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ABSTRACT

The relationship between computing hardware/software and
engineering control systems is projected into the next decade,
and conjectures are made as to the areas of control and system

theory that will most benefit from various types of computing
advances.



ENGINEERING CONTROL SYSTEMS AND COMPUTING IN THE '90s.

J. Casti

1. Control Science and Computing

Theoretical developments in the control and system sciences
have always gone hand-in-hand with advances in computing
technology. In the pre-computer era, theoretical formulations
emphasized aspects cf control processes (e.g., stability) that
could be relatively easily ascertained by analytic means. With
the development of analog computers in the 1930s and 1940s,
emphasis was placed upon theoretical formulations that took
advantage of the analog computer's capacity to solve boundary-
value problems; the Euler-Lagrange formulations for variational
problems and the Wiener-Kolmogorov filter being good illustra-
tions of this point. Finally, with the widespread availability
of the von Neumann architecture digital computers from the late
1950s, the theoretical emphasis shifted to initial-value formu-
lations of control problems, as evidenced by the development of
dynamic programming avproaches to variational problems and the

widespread use of the Kalman filter.

We are now in the midst of another major discontinuity in
computing hardware and software technology, with new architectures,
operating systems, programming languages and theoretical constructs

emerging daily. It is clear that these developments will



profoundly affect both the theory and applications of control

and systems science for years to come. In this paper we shall
consider some of the major trends in computing and speculate on their
implications for theoretical control science, as well as try to
indicate some of the engineering areas in which new applications of
control and system technigues are being made possible through these

enhanced computing capabilities.

2. Control Systems: Problems and Concepts

We consider a control process represented in internal, or

state-variable form,

e
]

o(x,u) x(0) = x , (Z)

y(t) = h(x) ,

where the control function u ¢ Q, a set of admissible inputs,
while the observed output y ¢ I', a set of output func-

tions. The guantity x(t) € X is the state of the system I. For
our ourposes, we shall assume u(t) ¢ rR™, y(t) ¢ rRP, x(t) ¢ RrR".
The functions ¢ and h are assumed to belong to some class of

functions possessing suitable analytic properties.

In the foregoing set-up, it is clear that if the initial
state X and an input function u(t) are given, a corresponding

output function y(t) is generated. The map
f: QT (g)

represents the so-called input/ocutput (or external) description

of the process (here we suppress the dependence on the initial
state). Most of the interesting guestions of system modeling
and control revolve about the interplay between the description
(£) and (L), under various hypotheses concerning the sets Q, T,
X and the maps ¢, h and £.

° Main Problem of System Modeling - the key question

of system theory upon which all else depends is

the so-called problem of realization:




Given the sets @ and T', together with the
external description f, determine "good"
internal descriptions £ = (X, ¢, h) whose

external behavior agrees with f£.

The interpretation of this problem is clear. The external
descriptions (Q, TI', f) represents the experimental evidence, the
data. The objective is to find a model I that "explains" the
data and, at the same time, is the "best" of all such models that

agree with the observed data.

In order to make precise what is meant by a "good" model I, we
must introduce the concepts of reachability and observability.
Intuitively, a good model is one that is minimal, in some sense.
In passing from an external description to the model I, the only
mathematical construction involved is the state space X. Thus,
it is natural to ask that X be "as small as possible”. If X is
a vector space, then we require dim X to be minimal; however,
for nonlinear £, X is not generally a vector space, so the concept
of dimension loses its meaning. Nonetheless, by use of the pro-
perties of reachability and observability we may still impose a
minimality requirement on X that first of all, agrees with one's
system-theoretic sense of compactness and secondly, reduces to
the minimal dimensionality requirement when X is a vector space.

Consequently, we call a model I "good" if it is both completely

reachable and completely observable. Let us examine what these

properties involve.

° Reachability - given an internal model I, the
essence of the reachability gquestion is to
determine all those states x € X reachable from

the initial state X in some time T (possibly

infinite) using admissible input functions uce Q.
If all states x e X are reachable, then we call
L completely reachable. It is clear that the

reachability of a given state x depends upon

several factors: the initial state X the
allowed time T, the admissible inputs Q and,
finally, the dynamics ¢. We shall examine the

computational aspects of this question below.



Observability - in contrast to reachability, which

deals with what is possible using inputs from Q,

the problem of observability centers about what

can be known abcut the system I from observation

of its output y € I'. More particularly, we ask if
knowledge of y(t) over some time horizon 0 < t <

T < = is sufficient to determine uniquely the ini-
tial state Xy - Clearly, the answer to this gquestion
is bound up in the interplay between the system
dynamics ¢, the output function h and the inputs

u e , as well as the time horizon T. A state

x X that is identifiable is called observable, and

if all X, € X are observable, then we say that L

is completely observable.

Remark: From the foregoing considerations, it is
easy to see why complete reachability and complete
observability are natural reguirements to impose
upon any internal model I purporting to be a "good"
representation for experimental data (Q, I', f): a
state that is unreachable cannot arise from the
application of any input u ¢ Q@ and, conseguently,
is irrelevant to the characterization of the data.
Similarly, if two distinct states Xy xé give rise
to the same observed output, they are indistinguish-
able as far as the external behavior is concerned

and can be treated as the same state.

In addition to the above-stated problems of realization,

reachability and observability, two other broad problem classes

comprise the full spectra of general topics of concern to system

and control theorists. These are problems of stability and

optimality.

Stability - problems of stability come in two concep-

tually different forms, depending upon whether one is
interested in the stability properties of a single
system or the stability of a family of systems. The

first class of problems come under the general heading



of classical Lyapunov stability, while the second

class forms the basis for what is termed structural
stability.

The fundamental guestion addressed in Lyapunov theory is the

following: 1if the origin is an equilibrium for the system I (i.e.,
¢ (0,0) = 0) and X # 0, will the state x(t) - 0 as t - «? This

is termed the problem of asymptotic stability of I (in the sense of

Lyapunov) . A related question is: given e > 0, if [[x_|| < e, does
there exist a &(e) > 0 such that ||x(t)|]| < & for all t > 0? This

is the problem of stability (in the sense of Lyapunov).

For general nonlinear ¢, it is usually very difficult toc
answer these stability guestions globally (i.e., for arbitrary xo);
however, if we restrict X, to a sufficiently small neighbor-
hood of the origin, then the linear approximation of I can be used
to address the Lyapunov problems. If ¢ 1s differentiable and we
let

_ 99
F = 5 (0,0) '

»

then the stability and asymptotic stability of the origin is deter-
mined by the location of the characteristic values of F relative

to the imaginary axis.

The preceding considerations have all been based upon the so-
called uncontrolled, or free, motion of the system I, i.e., with
u = 0. One of the central guestions in control theory is

to what degree the stability characteristics ©f the system can

be altered by suitably chosen feedback control u = u(x). In other
words, if we use the control law u(x), the new system dynamics
x = ¢(x,u(x)) = ¥(x) |,

and we are interested in what manner the stability properties of

¥Y(x) can differ from those of ¢(x,0). In the case of autonomous
linear systems (¢(x,ﬁ) = Fx + Gu), if we use linear feedback
u(x) = -Kx, we have ¥(x) = (F-GK)x and the degree to which the

characteristic roots of F can be "shifted" by the feedback law u

is termed the Pole-Shifting problem. 1Its solution is intimately




tied-up with the reachability properties of the pair (F,G). The
references [1, 2] give a good account of the status of this key

guestion.

When we move from the study of the stability properties of
a single system f to a family of such systems, the basic guestions
shift from the behavior of a single trajectory to the collective
behavior of a family of trajectories under a perturbation from one
member of the system family to another. The simplest such situa-
tion is when the dynamics ¢ (x,u) contains a parameter é,
i.e., ¢ = ¢a(x,u). For simplicity, let us consider only the free
motion of the system (u = 0). Each fixed value of the parameter a
generates a trajectory xa(t) and we are interested in the gqualita-
tive behavior of the family of trajectories {xa(t)} as we vary
a. In particular, we are concerned with whether there
exist parameter values a* for which the topological nature of the
trajectory xa*(t) is different from that of xa(t) for all a in a

neighborhood of a*. Such a value a* 1is called a bifurcation

point of the family. The simplest example of this type is the

damped harmonic oscillator
I X +ax +x=0 ;, a real.

Here, the phase plane trajectories are as in Figure 1.

x
e
x

a<0 a

]
o

Figure 1. Phase Plane Trajectories for Damped Harmonic Oscillator.



For this system, the trajectories shift from positive to negative
spirals as a passes through the bifurcation point a* = 0. Thus,
the family £y is not structurally stable for any perturbation of

a that includes a = 0, although it is a structurally stable family

for a > 0 or a < 0.

The problems of structural stability of uncontrolled systems
have been extensively studied in recent years and a good account
of developments 1is given in the book [3]. The analogous guestions
for controlled systems (u # 0) have been little examined as of the
date of writing (early 1885}.

) Optimality - for historical reasons, the most well-

studied problems in system and control theory involve
superimposing a scalar criterion J upon the dynamics
L, and seeking a control law u that minimizes J.

The most common form for J is an integral, in which

case we seek a control u that minimizes

3= /% gix,mat
0

subject to the dynamics

As is well-known [4, 5], there are two guite distinct
approaches to the solutions of the above optimal control

problem:

I) Maximum Principle approach - we form the Hamiltonian

of the control problem
H(x,u,x) = g(x,u) + x(t)e(x,u)
and seek a control u to miminize H. This procedure

leads to the solution of the two-point boundary-

value problem



I1I.

X = %% = ¢ (x,u) , x (0) = X
) R T 3 _
) +x(;?:) , A(T) =0

In principle, the solution of this problem determines
x and A as functions of u and these functions are then
used to reduce H to a function of u alone. The func-
tion that then minimizes H is the optimal control for
the problem. Details of this procedure can be found,

for example, in [5, €].

Dynamic Programming approach - we introduce the opti-

mal value function

I(x_,T) =min J .

u
Employing Bellman's Principle of Optimality [4, 7],
it can be shown that I satisfies the partial diffe-

rential equation

3T _ . 31
5"' = min [g(XOIV) + ¢(XOIV) axo] ’ T >0 ’

v

I(Xolo) =0

Solution of this initial-value problem produces
both the function I(xo,T), and the optimal control

function

H

]

u*(xo,T) = arg min [g(xo,v) + ¢(xo,v)) J
v o)

@
»

Note that u* is a feedback policy, giving the optimal
control as a function of the current state X and the
time to go T, while the control law determined via
the Maximum Principle is an open-loop control, giving
the optimal input only as a function of the current
time t. From a computational point of view, there
are pluses and minuses associated with each approach,

as we shall discuss in more detail below.



3. Control and Computing

Before embarking upon a consideration of the impact upon
control and system science of current and projected trends in
computer science, let us briefly examine the principal types of
computing requirements necessary to address the questions posed
in the preceding section. As with most areas of science, the

computational requirements are both numeric and non-numeric.

° Numerical Computing - almost all gquestions involving

reachability, observability, realization and stability
ultimately reduce to numerical problems of linear
algebra: determination of the linear dependence or
independence of a collection of vectors, calculation

of the rank of a certain matrix, ascertaining the loca-
tions of the characteristic roots of a matrix and so
forth.

For examplé, for the linear system
x = Fx + Gu ’ X(0) =0 , Xx e R , u £ R ,

the reachable states from the origin using bounded,
measurable inputs can be shown to be characterized by
the range of the n x nm matrix

n-1

c = [G|FG|F2G|... F' G]

With some extension and gualification, basically the same
result can be obtained locally for nonlinear processes
(8]. In addition, through duality exactly the same sort
of results apply for problems of observability. On the
other hand, if we are interested in asymptotic stability
of the origin for the above system, then we must consider
the location in the complex plane of the characteristic
roots of the matrix F. If Re Xi(F) < 0, i=1,2,...n, then

the origin is stable; otherwise it is not.

Computational problems of optimal cqntrol involve a some-
what different set of numerical requirements. As we have
seen above, the Maximum Principle approach involves the
solution of a two-point boundary-value problem for the

system state x and co-state A, followed by determination
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of the minimum of the Hamiltonian H(x,u,A). Numerically,
this implies various finite-difference schemes for inte-
grating the equations for x and A, together with appro-
priate methods,such as gradient schemes, for unconstrained
(or possibly constrained) optimization. The dynamic
programming approach also involves a combination of a
numerical integration procedure for the optimal value
function I(xO,T), coupled with an optimization procedure

at each step for the optimal policy function v(xo,T).

In passing, it is worthwhile to note that memory require-
ments for the two procedures differ considerably, growing
linearly in n for the Maximum Principle approach, geo-
metrically in n for dynamic programming. This fact is
the Achilles heel for the dynamic programming approach,
which in almost every other respect is preferable to the
Maximum Principle method. It is the alleviation of this
"memory gap" that some of the recent and projected devel-
opments in computer hardware and software may turn out

to have their greatest impact in the control area.

Non-Numerical Computing - a considerable number of

important system and control problems involve computing
in symbols, rather than numbers. For instance, the local

reachability properties of the nonlinear system

involve determination of the Lie algebra of vector
fields {fl(xo)}, where fl(xo) = qb(xo,ul), ul = constant

input, i=1,2,...,M. This calculation reguires that we

compute the Lie bracket of two vector fields

e Y i el 5
[£~,£ ](XO) = a—X-(XO)f (XO) - -B?—(Xo)f (XO) '
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an operation involving symbolic computation of the
Jacobian %éi. Furthermore, to determine the relevant
Lie algebra we must test the linear independence of a
set of such brackets, together with the {fi(xo)}.
Similar remarks apply to studying the observability

properties of the system.

In a similar vein, for linear system problems (¢ (x,u) =
Fx+Gu, h(x) = Hx), most of the important system proper-
ties can be determined in terms the rational transfer
matrix

W(A) = H(AI-F) |G

Letting xF(A) denote the characteristic polynomial of F,

we can write
W(X) = P(A)/XF(A) '

where P(\) is a polynomial matrix. Thus, study of W is
often reduced to the study of the entries of P, i.e., we
need symbolic computational routines designed

specifically to operate upon polynomials.

In connection with problems in structural stability, one
of the most effective means for studying the structural
properties of a vector field is to reduce the field to
its so-called "normal form". Basically this involves a
symbolic nonlinear coordinate change from the original
basis into a coordinate frame that makes the topological
properties of the vector field transparent. Details of
this procedure can be found in [9]; the point we make here
is the need for good symbolic computing languages to
execute these coordinate changes (and their inverses). We
note, as an aside, that the same ideas (and programs) can
also be used in catastrophe theory applications.



4. Computer Science in the '80s - What's in it for systems and

control?

Just as all Gaul is divided into three parts, computer
sclence is divided into two — hardware and software, with
several subdivisions of each. To gain some indication as to
how current and projected hardware and software developments
will impact systems and control over the coming decade, we

focus upon the following trees in the computer sciences forest:

computer architecture
algorithms and data structures
operating systems

programming languages

complexity theory

human interfaces
Let us examine each of these topics in turn.

A. Parallel Architectures - most likely, the only hardware

development that will significantly influence the control
sciences over the coming decade is the ever-increasing
trend toward non-serial types of information processing.
Ranging from totally asynchronous machines through tightly
coupled systems of a few high-performance processors like
the Cray X-MP to lock-step vector processors, the basic
research challenge in parallel processing involves finding
algorithms, programming languages and parallel architectures
that, when used as a system, yield a large amount of work
processed in parallel at the cost of a minimum number of
additional instructions. The following formula represents
the speedup with p processors over that achieved with a
single processor [10]:

S(p,a,0) = ! '

(1=a) + a/p + o(p)

where

a = the fraction of the work in the application that can be

done in parallel,



- 13 -

0 = excess work reguired in the instructions due to parallel-
ism, i.e., instructions dealing with synchronization and
communication between the processors,

P = number of processors

Assuming ¢ = 0, Figure 2 shows the speedup as a function of

parallelism.
16
14
12 No. of
0 processors
§ L 16
& 8
[=8
197
6 8
4
4

0.6 0.7 0.8 0.9 1.0
Fraction of work in parallel

Figure 2. Speedup as a Function of Parallelism and Number
of Processors ([10].

As noted in [10], vector processors may be the least promising
hardware development since to achieve maximum performance
requires vectorizing at least 90% of the operations, but
experience has shown that only about 50% of a typical problem
can be vectorized. Nevertheless, in many problems of control
involving purely linear-algebraic computations, the magic 90%
figure will be attainable and vector processor would then play a

significant role.

As néted in the preceding section, a very large number of the
numerical computations for systems and control processes involve
aetermination of the number of linearly independent vectors from
a given set. It is hard to imagine a computing application that
lends itself to parallelism in a more direct fashion than this.
Consequently, in our above speedup formula, it seems reasonable to

assume that o = 1 for such control calculations. The mystery



factor is o, the computational overhead associated with parallelism.
Since ¢ depends not only upon p, but also upon the particular
algorithm and the specific architecture in use, no fixed value can
be attached to o without this information. But for a synchonous
parallel machine or for a vector processor, ¢ = 0 indicating that at
least for control problems, such a machine may be a better bet

than the grander (and costlier) totally asynchronous, multiple-

instruction stream "supercomputer".

In closing this topic, we note that some specific algorithms
making use of such synchronous vector processors for dynamic
programming calculations were reported almost 15 years ago in
[11], considerably in advance of widespread availability of the
hardware to realize them. It is our conjecture that these
algorithms and their relevant refinements will play an increa-
singly significant role in control computations in the coming

decade.

Algorithms and Data Structures - in addition to new algorithms

dictated by parallel architectures, new serial algorithms and
data structures will greatly influence control and system compu-
tations in the future. ©Of particular interest is the overall
guestion of optimal algorithms, either in regard to computing
time or storage requirements. 'As an illustration, in the solu-

tion of the optimal control problem

T

min [ [(x,Qx) + (u,Ru)ldt Q >0, R>0 ,
0

d_X = Fx + Gu F = nxn G = nxXm

dat ’ ’ '

the standard approaches require numerical integration of the

matrix Riccati egquation

- dp _ . _ -1,
ac = Q + PF + F'P PGR G'P ,
P(T) =0 ,

a calcuation involving o(n2) computations per time step, where
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n is the dimension of the state vector x. In [1], it was
shown that if rank Q = p, then an alternate algorithm could
be provided that involved only O(n(p+m)) computations per
step, a substantial improvement if p + m << n, a situation
that is often the case in application. This is just a single
example of the general question of optimality of algorithms,

a topic treated in more detail in [12].

In a somewhat different direction, we can ask about the
"typical" behavior of a given algorithm on a class of control
problems. It is well-known in linear programming, for example,
that the classical simplex method can break down under certain
pathological circumstances. Some recent work, surveyed in
[13], has been devoted to addressing the question of how
pathological is pathological? Empirical evidence indicates
that the simplex method will produce the correct solution

"almost always", and that the bad cases are indeed rare.

Given the close relationship between optimization problems
in operations research and analogous problems in control
theory, it is reasonable to conjecture that similar studies
will be devoted to an analysis of standard computational
algorithms for "bread-and-butter" system problems like
Kalman filtering, linear-quadratic control and Luenberger

observers.

Besides algorithmic analysis, availability of cheap mass storage
capacity will focus attention on new ways of storing data for
efficient accessibility. One way control theory could benefit
from such developments is in the alleviation of the dynamic
programming "curse of dimensionality" for certain classes of
control processes. If we have the system dynamics written in the

control-canonical form
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then while computing the optimal value function I(x,t) at
time t, instead of storing I(x,t+A) at all states, we need

only to store it on a restricted hypersurface in R" (see

Figure 3).
o = Corresponding States
Xz Xz
| b,
T
—y — Xy
STAGE k STAGE k+1
Figure 3. States at time T for which I(x,t+A) must be

stored tc compute I(x,t).

This data structure scheme for control processes is called
the "shift-vector" method and is described in greater detail
in [14]. It is reasonable to suppose that similar contribu-
tions of problem structure and new data storage ideas will
combine to greatly reduce computing burdens for large classes

of control problems in the near future.

Operating Systems - as cheap, powerful computers become ever

more widespread, a greater emphasis will be placed on the real-
time control of several geographically distinct processes. For
example, automotive firms are currently exploring the possibi-
lity of computer control via satellites for large fleets of
automobiles. Such "distributed" control processes involve

both hierarchies of controllers, as well as the synchronization
of many different processors utilizing different data sets.
Applications of this sort generate the need for new types of
computer operating systems specifically tailored to allow
multiple resources to be efficiently coordinaéed in the execu-

tion of control programs.
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Of special interest for control applications are operating
systems for networks of interconnected computers. The basic
guestion is how to design a system that efficiently checks
for errors in the network and corrects them. One of the most
novel approaches to this guestion has been the "order from
disorder" principle invoked by M. Rabin and his co-workers and
described in [15]. Their idea is to employ probabalistic algo-
rithms that insure the operating system will properly coordinate
the nodes in the network almost all the time. So, rather than
demand 100% perfect operation, they trade a small possibility of
error for a vastly increased overall efficiency of operation in
the network. The probabalistic approach has proven to be parti-
cularly effective in the so-called "Byzantine Generals" problem,
which models the situation in which several processors are
faulty and give conflicting information to the supervisory pro-
gram. Which information should be trusted and how should
decisions be made? Rabin's algorithm solves the problem by
trading a perfect notion of what all processors know for a small
measure of uncertainty and a great deal of simplification. It
is tempting to speculate that operating systems constructed
along probabalistic lines will result of necessity as networks
emerge that are orders of magnitude larger than those currently

in use.

Another very important development in operating systems that
will dramatically affect control calculations is in the area of
memory management, including optimal swapping policies for
virtual memory, file access methods and off-line storage optimi-
zation. We have already seen that such memory management schemes
may spell the difference between success and failure in dynamic
programming calculations, and this holds especially true in

areas of real-time process control, as well.

Finally, we can hope that operating systems will appear
enabling users to operate on idealized versions of resources
without concern for physical detail. For instance, processes
instead of processors, files instead of disks, data streams
instead of program I/O. Such operating systems would greatly

streamline many of the control and system calculations described
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earlier, especially those involving the generation of an internal

model from behavioral data (the realization problem).

Programming Languages and Control Software - from a systems

engineering and design point of view, there is a great need

for languages that efficiently express algorithms and data

in a form compatible with the customary abstract or mathemati-
cal formulations of the problem. Procedure-oriented program-
ming languages like FORTRAN, functional languages like LISP

and object-manipulation languages such as Smalltalk, all

have significant drawbacks for contrecl applications. A
language that deals directly with the basic concepts of control
and system design such as frequency response, gain, feedback
sensitivity and so on would surely greatly streamline most

investigations.

In much the same direétibn, there is an increasing need for
special control software packages expressed in one of the
standard programming languages. While various packages of
this sort exist at research centers around the world, it is
not unreasonable to expect that future developments in pro-
gramming methodology will result in the codification of basic
concepts such as data types and control structures, and that
this codification will act to uniformize the many packages
currently in existence with a major advance in accessibility

to the international controls community.

The Human Interface - the efficient transfer of information

between humans and the machine is one of the neglected
backwaters of computer science research. Nevertheless, just
as in commercial applications, advances in this area will
dramatically increase the utility and effectiveness of
computers in control and system studies. My personal bet is
that the most significant impact will be in the area of
advanced graphics, enabling a system controller or designer

to display optimal value surfaces, alternate stochastic
realizations of trajectories, intersections of controllability
subspaces and the like with an efficiency and detail heretofore
impossible to provide. In addition to such static "snapshots”

of the system, future graphics capability will admit the
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possibility of generating "full-color" moving pictures of
the system's design behavior in the face of a variety of

alternative environments.

In addition to vastly enhanced graphics capability, it
seems a safe bet to expéct that new interactive methods
for computer-aided design and advanced forms of input and
output such as optical readers, voice input, touch-
sensitive pads and light pens will also contribute to an
increased flexibility for future designers and system

controllers to interact with the machine.

Complexity Theory - as a final point of contact between

future computer science and control, we note the theoretical
work currently underway in complexity theory [16]. While
most of the work carried out thus far has been focused on
algorithms for classical mathematical operations such as
linear eguation solving, numerical. integration and so forth,
there is every reason to believe the same guestions can (and
will) be profitably studied in connection with control pro-
cesses. For example, work devotéd toward identifying the
time and space requirements of a given problem, and the
relationship between the problem's size (perhaps as measured
by the number of states, inputs and outputs) and the best or
worst case performance of algorithms to solve the problem

would be of great value.

Very closely related to the time/space question is the classi-
fication of control problems into complexity classes. It is
of great theoretical and practical interest to determine those
problems that are solvable deterministically in polynomially
bounded time (P-problems) and those that solvable non-determi-
nistically in polynomial time (NP-problems). Most of these
gquestions seem relatively straightforward for linear problems,
but such a classification for nonlinear systems seems very

far away, at present.

Finally, we could list the following general theoretical
questions for the role of the computer in control and system

calculations:
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1) What problems can machines solve?
ii) What are optimal algorithms for given classes of
control problems?
1ii) What is the intrinsic best-and-worst-case performance
of given classes of machines for given classes of
problems?
iv) What control problems are equivalent to each other in

computational difficulty?

5. New Applications for the 90s

The analytic and computational problems of engineering systen
and control theory were generated principally by the applications
of the 1950s and 60s, most significantly in the areas of naviga-
tion, aerospace and chemical process control. It would be remiss
in a paper of this sort, devoted to a look into the 90s, not to
engaged in a bit of not-so-speculative speculation about new
applications that will provide the impetus for the theoretical
and applied problems of the future. In this spirit, we briefly
examine three engineering areas in which control system thinking
is only now coming forward as a major component of systems
design: speech synthesis, automobile systems control and satel-

lite nagivation for boats and cars.

. Speech Synthesis - enhanced human interaction with

computers has generated an immense need to be able

to communicate directly through natural languages in
a spoken, rather than written, mode. One of the most
powerful means for synthesizing such spoken output is
the so-called linear predictive coding method in
which speech is modeled as a stationary autoregres-

sive discrete-time random process

+ +... =
Yo ¥ By1 Yo AN Ye-n T S®n,e !

where {yt} is the observed speech signal and {eN,t}
is a zero-mean white noise process representing the
air issuing from the lungs which is then modulated
by the vocal system to produce the speéch waveform.

The problem here is to choose the order N, the
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coefficients {AN i} and the noise variance Ry SO as
r

to best fit the observed speech signal {yt =t > 0}.

The standard solution to the problem involves forming

the covariance estimate

R = Elye¥esyl

and to solve the system

[Ag n =+ By, 1 I [RRy o Ry

R R ... = [0 ... 0OI]

e e R

for the unknown weights {AN,i}' Since the coefficient
matrix of this system is Toeplitz, the Krein-Levinson
algorithm produces a solution in O(Nz) operations.
However, recent work by Kailath and his associates

[17] has shown that if a parallel computer of the
synchronous type is available with, say, N processors,
then a modification of an old algorithm due to Schur
can result in a solution of the above system in O(N)
operations. This figure should be constrasted with

the O(N log N) operations needed with a parallel
implementation of the Krein-Levinson procedure. Thus,
the Schur algorithm, together with widespfead availabi-
lity of VLSI technology and special purpose parallel
computation, opens up the very real possibility of high-
fidelity speech synthesis in the coming decade.

Automobile Control Systems - in order to meet

increasingly stringent fuel consumption and exhaust
emissions standards, almost all of the world's auto-
mobile manufacturers have turned to widespread use of
on-line computers to monitor and regulate most of the
performance of their engines. This computer takeover

of the automobile motor is being carried out in the

face of very restrictive hardware constraints involving
low costs, high reliability, and response over many time-

scales ranging from 1 millisecond to 100 seconds.
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The typical control variables are air-fuel ratios,
spark timing and level of exhaust gas recirculation.
The guestion for control theorists and software
designers is to find "fast" algorithms using readily
measurable information that carry out these control
actions in real-time. Current algorithms and proce-
dures do a marginally satisfactory job, but major
advances in this area remain and the payoff for even
partial success will be measured in the millions of

dollars.

In passing, let us note that many of the same remarks as
for motors apply to other automotive systems such as
transmission, suspension and braking. The anti-
blocking braking system (ABS) and the just now
emerging computer-controlled suépension systems are
only the tip of the rapidly surfacing iceberg of such

computer regulation of the overall automobile system.

Satellite Navigation - for a number of years now it

has been possible for boat and shipowners to find their
position at sea through satellite communication. For
private use, units priced around $2000 can provide
accuracy to within 10-15 meters, while more expensive
commercial units can reduce the margin of error to a
few meters. This is all guite satisfactory for boats
but far too inaccurate for automobiles. Systems with
an accuracy of less than 1 meter are currently under-
going experimental test in automobiles in conjuction
with an on-board computer mapping system that enables
the car to be put on "automatic pilot" even in urban

environments.

It is clear that any widespread use of such satellite
navigation systems for cars will create an enormous
control and coordination problem, one that can only
be dealt with by major advances in the kind of network
cperating systems that we spoke of in the last section.
This type of application is an area in which hardware
and software failures may very well be fatal; conse-

guently, whatever new algorithms and procedures that
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emerge from these systems, the emphasis must be
upon both speed and reliability, again strongly

suggesting a high degree of parallelism.
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