of ¢(t) requires
the generation of m+n derivative signals for the process de-
scribed by egn. (2.1). This can be accomplished by means of
"state variable filters" (Kohr, 1963; Young, 1981).

3. CONSTRAINED METHODS

The recursive estimation problem can also be formulated
with equality constraints on the parameters. These constraints
are derived from time-varying information on linear combinations
of the unknown process parameters. Using suitable penalty func-
tions, inequality constraints can also be treated.

The process described by egn. (2.2) can be transformed into

an augmented process incorporating equality constraints as follows:
y(t) QT(t) q axp
Lo = | Eo2l0 8 , xeR* , FER . (3.1)

Each row of the time-varying or constant matrix F(t) contains a
linear relation of the process parameters that equal a correspond-

ing known element of the vector y(t). For convenience a matrix

T
me) 2 |ELELL me r(IH) xp
F(t)
and a vector
2 YLt) q+1
z (t) Xﬂt) , ZER
are introduced such that
z(t) = M(t)6 . (3.2)

A model of the same dimensions



t
t

[ L

£
(

~

] = M(t) 8 (t) (3.3)

is also introduced, leading to the "augmented modified equation

error vector"

g+1

>

e(t) = z(t) -z(t) = M(t)s(t) , £E€R (3.4)
which is similar in form to eqn. (2.5). The following quadratic

functional is minimized in the estimation procedure:

- t
3(85t) =18 (£)=8_1%/g-exp (=nt) + [ (z(0) - M(0)B(£)) TW (o) (z(0) -M(0)B () -
0
cexp{(-n(t-o))do . (3.5)
Here W(+) = diag [wi] > 0 is a weighting matrix, the other vari-
ables having the same meanings as in egn. (2.6). Following the

arguments presented in Appendix A it can readily be demonstrated
that minimization is achieved using the matrix differential equa-

tions:

d%ét) = oMt (mwte () , oerRTF gew@XlarD
(3.6a)

-1
det(t) = -nQ—1(t)-+MT(t)r(t)M(t) , Te:m(q+1)X(q+1).
(3.6b)

To minimize J($§;t) the diagonal matrix I (t) must satisfy
I'(t) = [diag Yi] =I; n=20

Remark 3. The type of constraint represented by eqns. (3.2) and
(3.3) may be a time-varying combination representing a prior<
knowledge of the process parameters. A penalty function falls
within this category, leading to inequality constraints. Another
type of equality constraint is of the form G(:)¢(t), where G(*)

is a filter operating on the individual signals constituting ¢ (t).

For example, G(*) could be a low pass filter or a pure integral



action. This leads to an interesting class of recursive algo-
rithms. V

The convergence of the estimation procedure can again be in-
vestigated by stability methods. A Lyapunov function

-1

(£)Q™ ' (£) 5 (t) (3.7)

vit) = 8T

1 T 1

is selected, where Q '(t) = Q ~(t) > 0 for I'(t) = 0 and Q '(t) is

bounded (see eqn. 2.10). This follows from egqn. (3.6b). Calcu-

lation of the time derivative using egns. (3.4) and (3.6) yields
V) = cqvie) - eTee) (2wie) - T(ee(e) . (3.8)

For n = 0, \ =2 0, W, =2 0 and Yi(t) < 2wi(t) this yields a negative

definite form for dv(t)/dt, assuming that €(t) and M(t) are non-
orthogonal. This can be ensured for the pair £(t), ¢(t) in the
same way as for §(t) and ¢(t) in egn. (2.13). The equality con-
straints cannot ensure non-orthogonality. This leads to global
asymptotic stability for l§(t)l after an initial disturbance.
For n > 0, I8(t)l converges exponentially.

The rules proposed in eqns. (3.6) lead to the algorithms

ds (t)

=L8) = o ()M ()W (£) (2 () - M(£) B (1)) (3.9a)
28— no(r) -oemT (o) T (BMtIQ) (3.9b)
where n =2 0 and T'(t) = diag [Yi] = 0, W(t) = diag [wi] =0,

Yi(t) < 2wi(t). Because the weighting function W(t) 1is time
variable, the weights of the individual equality constraints can
be used in a penalty function procedure (which itself should be

a continuous function).

Remark 4. Egn. (3.6b) suggests that, in a discrete-time version
of the algorithm, the matrix inversion leading to egn. (3.9b) in
the continuous-time case will not lead to a form without explicit
matrix inversion, since the matrix inversion lemma (Ljung and
Soderstrom, 1983, p.19; Udink ten Cate and Verbruggen, 1978) can-

not be applied. This can be considered as one of the main reasons



for formulating algorithms (3.9) in continuous time. V

4. A STABLE OQOUTPUT ERROR METHOD

The estimation procedures presented in the previous sections
assumed noise-free measurement of the system signals. When noise
is present in autoregressive system identification the parameter
estimates will generally be biased. An intuitively attractive
approach is to feed a model with the same (noise-free) input
signals as the system and minimize the output error (and its de-
rivatives). This may be accomplished in a model reference adap-
tive control context. Here the output error is filtered using a
filter designed according to stability theory, thus ensuring global
convergence if the signals are deterministic. However, a prior<
knowledge of the system parameters is required in order to design
the filters, a requirement that is not easy to satisfy in parameter
estimation. Landau (1978, 1979) has proposed an output error pro-
cedure for discrete systems which requires no a prizoriz knowledge.
Global convergence is obtained using an extended unknown parameter
vector.

In this section, this approach is used to develop a continuous-
time algorithm based on an output error formulation analogous to
the modified equation error (see Remark 1) for deterministic systems.
Stochastic systems are treated in the next section.

The parameters of the system described by egn. (2.1) are esti-

mated by a model of the same dimensions

u(t) (4.1)

which uses the same input signal as the system. The polynomials
ﬁ(-) and ﬁ(-) contain the estimates of the parameters. This model

can be rewritten as

vy (t) = 8T (t)o_(t)

T = (oo 1) (2) _,(n)y (0) (1) (m)

Qm(t) = ( ym ’ Ym 7 ey Ym r U yeee s )r
P



The output error is defined as
e(t) = y(t) - y () . (4.3)

An error vector is introduced as follows:

1 1
el(t) = (e, el ey =Dyl oy oy )y e e m?,

(4.4)
For notational convenience, the parameter vector 06 will be divided

into two sub-vectors containing the a, and b. parameters, respectiv-

. J
ely, i.e., QT = (ggj gg);_gae]Rn,ngEmp+1. The output error (egn.
4.3) can be reformulated using egns. (2.2) and (4.2) as follows:
_ T _ AT _ ialA T _ AT _ T T
e(t) =0"9¢(t) -0 (t)gm(t)-(g 8(t)) Qm(t) Qag1(t) sT(t)¢_(t) Qag1(t)
(4.5)
To ensure the stability of the estimation scheme, a parameter
vector §g(t)= (81(t),82(t),...,8n(t)) is introduced, where‘§CEKRn.
The filtered output error is expressed in the following way:
E(t) 2 e(t) +81(t)e, (t) =8(s)e(t)
(4.6)
A ~ ~ 2 ~ n
C(s) = 1-+c1(t)s-+c2(t)s +...+cn(t)s

This filtered output error will now be minimized. Using egn. (4.5),

the following relation holds for egn. (4.6):

~ _ T A _a T _xT o2

e(t) = 9§ (t)gm(t)-+(§c(t) Qa) 21(t)-—§ (t)gm(t) (4.7)
where §7(t) 2 (87-8T(£) 18T ()-8 ) = (8T ()16 (e)), $T(t)= (ol (£) feT () ;
‘anneimp+n. It can be seen that for @C(t) = ﬁa(t) the filtered

output error reduces to the modified equation error (egn. 2.5).
The parameter vector Ec(t) is included to ensure stability. The

error of eqn. (4.7) can also be written as

e(t) = y(t)-_é_T(t)gmm (4.8)

Te);i8 (61,5 e RPN,

M —



Taking a straightforward approach, consider the algorithm

al 8t ~ .
=—| ®===]=c(t)P(t)¢_ (t)E(t) (4.9a)
=1
B o w0 (0 (), PerPrX (PR
(4.9b)
where n 2 0,c(t) > 0,y(t) =2 0. With y(t) = 1 this algorithm is

readily seen to minimize the functional

~

J(8;t) = Hg(t)-95“2/g-exP(-nt)-+f[y(o)- 0 (0)]2exp(-n(t-0))do
0
(4.10)

under conditions similar to those given for egn. (2.6). However,

egqn. (4.9a) suggests that when measurement noise 1s present in
the observation of y(t), correlation products will appear via
£(t) and 31(t), leading to biased parameter estimates. Therefore,

egn. (4.9b) will be reformulated in block-diagonal form, leading to

a [8t)] 5 YT
Eg[éc(ti = {cp(t)P(t)-+cx(t)A}gm(t)€(t) ' cp(t),cx(t) =0 (4.11a)
E (t)‘
~ _ 1 0 pPxp nxn .
P(t)-—[ 5 ‘Pz(t)], P,ER + P,ER (4.11b)
where the matrices P;1 and P;1 are given by
a7y - —n.p]] . T P21 (0) >0 (4.11¢)
iiél = —naPD(t) + v (t)e. (t)el(t) p=10) >0 .(4.114)
at - "2t Toltieqtitigy ) AR

Here A = diag [Xi] = 0;n1,n2 = 0;Y1(t),Y2(t) =2 0. From egn. (2.12)
it can be demonstrated that P;1 = p;T > O,P£1 = P;T > 0. It follows

that P1,P2 > 0 and thus P > 0 and 5-1 > 0.
The convergence of the parameter difference ls(t)| towards
the origin can be demonstrated using a Lyapunov function candidate

LT i 5. (4.12)



Calculation of the time derivative yields

avi(t) _ _ 3T =1z Y ~TY _ ~2
—gc cp(t)§ () A P(t)gm(t)gm§(t) Ck(t)e (£) .
(4.13)
The first term on the right-hand side of egqn. (4.13) is negative

1

semi-definite, since R_ > 0, §(t) > 0 and éﬁ(t) 2 0. The second

term is negative definite provided that §(t) and ém(t) are non-
orthogonal. This holds for the pair (g(t),gm(t
signal contains a sufficient number of distinct frequencies; see

)) when the input

also egn. (2.13). However, it may not hold for the pair (§c(t),
e, (t)), implying that "gc(t)ﬂ may not converge towards the origin.
Note that no exponential stability properties can be established
from egns. (4.71). In a practical situation, cx(t) = 0 in egns.
(4.11). Because "91(t)"-+0 in egn. (4.11d) when a good match
between model and system is obtained, HP£1(t)H-+O for n, = 0.

This results in ||Pz(t)||->c>° so that it is necessary to set y,(t) =0.
As already mentioned, gc(t) may not converge to its true
value. In a practical situation it may drift, obscuring the
stability properties of the estimation scheme. Therefore, the
constrained estimation algorithm introduced in the previous sec-

tion will be employed to keep éc(t) in a prespecified area SC.

The system is written in augmented form (see eqn. (3.1)) as
[
T | T
¢ (t)res (t) 8
AL QY [ i - | == rF e rY? | (4.14)
x(t) F(t); Fe(B) || g ©
- I -a

_aT T | T A
ym(t) gc(t)g1(t) gm(t)l 31(t) 8(t)
——mme e S = | -=--- st B i -——— (4.15)
x(t) F(t) i Fo(t) [ 8, (€) .
Using egns. (4.14) and (4.15), the augmented equation error vector

is defined as

[m 2
—_
o
>

--------------- : (4.16)



It may be seen that

E(t) = M(£)d(t) Mertar!)xlprn) (4.17a)
T : T
¢_(t) =el (t) t
M(t) = g R N S [M1:M2 ) M1G:R(q+1)xp’ Mze1R(q+1)><n
F(t) | F_(¢t) |
i (4.17b)
Following the same procedure as in egns. (3.6)-(3.8) leads to the
recursive scheme
ad (t)
= _ T ~ (g+1)x (g+1)
ac - {cp(t)Q1(t)-+ck(t)A1}M1(t)W(t)E(t),VVEZR
(4.18a)
ag_ (t) - .
3t = {cp(t)Q2(t) +cy (£) A, IM5 (£)W(t) g (£) (4.18Db)
do, (t) T pXp
Te— = 142, () = ()M ()T, ()M (£)Q, (&) , Q €ER
(4.18c)
dQ, (t)
2 _ _ T nxn
(4.184)

In these eqns. n,,n, = 0;T,(t) =diag [y, ;I = 0,T,(t) =diag [eri]>’0,

(@+1) < (q+1), . _ 5. > 0. =41 >
2€ZR ; W=diag [wi] Z 0; A1-d1ag [A1’i] 0,

F1,F

L, e RPP; ) = diag PO O,AzeJRan;cp(t),cx(t) > 0. When
W(t) is used as a penalty function, inequalities can also be
treated with eqns. (4.18). 1In Appendix C it is demonstrated that
the parameter difference converges towards the origin after an
initial disturbance. This does not hold for "gc(t)" in general
but if inequality constraints are used, i.e., Fc(t) is nonempty,
the estimates gc(t) can be confined to an area S -

Because all the signals have to be bounded in order to en-
sure convergence, the model which generates gm(t) must be stable.

This means that the estimates ﬁ(t) should be kept within a stable



region S which can be achieved using the matrix F(t). Since

el
the algorithms are implemented in a gquasi-continuous way, the

region S, must also be such as to prevent numerical instabilities.

8

5. STOCHASTIC LINEAR SYSTEMS

In the previous section it was decided not to adopt the
straightforward approach as suggested in egns. (4.9) because
of the anticipated erroneous behavior of the algorithm when
measurement noise is present in the observations of the system
output signals y(t). Nevertheless, an analysils was carried

out for deterministic systems. In the following, the behavior

of the algorithm (4.18) is analyzed for stochastic linear systems.

The procedure proposed by Ljung (1977) (see also Ljung and
S6derstrom, 1983) is adopted, in which a deterministic differen-
tial equation is associated with the stochastic version of
algorithm (4.18). Stability of this differential equation
implies convergence of the algorithm.

We shall restrict ourselves to the unconstrained algorithms.
5 and
Sc defined by F(t) and Fc(t), respectively. Following Ljung and

Soderstrom (1983, Ch. 4), let the model be described by the un-

The estimates E and Ec are assumed to be within the areas S

constrainea relation

ym(tle) = a(sy 40 (5.1)

where 0 is a parameter vector belonging to the model set DM which
describes the observed data. The definitions of 6, A(s) and B(s)
are analogous to those used in egn. (2.1). From egn. (4.2), edgn.
(5.1) can be reformulated as

ym(tlﬁ) = ¢>T(t,§)_e_ . {5.2)

—m

The data is described by

y(t) = 3 T(s u({t) +v(t) (5.3)

where the polynomials AO(s) and B, (s) contain the "true" para-

0

[



meters represented by the vector ©§ The signal v(t) 1is a zero-

0"
mean disturbance.

(t) _ 2o's)
When yo = A—(s—)' u(t) = y(t) -v(t), egn. (5.3) can be
written as 0
— _ T
y(£) = yo(t) +v(t) = o7 (£)8, +v (L) (5.4)

where yo(t) and go(t) are "undisturbed" signals. The output

error is

e(t) = y(t)"ym(t|g) = eo(t)-FV(t) (5.5)
where eo(t) is the "undisturbed" signal. The error vector is de-
fined as

e (t) = e, O(t) +v, (t) (5.6)
where z?(t) = (v(1),v(2), .,v(n)) The augmented equation error is

e(t) = Eo(t) +C(s)v(t) =C(s)ey(t) +C(s)V(t) =C(s)e(t)

(5.7)
From egn. (5.5) it follows that
e(t) = ¢T(£)8, —0T (£)8+v(£) = 9= (t) (8,-8) + [A, (s)=1] (=e (£)+v () ) +v (t)
20 —0 Im = “‘m -0 = 0

Ag(s)elt) = 97 (t) (8,-8) +A,(s)v(E) (5.8)
Thus, using egn. (5.7) we have

Ap(s) T

c(s) e(t) = gm(t)(20-§)+-A0(S)V(t)

~ _{ C(s) T _

e (t) —(Aom)gﬁt> (gog)+C(ﬁv(U . (5.9)

After these preliminaries we shall now investigate the convergence

of the algorithm for an associated differential equation



[
g 6 (t) R, (£)1 0O £.(8) ~ ~ ~
aie) o 4| f o [l | [ Lo = Ree)EG), R(E) > 0
I
8. (%) 0 =R2(t) £,08.)

(5.10)
where £,(8) = E¢_(£)e(t), £,(8,) = Be,(t)e(t), £(8) = Eo_(t)c(t),
Ef(*) = lim % / Ef(+). We now evaluate £,(+) and f2(-), taking

Tro0 0
VF(t) = C(s)v(t) and making use of egns. (5.5) and (5.6):
£1(8) = Eo (t)e () =Ry (£) €, (1) + By (£) vy (£) =Eoy (£) € (8)

(5.11a)
£,(8,) =Eeq (t)e(t) =E(e; o(£)+v, (t) (E4(£)+v (L)) =

(5.11b) .

= Ee1,0(t)€(t) + Ev, (B)vp(t)

Here~we used the assumption that the pairs (Qm,VF);(§1,0,VF) and

(v,,€,) are independent. The possible convergence of 1§,-81,

~T _ ,.T . ,T
QO"(ﬁo:.ga,O

Lyapunov function

), towards the origin is now investigated using the

(6.-8) . (5.12)

_ T ~  xy a7 T, T
o (€)= op () (By=8) .8y o(6) = (o (£)ley ((t)]

and egns. (5.10) and (5.11), the time derivative is calculated as

Using the fact that €

~ ~ T —
b o (6) (84-8)-(8, =80 "R, (£)Ey,

av(t) _ % 2. T

dt (t)v

P ()

(5.13)

This expression is not always negative definite. For Ez1(t)vF(t)#(),

mismatch of gc and its true value 6 together with small terms

T —a,o

containing e, ,(t) in Egmlo(t)gmlo(t) (which occurs when the model

/0

and the system are close) can cause the norm l§ to become

-0 |
a,o 9c
relatively large. However, with constrained estimation Qc is

confined to Sc' We shall now investigate which set Sc leads to

convergence of 0 to its true value 8 Consider the following

0"
Lyapunov function, which is a function of 6 only:



_ 1 oy Tog _
Vi) = 5(8,-8) 7 (8,-8) . (5.14)
From eqns. (5.7),(5.9),(5.10) and (5.17a), the time derivative is
av, () T = T
where
_ C(s) _ ~ C{s)
T

This term is negative (semi)definite when Eém(t)gF(t) =2 0, which
occurs when H(s) is strictly positive real.
Proof (see Ljung and Soderstrdm, 1983, p.212). Define any column
vector L # 0 and define x(£) = £79_(t),x (t) = 279 (t) = H(s)x(t).
We have fgm(t)gg(t) > 0 when (by definition)

_ 17"
(£)2=Ex (£)H(s)x(t) =5~ |

-0

T—

ATE (BT (£)2=FEeTe (t)9 (w)H (Juw)dw =

ZZ

=1 [ e (wRe(H(Jw))dw >0 . (5.16)

Here @zz(w) is the spectral density of x(t). The inequality in
(5.16) will hold whenRe H(jw) 2 0, which means that H(jw) is
strictly positive real. Equality occurs for Exz(t) = E(&Tgm(t))z =
= 0. Q.E.D.

This means that "go—g" will converge to 0 when C(s)/AO(s)
is strictly positive real. With this result the convergence of
algorithm (4.18) is established both for a deterministic system
(after an initial disturbance) and for a stochastic system with
a zero-mean disturbance. In the case of an initial disturbance
global convergence can be ensured, while in the stochastic case
it is necessary for the estimates @c to converge such that C(s)/AO(s)
is strictly positive real. This may be achieved by putting con-
straints on @c. This combination of global deterministic conver-
gence and constrained stochastic convergence produces an algorithm

which performs satisfactorily.



6. SIMULATION

Simulations were run in order to test the proposed algorithm
(4.18). It has already been stated that the proposed algorithm
is expected to have applications in small personal computers.

For this reason, the signal vectors were generated by straight-
forward difference methods rather than sophisticated techniques.
Integration was performed by Euler's method. The straightforward
numerical methods can be implemented using the DYNAMO simulation
language.

The parameters of a first-order system were estimated using
the transfer function

Yo (s) K

His) = u(s) = Ts+i (6.1)

where K=1 and 1=10 sec. The system parameters were assumed to
be unconstrained so eqns. (4.71la-c) could be used to estimate
§T(t) = [%,ﬁ]. The parameter éc = [8] was estimated using eqgns.
(4.18b,d) although the bounds on c € [-20,20] were never reached,
which makes egns. (4.18b,d) eqguivalent to (4.11a,b,d). We took
ck = 0, Ny=n,=n and YT Y, =Y The output signal yo(t) was
disturbed by noise v(t) from a gaussian random generator with
zero mean. The noise/signal ratio v2(t)/yg(t) was 0.1 (see also
egqns. 5.3 -5.4).

The results of the parameter estimation are presented in

Tables 1-4. Simulation was carried out up to time t = 1000 sec.

TABLE 1. Results obtained with n=0.0l, vy=1, Pl(0)==diag [0.1,0.001], P2(0)==O.l.

, Rel. Rel. Parameter distance Final value of
Estimate Average , . . .
varlance error crliterion P matrices
K 1.079 0.0057  0.0795 E,go= 402.8
2 5.03 0.31
T 11.49 0.023 0.149 E500=593.6 P, (1000) =
- 0.31 0.029
c -0.038 0.336 - E 5= 614.6
E| 00 = 625-0 P,(1000) =0.30




TABLE 2. Results obtained with n=0.02, other values as Table 1.
, Rel. Rel. Parameter distance Final value of
Estimate Average ) . . .
variance error criterion P matrices
K 0.987 0.0096  0.013 Byoq = 343:2
. 8.86 0.48
T 9.81 0.022 0.019 ESOO= 369.8 Pl(1000)=
. 0.48 0.048
c -0.029 1.099 - E750==37l.18
= P.(1000) =0.50
E| 9go= 371-80 ,(1000)
TABLE 3. Results obtained with n=0.02, y=1, Pl(O) =diag [0.3,0.003], PZ(O)'=O.3.
, Rel. Rel. Parameter distance Final value of
Estimate Average . . . .
variance error criterion P matrices
4 0.986 0.009 0.014 E,q = 268.4
8.62 0.48
T 9.80 0.049 0.020 E500==277.2 Pl(1000)=
R 0.48 0.048
c -0.029 1.099 - E750==278.76
= P =
ElOOO 279.37 2(lOOO) 0.50
TABLE 4. Results obtained with time-invariant Pl and P2 (compare with Tables 2 and 3).
, Rel. Rel. Parameter distance Final value of
Estimate Average . . ) .
variance error criterion P matrices
4 0.985 0.0082 0.015 E,qp = 32.56
A 8.7 0.48 }
T 9.76 0.015 0.024 E =32.72 P =
X 500 b lo.48 0.048
c -0.030 1.138 - E750==33.58
= P = O
| l ElOOO 33.99 2 0.5




The averages are obtained from data points taken at 5 sec inter-
vals between t = 905 and t = 1000 so that 20 data points are used.
The relative variance is 06/8, where 6 is the unknown parameter;
the relative error is |60-g|/60, where 6, is the true value. A

parameter distance criterion

£ [/ oi\2 2
E(Sit) = | K '§(°)> R

0

dgo (6.2)

is also given for several values of t; this gives an indication

of the rate of convergence. From the tables it can be seen that
the estimates of K and 1 are accurate with a low relative variance,
which indicates their usefulness for online application. The esti-
mate ¢ has a larger relative variance. Note that the initial
values of the P matrices are rather low; larger values lead to
numerical difficulties. Interesting results are obtained on using
fixed P matrices (see Table 4). 1If a proper constant matrix is
known (e.g., by evaluating the P matrices in a separate run)

rapid convergence is obtained yielding comparable results (Tables

2 and 3). A diagonal matrix P1==diag (0.8, 0.008) with P2==O.8

was found to exhibit slow convergence.

Figure 1 presents the responses listed in Table 3. The graphs
show the disturbed system output y(t), the parameter estimates and
the error criterion. From the response of ¢ (denoted by - CHAT in
Fig. 1d) it can be seen that for small output errors C tends to

drift away.

7. CONCLUSIONS

This paper presents a continuous-time version of the well-
known recursive discrete-time least-squares algorithm for the
estimation of parameters of continuous-time systems. The algo-
rithm is shown to minimize a quadratic functional representing
a cost function in terms of the parameter error between the system
and its model. The estimation scheme is demonstrated to have ex-
ponential convergence properties. The error considered is a modi-

fied version of the usual equation error.
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The algorithm is then extended in order to handle equality
constraints. This algorithm is also shown to minimize a quadratic
functional and to possess exponential convergence properties. By

the use of a penalty function inequality constraints can also be
treated. The constrained version of the algorithm is used in an
output error scheme for parameter estimation. On applying this
scheme to deterministic systems, the'parameter error displays
global convergence when the output error is filtered by an adjust-
able filter. The parameters of this filter are estimated by an
extended parameter vector. In stochastic systems, convergence is
obtained when a transfer function associated with the adjustable
filter parameters and the (unknown) system is strictly positive
real (following the analysis proposed by Ljung). This can be
achieved using an algorithm with inequality constraints, where
the filter parameters are confined to a set Sc. Simulation shows
this method to be feasible.

Because slowly time-varying parameters can be tracked, the
output error method could be very useful in (model reference)

adaptive control schemes.
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APPENDIX A

This appendix demonstrates that the functional (2.6) is minimized by eqns.

(2.8). Recall that the functional is given by

J(@;t)=liB(t) -85 1%/ grexp(nt) + (A.1)

t
+[c(a)y (o) —=BT(t)g(a) P exp (—n(t —0))da
0

with g >0,7=20,c()=0. Eqn. (A.1) is minimized when

%: ;ﬂ'f'=-2(.ﬁ(t)—_1§s)/g exp(—nt) + (A.2)

t
+2 [c (o) [y (a) —BT(¢)@(a)lexp( —n(t —0))¢(a)da =0.
0

After rearrangement of terms, this yields

t
B(t) =0/ g exp(—nt) + [(a)¢T(a)c(d)exp(~n(t —a))da]1x (A.3)
0

t
x[B / g-exp(—nt) + [c(a)y (a)e(a)exp(—n(t —a))do =
0

t
=P(t){Bg / gexp(—nt) + [c(a)y (a)g(a)exp(—n(t —a))de.
0

Here the matrix P(¢) is given by

t
P7Nt)=1/gexp(—nt) + [ ¢(0)g (0)c(a)exp(—n(t —0))da. (A.4)
0

This may be written in matrix differential form as

-1
Mdtt—l= —PNt) +e(t)e(t)gt(t), Pgt=I/g. (A.5)

Since for any non-singular matrix A(¢) we have

—1 -
S o gyl 1y,

it follows that
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GEL) —np(t) —c (1)P(1)g(t)g ()P (1) (A.5)

where 77=0. Using eqn. (A.58), we can cecuce from eqn. (A.3) (after some calcuia-

tion) that

2L —c )Pt e)ly (1) ~£ () (0)] (A7)

APPENDIX B

This appendix shows that the matrix P"l(t) in eqn. (2.12) is positive definite.
Let

;p—1
_Mdt E) = _pp ity + 9(t)g(t) et (t) (B.1)

where P71(0) =(P10))T >0. It will be shown that P71(¢) =P~ T(¢) >0.

Proof. We use a theorem by Brockett (1970, p. 58). The solution of a linear matrix

equation of the form

dX(t)
dt

=A(EX(E) +X(E)A,(L) +F (1) (B.2)

where 4(t), A,(t) and F(¢) are known is given by

t
X(t) =9, (6. L)X (L) D7 (2. tg) + [ 8,(¢,0)F (5)2F (¢, 0)da (B.3)
to

where $,(t,t;) is the transitional matrix of dz(t)/di =A,({)z(t) with solution
z(t)=9,(t.ty)x(ty) and $,(t,ty) is the analogous matrix for dz (f)/dt =A4,(t)z(¢).

X(t,y) is the initial vaiue of X(¢).

4

Rewriting eqn. (B.2) with X@)=P71(), Al(t)=A2(t)=—2in[ and

F(t) =7(t)g(t)gT(t) gives eqn. (B.1). Since P"l(to) >0 and (2,1, =9,(¢,1,), the

first term on the right-hand side of eqn. (B.3) is a decaying matrix which is posi-
¢

tive (semi)definite. The second term is positive definite because f_ff(t )gT(t) >0 is
to

related to the process signal covariance matrix. Q.E.D.
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APPENDIX C

This appendix demonstrates the convergence of the parameter difference

using eqns. (4.18) and a suitable Lyapunov function. Consider the function

V(t)=§QT<t>A{1§<t>+%_63<t>A2‘1éc<t>=%§<t>3‘1é<t> (C.1)
where
[A{l ‘0 1
A—l_-_.._:--_
0 At

Using eqns. (4.18), the time derivative is

dZtt = —cp (1)T(OATQ ()M T ()W (8)E(t) (C.2)

—cp (885 () AZ1Qo(2) Mo ()W (£)E(2E)
—c () ETEMT (@OW()EE) —c\(0)8X(t)MT ()W (t)E(t) =
—cp ()TE)KTIQ AT (YW (1) (£)8(t) —c (0)FT ()W (£)E(E)

where

This form is negative definite with respect to 3l provided that E(t) and /ﬁ(t) are
non-orthogonal. This can be ensured by sufficiently rich input for &(¢) and M(%),

but not for 4. (¢) and M,(t).



