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FOREWORD

In this paper, the author look at some quite general optimization prob-
lems on the space of probabilistic measures. These problems originated in
mathematical statistics but have applications in several other areas of
mathematical analysis. The author extend previous work by considering a
more general form of the constraints, and develop numerical methods
(based on stochastic guasigradient techniques) and some duality relations
for problems of this type.

This paper is a contribution to research on stochastic optimization
currently underway within the Adaptation and Optimization Project.

Alexander B. Kurzhanski
Chairman

System and Decision Sciences
Program
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STOCHASTIC OPTIMIZATION TECHNIQUES FOR FINDING

OPTIMAL SUBMEASURES

Alexei Gaivoronski

1. INTRODUCTION

Optimality conditions based on duality relations were studied in [1] for

the following optimization problem.

Find the positive Borel measure A such that

¥O(H) = max (GH)
with respect to constraints
V(H) s0 i =1:m )
H(4) s HU) s HY(4) (3)
for all Borel 4 cYcRr™
HY) =1 (4)

where Y- some subset of Euclidean space R", \Pi(f{)- function which
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depends on the measure H, usually some kind of directional differentiability
and convexity is assumed. A% and H' are some positive Borel measures.
Stochastic optimization methods for solving (1)-(4) in case when functions
¥l (H) are linear with respect to H were developed in [1]. In this paper
such methods are developed for nonlinear functions ¥!(¥) and for arbi-
trary finite measures. Interest for such a problem is originated from statis-
tics where it appears in finite population sampling [2,3].

Suppose that we have collection D of N objects, each object is
described by pair (z;,¥{),i = 1:N. Variables y; are known and variables z,

can be observed for each particular i ih the following way:
zg =z + @y

where «; - random independent variables with zero mean, and z, - observa-
tions. It is assumed usually that relationship between z; and vy, is known up

to the set of unknown parameters:
z, =hT(y)®

where A (y) = (R (¥ ),....~h; (¥)) are known functions and ¥ = (¥4,...,9;) are

parameters to be determined.

The probiem is to select subset d CD consisting of n objects in order
to get in some sense the best possible estimate of parameters ¥. This esti-

mate is based on observations z,; for objects belonging to d.

Applying the usual approach of optimal experimental design [4-6] one
can substitute the collection (¥4....,¥,) by measure HY (1) and subset of
objects to be observed by measure H(y). The variance matrix D of the best

linear estimate in case all w; has the same variance becomes after such
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substitution proportional to matrix M, defined as follows:

Mt = fry)RT(y)dH(Y)

and the problem becomes to minimize some function ¥ of M, such as deter-

minant, trace, the largest eigenvalue, etc.

mli{n Y(M) (3)

with respect to obvious constraint

dA(y) = [dH%(y) (6)
S J
A A

for all Borel A CY. Another possible application of the problem (1)-(4) are

approximation schemes for stochastic optimization [7,8].

The purpose of this paper is to develop stochastic optimization methods
dealing with such problems. In section 2 the characterization of solutions
for quite general classes of measures is obtained. The conseptual algorithm
for solving nonlinear problems is proposed in the section 3, which is applied
in section 4 to particular problems of the kind (5)-(6). In section 5 results

of some numerical experiments are presented.

2. CHARACTERIZATION OF THE OPTIM AL SOLUTIONS

We shall consider subset Y of Euclidean space R™ and some o-field Z on
it. We shall assume that all measures specified below are defined on this o-

field.

In this section, the representation of measures H, which are the solu-

tion of the following problem, will be developed:

max Y(H) 7



subject to constraint

H' <sH < HY (8)
HY) =% (9)

The constraint (8) means that H' () < H(E) < H* (E) for any E € Z. Define
H® = H* ~H'. In what follows the spaces L,(Y,Z, /%) and L_(Y, = H%) play
an important role, where L, (Y ,E.’,HA) is the space of all H%-measurable func-

tions g (y) defined on ¥ and such that [ | g(y) [dH® < e, L_(¥,Z,H%) is the
Y

space of all HA%measurable and Hb-essentially bounded functions g(¥),
defined on Y. In what follows we shall denote by [l H_, the norm in the space
LY. EHY, i.e.
Hg(y)ll=H* —ess sup lg (y)/
yeyY
Let us denote by G the set of all measures, satisfying (8):

G ={({H HYsHsH
and by G, the set of all measures, satisfying in addition (9):

Gy = H: HeG, H(Y) = b}

Suppose that f (v ) is some function defined on Y, c-some number and define

the following sets

Z¥e L) = ty: yEY. f(Y) > cf
Z(cS)=ty: vEY,f(y) <}
Z%.f) = ty: yeY £ (y) =cf

In notations below we shall substitute in this definition instead of f various

particular functions. Take

¢’ =infic: H2(Z*(c.g)) s b —H" (V)]
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and define, as usual, by # ~,A* and {H | positive, negative and total variation

of the measure H.

We shall first consider the problem in which function V(&) is linear:

pax Sow)ar (10)

and describe the set of all solutions of (10). The following result is general-

ization of Lemma 1 from [1].

THEOREM 1. Suppose that the following conditions are satisfied:

=

H) sb, HI@)<eo, HE@) 26

For any F € Z,HA(E’) > 0 exists £,€X, £ CF, such that either E,is

Hb-atomor 0 < HA(E’l) < o

g@w) el v, 2,5, flogw)lad 1A <=
Y

Ifc' =0then HAY\Z (0.9)) = b-H' @)

Then the solution of problem (10) exists and any such solution has the

following representation:
(i) H'(A)=H%() forany A€Z AcZ% (" ".g)
(i) H"4)=H'(4) forany A€Z, AcZ (c’.g)

(iii) F*@A)= H @) = H Q) for any A4¢€= 4<cZ%'.,g) and

H (Z%c",9)) = b=H (V) =HAZ*(c",9))

Conversely, any measure defined by (i)-(iii) is the solution of the problem

(10).
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PROOF. Let us first prove that the measure with properties (i)-(iii) exists.
It is clear that any measure on (¥,Z) is defined by its values on subsets of
Z*c',g), Z%c"'.g) and Z(c',g) because these sets belong to Z due to
Cg(y) € Ly(Y,E, H%) and Y equals to union of these sets. Therefore it is suffi-
cient to show that among measures satisfying (i)-(ii) exist measure which

satisfies also (iii).

From the definition of Z*(c,g ) we have:

Z¥c'9)= U Z¥c.9)

.
c>c

and

Z+(C1-g) = Z+(Cz»9)

for all ¢y > ¢,. This gives

lim H4(Z*(c.9)) = HAZ* (" 9))
CiC

and therefore
HA(Z¥(c',9)) S b—-H(Y)

According to the condition 4 we have HAMY\Z (c'.g)) = b ~H! (Y) in case if
¢’ =0. In fact, it is true for arbitrary ¢’. Suppose at first that ¢’ > 0.
Note that for any ¢ >0 we have HA%Z*(c.,g)) <= because
g(y) € L(Y, =,H3). Consider now the sequence Cg:

0<cg <c, €gyy=Cg, Cg =>C .

We have
HAYN\Z7(c",g) = lim H*Z*(cg.9))
s-.—
because

HY(Z¥(cs.0)) < ®, Z¥(cg 41.9) € Z¥(c5.9)



and

N Z*eg.9) =Y\NZ(c'.g)

s

From the definition of ¢’ and the fact that ¢, < ¢’ we have:

HNZ*(c5.9)) > b=H' (D)

which gives
HA\Z(c'.g)) 26 =H (D)

The case when ¢ < 0 is treated in the same way taking into account the fact

that H8(Z*(c.g)) < = for all ¢ if ¢' < 0. Thus, we obtain

HA(Z¥(c".g)) s b -H (D),
HYZ%¢c" . ¢)) 20 —H* (M —-HA(Z*(c".g)) 20

Now if #8(Z%c " .9)) < » the measure H':

(e (EY if ECZ*(c’.g)
H'(E) ifECZ (c’.g)
H'(E) = or £cZ%¢c",g)and #2(Z%c".g)) =0 (11)
gy« SH QD —HAZ g ) pa gy
HAZ%c" 9 ))
\ otherwise

satisfies all conditions (i)-(iii).
When A#3(Z%c " ,g)) = =, condition 2 implies the existence 2, ¢ Z%c",g)

such that either
b—H (V) —HA(Z*(c'.9)) s HYE;) < =
or HA(EI) = and £, is H%-atom. In the former case K is defined simi-

larly to (11) using set £, instead of Z%c’,g) and taking ' = H! on

z%¢’ .9)\E,. Inthe latter case take
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H'Y(Ey) =b=H (V) =HNZ*(c".9))

and again H =H' on Z°(c' FIN\E . All this proves the existence of meas-
ure H' which satisfies (i)-(iii). Let us prove that for any measure He Gy

which violate (i)-(iii), we have

[ ow)ad < [ g(y)aH’
Y Y

Suppose that for measure H (i) does not hold, i.e., there is some set
E cZ*c',g) such that f-!(E') < H%(Z). This implies the existence of set
E{ CE such that g(y) >c >c" for y €F; and H'(E'l)—ﬁ(El) > >0.
Notice that H'(4)=2HU) for A cZ¥c'yg) and H A)=<HWU) for

A € Z7(c',g) due to definition of #'. This gives

[ o(y)d(H' =H) 2 8(H" -H)E,)
£,

S edH -H) =c"(H' -B)NZ*(c",9)\E})
Z¥*c 9I\E,
S odH <H) =c (H =ANZ%c o))
2% ".g)

[ ewdH -H) 2 (H -H)Z(c'.9))
Z " \g)

This inequalities lead to the following estimate:

Sowal = [ gu)df = [ g(y)d(H -H)
Y Y

E,
+ [ ewXa@E -+ [  gwa(H -H)
ZHe " oI\E, Z%c",9)
+ [ @)@ —H)=2H -ANE,)

ZXc",0)
+c"(H -H)Y\E,)

=(c—c )7>0

Thus, if H € Gy violates (i) it cannot be the solution of (10). Other
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possibilities are considered in the same way. Therefore, any optimal meas-
ure has representation (i)-(iii). It follows from definition that all measures

satisfying (i)-(iii) has the same value of

[ e(y)adH
Y

and therefore are optimal. Proof is complete.

REMARK. It is clear that in the characterization of optimal measures

any ¢ can be taken instead of ¢’ such that
¢' =& ssup fc: HA(Z (c.g) = b —-H' ()}
Note that if measure A% has bounded variation conditions 2 and 4 are

satisfied automatically. For such measures the structure of solutions can

be studied using general duality theory [9].

Let us now consider in more detail the set G,. If the measure H' has

finite variation we have the following representation for arbitrary # € G :
H=H +(H-H")

where measure H — H' is finite, positive and continuous with respect to
measure H2. If #% is o-finite we can use Radon-Nycodym theorem [10] and

for arbitrary H € G, obtain the following representation:
H(E) = HY(E) + [ hy(y)dH® VE €= (12)
E
where hy € L,(Y,Z,H%) and this representation is unique. For arbitrary

E € = we have:

0= [ hy@w)ar? < HAE)
E
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and therefore O<hpy(y)=<1 H%-everywhere. Consider now the set

K, <L (Y, H%):
K, = th: 0sh(y)s1, [h(y)dHA=b-H' (V)] (13)
’ Y

Each function from this set defines measure A, from G,:

H,(E) = H*(E) + [h(y)dHA, E€= (14)
E

Therefore (12), (14) defines isomorphism between sets G, and X, such that

the problem (7)-(9) is equivalent to the following one:

max ¥(h) (15)
subject to constraints
D<sh(y)=1l (16)
J hy)aHt =6 -H' (V) 7)
Y

where the function @(h.) = ¥(H,). Optimal values of problems (15)-(17) and
(7)-(9) are the same and each solution of (15)-(17) defines solution of (7)-(9)
through (14) and vice versa. This equivalence together with certain con-
vexity assumptions lead to solution representation for problems (7)-(9)

similar to theorem 1:

THEOREM 2. Suppose that the following assumptions are satisfied:

1. Measures H! and % have bounded variation,

HM=sb, ¥ =b
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2)

3)
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¥(H) is concave and finite for H€G, , = Gy +G,

where G, ={H_ |H,(Y)s e, H, is H%-continuous } for some & > 0.

Then

For each H, € G, exists g (y ,Hy) € L _(Y,Z,H%) such that

V(Hp) =¥ (H,) < [g(y,Hy)d(Hy—Hy) (18)
Y

for all H, € G,

The solution A’ of problem (7)-(9) exists.

For any £ €Z and any optimal solution H  of the problem (7)-(9) we

have the following representation:

H*(E) for EcZ%  .gWw,H))
H'(E) = {H'(E) for EcZ(c ,g.H) (19)
HYEYSH(E)sH®(E)for E € Z%c¢",g(y.H"))

where

¢’ =infic: HAZ%(c.g W .H')) s b —H' )}

and

g(v.H') e LY, ZHY), Y -¥H) s [ g .H)d(H-H")
Y

for all H €G,  Conversely, if for some H,€G, exists
g(y,.Hy) € L (Y, Z.HA) such that (18) is fulfilled and HA; can be
represented according to (19) then A, is the optimal solution of the

problem (7)-(3).
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PROOF. The previous argument shows that under assumptions of the
theorem problem (7)-(9) is equivalent to the problem (15)-(17) and there is

isomorphism between set G, , as defined in condition 2, and the following set
Ky . € Ly(Y,Z,H):
Ky .= Ky +K,,

K,=th: hel (V.ZHY, [ h@)lag? < &
Y

Function \f'(h.) from (15) is concave on the set Ky, o which is e-vicinity of &}
in L,(Y,Z,H%). Therefore for each L € K, exists subdifferential of concave
function ¥(h) [11, 12], which in this case is linear continuous functional

g €L, (7, =, H8) such that
U(hy) ~¥(h) = §(hy~h)

Taking into account representation of L (Y 2, H2) [10] we get:

Y(hy) — ¥(h) S{E(y ) (hy ) =R(y))eH? (20)
where

Fw.h) €LY.ZHY
which together with (12) implies
V(Hy) — ¥(H) = { g (y,H)d(H,~H)

for all #,H, € G, where g (y .H) =g (y.hy). Thus, (18) is proved. Note

that we may consider function g (y,7,) from (18) (possibly non-unique) as

subdifferential of the function ¥ (/) at point #,.

Now observe that the set KX, is weakly sequentially compact in

L,(Y,Z H%) because HA(Y) < =and
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lim hy)dHS =0
HAE)Y-0 {:

uniformly for A € K, (see [10, p.294]). Let us prove that it is also weakly

closed. Consider the sequence 2¥(y), A5 €k, and

SRS (y)d#? = [ g @)k (y)dH?
Y Y

for some h €L l(Y,Z.HA) and all g € L _(Y,Z,HY). In particular, we have

J RS (y)dHA — [ R (y)dH®
E E

for all £ € Z because the indicator function of the set E € Z clearly

belongs to L _(Y,Z,/H4). This gives 0sh(y)=1 HAieverywhere. Taking
g(y) =1 we have also

S rSy)adH® — [ h(y)aH?

Y Y
which gives

J h(y)dH? = b -HH(Y)
Y

Thus, h € X, and X, is weakly closed.
It follows from (20) that for any sequence AS EKb. hS — h weakly,

h € K, we have

lim ¥(As) < ¥(h)

s -

This together with sequential compactness and closeness of X, implies

existence of 2 such that

(r") = sup ¥(h)
]

Thus, solution of the problem (7)-(9) exists.
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The general results of convex analysis [11] now imply that under
assumption 2 of the theorem for any solution A of the problem (7)-(9)

exists subdifferential g (v ,A') of the function ¥(H) at point A" such that

J o . HY(H-H") <0, WH)—¥(H") < [g(y . H )d(H-H")
Y

for all # € G, or, in other words A " is one of the solutions of the following

problem:

max _fg(y HOYdH (21)
HEGQ Y

This problem is exactly of the type (10) and its solutions are characterized
by the Theorem 1. Conversely, if for some H € G, exists subdifferential
g(y.H') such that A is the solution of the problem (21) then H' is the
optimal solution of the original problem. Proof is now completed by using
theorem 1. Some related results were obtained for a special kind of func-

tion ¥(H), atomiess probability measure A“ and H =0 ih (R].

Theorem 2 shows that solutions of the problem (7)-(9) can be viewed as
indicator functions of some sets. Therefore many problems involving selec-
tion of optimal set [13] can be reformulated as problems of finding optimal

measures.

3. STOCHASTIC OPTIMIZATION METHOD

Using the results of the previous section we can construct numerical
methods for solving problem (7)-(9). From now on we shall assume that func-
tion ¥(H) is concave and finite on some vicinity of the set ¢ and possess

certain differentiability properties:

V(Hy+a(Hy—H,)) = ¥W(Hy) +a [g(y.H)d(Hy—Hy) +0(a) (22)
Y
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where o(a)/a — 0 as a — 0 for all H,,/H, € ¢. This means that subdif-
ferential g (¥ ,//{) from (18) is unique for all interior points of G and we can
assume that g (¥ /') from (19) satisfies also (22).

Consider now the mapping [(c.f) from RXL_(Y.Z,H® to G: if

H =T(C,r) then

HY(E) for E cZ%c S)

HE) = &) for E c\Z*(c.t)

(23)

for any £ € E.

First of all we shall give an informal desecription of the algorithm. Sup-
pose that some A € G is the current approximation to the solution of the
problem (7)-(9). According to (22) local behavior of ¥(&¥) around HS is

approximated by linear form:
Y(HS +a(H—H%)) = W(HS)+a [ g (v, H)d(H—H")+o(a)
and if HS is the solution of the problem

max fg(y,Hs)dH (24)
HeG, Y

then direction H? —=H® will be the ascent direction at point- #5. Therefore

we can take as the next approximation to the optimal solution

HS* = HS +a(HS —HS) (25)
for some a > 0. Consider now the problem of finding H? or suitable approxi-
mation to it.

Suppose that we know the function ¢ (y ,HS) exactly, Then, according
to theorem 1, all the possible HS are fully described by pair (¢’,g(y,HS)),

where ¢’ is the solution of the problem



inf ¢ (26)

HY(Z*(c,g(¥.H%)) + HH(Y\Z*(c.g(y H5))) < b (27)
Observe now that function
Ws(c) = HY(Z*(c.g (¥, H5))) + H(Y\ Z*(c,g(y.H*))) - b (28)

is nonincreasing and therefore solving (25)-(26) is equivalent to solving
[
max W¥(c), WS(c) = [ Wi(t)dt
¢ T
for some T and W:(c) can be considered as subgradient of the function

WS (c). Therefore we can use subgradient method for finding ¢ "
ck*l=ck + o, WS(cH) (29)

However, computation of Wg(c“) according to (28) involves multidimensional
integration over complex regions and this may be too complicated from the
computational point of view. In this situation stochastic quasigradient
methods [14] can be used. In such methods the statistical estimate fL of Wg

is implemented in (29) instead of Wé‘.

Once ¢ is determined the measure I'(¢’.g(v.H%)) defined in (23), may
be a reasonable approximation to the solution #¥ of the problem (24) and
can be used in algorithm (25). However, precise estimation of ¢’ from (29)
requires infinite number of iterations and to make algorithm implementable,
it is necessary to avoid this. It appears that under certain assumptions
about stepsizes in (5) and (29), we may take in (29) ¥ = s and perform only
one iteration in (29) per iteration in (25) using as approximation to A the

measure 75 = ['(c®,g (v ,H5?). Thus, along with sequence HS we obtain also
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the sequence of numbers c®. Note now that although H® is quite simple,
measure A5 would be excessively complex even for small s. However, A° is
only needed for getting gradient g (y.#%) and in particular cases some
approximation f (s.,y¥ ) to g (3 .H%) can be obtained using only H in the sort

of updating formula similar to (25).

Once sequence f(s,y) with property |f(s,y) - g(y.HS) | —0 is

obtained together with sequence c®: V¥(¢¥) —max V¥ (c) — 0, the optimal
c

solution of problem (7)-(9) is defined by Theorem 2 through accumulation
points of these sequences. The structure of optimal solution is close to

(23).

Now we shall define the algorithm for solving (7)-(9) formally.

1. At the beginning select initial approximation to solution H°, function

7(0,%) and number c®.

2. Suppose that at the step number s we get measure A%, function f(s,y)

and number c¢®. Then on the next step we do the following:
2a. Pair (c%.f (s ,y)) defines measure S according to (23):
H =T(c,7(s.))
New approximation to solution is obtained in the following way:

Hs*l=(1=a)H +a, H° (30)

2b. Now number ¢S *! is obtained:

St =¢S5 + ps & (31)

where
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E(¢5 /¢ - c5) =VS(cS)
VS = H¥Y(ZY(c.f(s.7(s.,¥))) + H*(Y\Z (c.f(s,¥)))—b
VS(c) = [ Vi(t)at
T*

i.e., the function V5(c) is defined similarly to WS(c) with the
difference that f (s ,y) is used instead of g(y,HS).

2c. New function f (s +1,y) is obtained in such a way as to approxi-
mate g (v .HS +1). The precise way of achieving this can be speci-
fied only after considering particular ways of dependence g (v.H)
on H. One quite general case is considered in the next section.

Here we shall only assume that
Hrsw) @ .65 —0 (32)

as § — . The method of achieving this in particular situation will

be described in the next section.
Before stating convergence results for algorithm (30)-(31), two exam-
ples of calculating ¢° from (31) are presented.

(i) Measures HY and H' have piecewise-continuous densities H;‘(y)

and H;(y) respectively with respect to Lebesque measure. Then

we have
Ve) = [ vS(c,¥)ay
Y
where
b
HY - i M
. v (¥) ) if ye&Z7cS(sv)
vi(c,y) = b '
y(y) - T otherwise

and u(Y) is Lebesque measure of Y. Therefore we can take
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£ =) vi(c, o)

where wS is distributed uniformly over Y.

(ii) Measures A% and ! are defined by finite number of pairs

N
HY = {(y;oP), i=1,...0, ) prab]
1=1

N
A =y, pd), i=1,...N, ) pfsb]
1=1

In this case

N
VEe) = Y (7f(e)pd + L =r§(c)pf—b / N)
1=1

where

1 if f(s,y) >c

S _—
7i(e) = 0 otherwise

Therefore
£ = NySs(c®)pls + N(L=75:(cNpls —b
where «5 assumes value i, 1 s i < N with probability 1/N.
Let us now investigate convergence of algorithm (30)-(31). In all state-

ments concerning convergence of measures from the set G we shall use the

weak-L, convergence, used already in the proof of Theorem 2:

H* — H iff [ g)dE* — [ g(y)dH
Y Y

for all g €L_O’.E’,HA), and topology, induced by this convergence will be

used without further reference.

We shall assume that random variabies El. <+« £5,... are defined on

some probability space, therefore c¢5 ,H5 ,#5 from (30)-(31) depend on event
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w of this space. For simplicity of notations this dependence will be omitted
in formulas. Convergence, boundedness, etc. will be considered almost
everywhere with respect to this probability space. It should be stressed
that we are primarily interested in convergence properties of the
sequences c¢¥ and f (s,¥). The following theorem gives results in this direc-

tion.

THEOREM 3. Suppose that the following assumptions are satisfied:

1. Measures H* and % have bounded variation,

HW sb, ¥ () =2b

2. ¥(H) is finite concave function for # € ¢ + G, where
G,=1{H; |H (V) =& H,is H®~continuous}

for some &£ > 0, and satisfies (22) for H,,H, € G.

3. Ng@ . H*) —g @ H) I, —0 if H* — H;

g HS) —g HS*H! <6, —0 as s — .

4. F(s.wy) €L _(Y,Z,HY),

Hg(y,f!‘)—f(s,y)“_s Ay —m0Oass —

suplizs.y)llo=Ff <=
S

5. ps—’ovzas=°°'2psz<°°'

5=0 s =0
ag/ pg =0, 6,/ pg —0

E((& —Vcs(cs))z/co, ... ’cs) < M,



Then

1)

2)
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One of the following conditions is satisfied:

xRy ag
sls

(i)

Ps +1 Ps
Ao — x
(i) ag >0 and —|—="L - | 0
Qg | Ps -1 Ps
- [2 4 [+ 8
i)y ¥ | =—-—2 ] <
s=0 Ps Ps +1

V(HS) — 2a:é V(H), H(Y) — b and all accumulation points of the
€

sequence HS belong to the set

¢ ={H HEG,¥H) =22§ V(H)

k

S . s
For any convergent subsequence ¢ ™* — ¢’ exists measure H € ¢ such

that
HY) for A cZ%c g .H))
H' (4) = {H(4) for 4 cZ7(c ,g@w.H"))
H(A)sSH(A)=H*(4) for AcZ%c g (¥ .H"))
and

Hrs,w)—g@w B —o0
where s, is some subsequence of the sequence s;.

Condition 4 of the theorem means that it is possible to use approxima-

tions to gradient g(v,H) and it is necessary that precision of these approx-

imations increase as s — . Condition 6 is necessary to assure H*(Y) — b

although A°(Y) from (30) may not be equal to b. In case if A°(Y) = b, i.e.

HA(ZO(CS J (s,¥))) = 0 starting from some s, condition 6 is not necessary.
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In order to prove this theorem we need some auxiliary results.

sider the following two iterative processes:

astl =(1-ag)a’ +ag ¥
s+l
b =b% + poug

E(ug/b%...,65) =V, s=0,1,...

LEMMA 1. Suppose that

1. 1651 <& andb <was., [V /<V <o,

2. Y ag=o, Y pi<ew a/p; —0
s =0 s =0
E((ug =V )2/8% - bS)< My <> a.s.

3. Condition 6 of the theorem 3 is satisfied.

Then

k k
2) Y bty =) a8, + e(s)

1=s 1=s

where 8, — 0,&(s) =+ 0ass — = a.s.

PROOF.

1. Combining (33) and (34) we get.:

Ks

as*tl=(1-ay)as + ——(b5*1—b5) + ag (V;, —u)

s

This equality gives

S =gf +aS + s+as'1
=a3 2 Taj

a bS,s=1,2,...

Ps -1
5

ai*t =(@-ag)af +ac( —i), ai =ay(Vy—iy)

Con-

(33)
(34)

(35)
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[o SR ao
asStl =(1-a)al - a s—lbs,a1=——b°
2 s 2 Sp . 2 Po

5 —

Qs 1 Qg

s+1 s
Ps —1 Ps

Let us consider the sequence a.i. From its definition we have

@$*1)? = (1-a5)%af)? + 2aga(l—a )V, —ug) (36)
+ a2(V, = )2

which implies that the a$=(a} )2 + a2W —iL )2 is supermartingale
4 1 . t\'s S
=3

because Y, a? < w, E(V, —ug )2/ 6% -+ b5) < My. (36) also gives
1=0

E(a§*1)? s (1—-a,)?E(af)? + M,a?

which gives E(a{)® —0 due to J ag = . This implies (@a?)? —0
s=0

a.s. because a.i is convergent nonnegative supermartingale.

From the definition of a.§ we have:

[» U . Qe _q )
=a§+1|s(1—as)lagf+p_s_1\bsfs|a§r_as |a§l_ps1b)
s—1 s —1

This inequality gives 'a$ | — 0 a.s. because a / p. — 0and Q. =oo,
2 s s 0 s
s =

Consider now a3 and suppose that condition 6 (i) of the Theorem 3 is

P . RXs +1 Ky . -
satisfied, i.e. P = p— In this case we have from the definition of
s+1 s

aj3:

As 1 &Ky

las*t < 1—a. ) af [+ lps |
’ ST (s ps
- & _ x
s(l—as)|a§l+b[ e
Ps-1 Ps
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Summing up this inequality from s to & we get.:

kot Xs -1 X

e i< I (1-ay)la§l +& (37)

I
J=s Ps-1  Pp-1

Taking in (37), s =1 we get | a.§ < C, for some C, < . This gives for

arbitrary s:

k-1 - X _ &y
|a§l$c2 H(l—aj)+b{ s _ kl]
j=s

Ps -1 Pi -1

which implies [ag | —0 for &k — . Taking instead of 6 (i) conditions 6

(ii) and 6 (iii) of Theorem 3, we get | a.g [ —0 similarly.

Thus, we obtain that the first three terms in (35) approach 0 as § — oo,

x

p—sibs —+ 0 due to assumptions 1 and 2. This gives a5 — 0 a.s. and
s -1

completes the proof of the first part.

Consider now the sum

k k k
X oabtVo= ) aybtuy + ) @btV —uy) (38)

i=5 i i=s

H
“

N
Q
-
Qo
[
*
-
+
|

1 k
> & (0t oy )y

i=s

-
1]
%]

DMe D[R

i((b‘l +1)2 _(b‘l )2)
Pt

-
1]
%]
-
1]
1 %]

1 & k

) Y oagpgud + Y abt ¥ —uy)
i=s i=s
E a

=2 L et «eh?) +
t=5 Pt

1 L 2
+eyls) =% 2 eV
=s

i

We denoted here
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E | . 1 . ]
g(s) = ) oy {b V=) = Z g (Vg =)+, Vi (Vg —hy)
i=s
Similarly to the first part of the proof we obtain & (s) — 0 a.s. as
s — o because

Y oal <o, W <V, BV =14)2/78°% - 6Y) <My < oo
1 =0

Proceeding with the estimate we get:

k
Y (IRt 2) = (552 + ay pp (BE )2
1=s Pt s

S 12
+ 3 (@Y

i=5+1

&1 &4

pi =1 Py

The last term can be treated similar to the first part of the proof.

After substitution of the previous inequality into (38) we get.:

k k
Y bt = Y ay By +e(s)

i=g i=s
where in the case if 3(1) of the Theorem 3 is true:

Qg K

— e —

Ps Pi

1 -
B, = _zptvtzv |e(s)\sf81(s)’ + 5%

in the case if 3(ii) is true

1 1 &1 &y
By =— py VE+(b1)2—=—(
&y Py Py
x x
B(s) = £y(s) — —(b%)2 + L Tk (pk+1y2
2 pg 2 pp

and if 3(iil) is true
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1 2 | < 1 =2 &g &g
8, = —p; V5, |e(s).s.e(s)|+—b —_—
i 2 11 1 2 P Pk

k , _ fo4
i=s+1 Pi-1 Pi

In all three cases we obtain
e(s) —0,8 -0 as.

which completes the proof.

The next lemma deals with important property of sets of e-solutions of
convex optimization problems. For arbitrary function » ¥ ), vy €XcrR™

define £-optimal set:
X(e,p) =ly:yeXp(y) =2 Sup P (z)—¢}

and for arbitrary sets 4,,4,C R™ define the Hausdorf distance:

ad(4,,4,) =max | sup inf ez, —2 H, su inf |lz,—2,!l
vz z1€4 12 p€dp 102 2152222941 172

LEMMA 2. Suppose that the following assumptions are satisfied:

1. ThesetX c R" is compact and

max Hzl—zz\st
ZpZp

2. p4.(y).p,(y) are finite concave functions on some vicinity of X,
max | | <
max pi(y)p(¥)ism
Then exists £ > 0 such that

d(X(2,py), X(5.p) & 220

for0<e=¢
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This lemma is straightforward reformulation of results, obtained in [15,

16]. It shows that e-optimal sets exhibit continuous behavior.

PROOF OF THEOREM 3.

1. Let us prove at first that the sequence c¢® is bounded with probability
1, i.e. exists random variable ¢ such that ¢ <o a.s. and |c¢S{<¢.

From (31) we have:

k-1 : k-1 k-1 ‘
cE=cS+Y p 8 =cS+FT pVich) + T p (& Vi) (39)
i i=s

=s i1=s
From assumption 5 we obtain

E(& Vet )/ ...ct) <My

which gives

2 -
E {pi (¢ —Vé(ci))} SHy Y, pf <
i=0 1=0

and therefore
k-1 1
'Y (8 et s 7(s)
i=s

where 7(s) — 0 a.s.

According to the definition of Vg(ct) we have

. HM-b if ¢t >f
)= v ry— it ot < -F

and [Vi(ct) | slH% 1(1) + [F @) + 16 =M, < o for arbitrary i due
to finiteness of the measures H* and A*. Now suppose that ck >f.

Take s such thatc* =2 f for s <i <k and ¢¥ <f. If such s does not

exist then take s = 0. We obtain from (39):
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ck <cS + pV3(c®) + 1(s) smaxic®f ) + Mppg + T(s)

because Vct(ci) =0 for s <1 = k. This inequality proves that ck < El
for some random variable ¢, < « a.s. Considering the case when
ck < -1 we get ck > 8, > as. and finally

[c® | < max {€1.C2) =¢ < = a.s.

Let us prove now that HS(@) — b as s — =, Take a5 = HS(¥)—b.

Then
aS* = g5 —b = [d[(1—a)H +a H5] — b

Y

=(1-ag)a’ + a;[H*(Z¥(c® £ (s, ¥))) + HH(Y\Z¥(cS .7 (s.¥)) —b]

which gives

1 _

e’ =1 -ag)a’ + o Vi(cS)

Taking now in (33) V; =V3(c®) and in (34) &°=c®, u,=£¢° we have all
assumptions of the Lemma 1 satisfied due to conditions of the theorem

and boundedness of the sequence c¢¥. This proves that a5 — 0 i.e.

HS () —b.

Let us verify that ¥W(HS) — r;}a}é ¥(H) Condition 2 of the theorem gives
€

the following inequality:
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V(HS ') = W((1—a ) HS + agHS) = ¥(HS) (40)
as [ gy, H)J(H® —H®) + o(ay)
Y

+

V(HS) + ag [ f(s,y)d(H5 ~H})
Y

+

as([ f(s.v)aHf = [ g(y,H®)dH)
Y Y
+a; [(gW.HS) =7 (s, y))adH*
Y
+ag [ ¢y, HS)d(H=H") + o(ay)
Y
We denoted here Hf e Hg €eG,
S =
{f(s.y)dﬂf —g}g{f(&y)dﬂ

S 9(v.H5)dHS =max [ ¢(y.H)dH
Y HeG Y

Let us denote M3=!H“‘ T(Y) + | A Y). For any H € (G we have
¥4 (Y) = M,. Condition 4 of the theorem and definitions of measures

Hf and Hgs imply:

\{f(s,wam;‘ —4 g (v, H5)dHS | < Mahg (41)

And in the similar way

| [(g (v, H5)=f (s .y )AH® | < Mg (42)
Y

Consider now in more detail the term f fs,y)d (f?s —Hfs). According to
Y

the Theorem 1, the measures # f‘ has the following structure:

H*(4) for A cZ%cE, f(s.v))
Hi) = {H ) for A € Z (5, r(s.v))
HY(4) = Hi(A) 2 H'(4) for A<Z%cs, f(s.¥))

where
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cS=inf {c: H*ZY e S YN +H OX\Z (cSL(s,¥))<b]}
[

The measure H° has the similar structure for c§ =c¢5 and
HS(4) = H* (4)for AcZ%c'f (s,y)). Assuming c¥ > ¢§ we obtain:
[ 7 d@E -H)) =c5 [ dH“-H})
Y Z¥er f(s.y))
+cS S d@EH-HP) + S d (H' ~H§)
Z7(c¥f(s.yN NZ (et f (s yN\NZHe? f(s.y)
= cS(H*(Z¥(c®.f (s, ¥)) + H(Z7(cS . f(s,¥))—b)
+ S (¢S =f (s y)d(Hf—H') =cSVE(ES)
NZedf (s, yN\NZHe?.f(s.y))
Considering the case ¢§ = ¢¥ we get the same result, i.e.
S (s, y)a(F—Hf) = cSVE(cS) (43)
Y

Substitution (41)-(43) into (40) and summation from s to k£ gives the fol-

lowing inequality:

-1

V(HE) = V(HS) +k2 a; ctVi(ct) (44)
1=s

5 | [ ot aya =ty -]

Esai\{g(y' Ya (H —H*) =7}

where
i =2M34, +o0(a)/ q

Taking now in (34) b°=c®,u =¢% V=V (c®), we obtain from the second
part of Lemma 1 that

k-1 k-1
3 aic‘V:(c‘)= Y ay By +e(s)

i=s i=s

where 8§, — 0 and &(s) — 0 ass — . Substituting this into (44) we
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get the following basic inequality:

k-1
V(HF) 2 ¥(H5) + ) «a {fg(y.f{‘)d(fi; -Ht) - -rz‘] + £(s)
i=s Y

where
i =0 as i — = Ti=Ti+g
2 ' 2 1 1

Suppose now that there exists s ' and positive r such that

{g(y.f!‘)d(ffg-ﬂ‘) >Sr >0

(45)

for s 2s . Then from (45) we obtain the following inequality for

k>s .

. k~1
V(HFY = W(HS ) + 2 a;(r —'rzt) + &(s)

i =3

However, -ré < r/2 for sufficiently large s' and i >s’'. Therefore

last inequality contradicts with the fact that ¥(#%) is bounded. This

proves existence of the sequence s, such that

max {0, [ ¢(y.H*)d(H*—H*)] — 0
Y
ask — oo

The concavity of function ¥(H) gives us for H' such that

& 'y =
V(H) geenct Y(H)

the following inequality:
VH)—UH) S [o(y. B )d(H —H%) s [g(y,HS)d (H —H*)

This inequality together with (46) implies

(46)

(47)
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max {0, W(H ) —¥(H**)} — 0

Now suppose that for some sequence n, and for some » > O we have
Y(H'Y—¥(H"™*) >3r

for £k > k'. We may assume without loss of generality that
VWH ) -WH*) <7

and s, <ny <Sg,.q ‘- for k >k'.

Consider the sequence m, such that
Sk < mk S‘nk, ‘I’(H.) - ‘I’(Hjnk_l) <r

and ¥(H')—¥(H*)=r for m, <i < n,. Boundedness and concavity of
the function ¥(H#) on the set ¢ + ¢, (assumption 2 ) implies that ¥(#)
satisfies Lipschitz condition on & with some constant C [11] and we

have particularly
Vo, B)ll_<C for HeG
and
| W(HS Y —W(ES) s Ca, HS (V) =0 as s — o,

Therefore

W(H'Y —WH™*) <2r
for k sufficiently large. Observe now that (47) gives

S oG By d(Hy - = 7

form, <i s n,. Thus we obtain from (45):

n gy
Y(H ") = W(HF) + Y ay(r -3 + e(m,)
1 =my
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Considering k& is large enough for
r >71} and fe(mt)\<r

we get

V(H™®) > W(H™) —r
which finally gives

YH ) —¥(HE) < WHY—¥(E™ +r <37

which contradicts assumption that

Y(H")—¥(H™®) >3r
Therefore

- SV}
max | 0, %aé)c{; Y(H)—V(H® )} 0

Consider now the measure H® € G

B =(1-a)H + & H

where
M if HS(Y) > b
HS(Y)-H' ()
- { b=HS )
a. = if H5(Y) <%
§ H% (Y)=HS (Y)
0 if HS(Y) =b
and

H if HS@) > b

Y-
Hi = H* if HS(Y) <b

R

Assume that H¥ @) > b, H*(Y) <b, this gives

because
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HS(Y) — b.

This gives

WES) =(1-3)WH") + & [o(v,HS)d(H —H®)
+0(dg) S(A—a%)W(H) + G, (RC+eg)+0 (&)

whereg — 0 as s — » due to #5 () — &. Finally we obtain

max ¥(H) = VEH )2 YHY) + Ca,
for some C < =. Therefore in this case
max {0, W(HS) —%aé:é Y(AH] —0
Suppose now that, for instance, H'@™)=b. In this case .{:d (HS=H') — 0

due to HS(Y) — b and H5(4) = H*(4) for any A € =. Thus

Y(HS ) =¥(H) s [g(y, H)d(H —H') — 0
Y

due to
g w B!, <c.

The case H“(Y)=b can be treated in the same way. Thus, we obtain
Y(HT) — max ¥(H)

Now for each convergent sequence HE—H wsp have
Y(H") = Easxg Y(H)

and due to condition 3 of the theorem we obtain

g @ B#*)—g @ &) L —0.
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This gives in turn
Hreey)—g@w.BHIL =0

S
for any convergent sequence ¥ — H',

Let us investigate now the behavior of ¢¥. For arbitrary continuous

function p (¥ ), let us denote

r(c.p) = H* Z"(c.p(y))] +H‘[Y\Z+(c.p(y)) -%
c

R(c,p) = [ r(t.p)dt
T

for some fixed T. In this notation

Vi(e) = r(c.f(s,¥)). V° =R(c,f(s,¥)),
WS (c) =R(c,g(y.H®))

Consider two arbitrary functions () and p2(¥):

PP, € L(Y,Z,HY and
lp )=o) e <7 (48)
Take
Y= fy: v ey, lp (y)=pa(w) | > 7
We have H* (Y% = H'(Y®) and therefore
r(e,p) = B*(Z5c.oINY] + B [T\ 25, o (uIN Y] + B () b
forp(y) € L. (Y,Z,H?) and

ZHe+np (u)\Y? € Z¥(c.p(w)\Y € Z¥(c —n.p (¥)\ Y°

which gives
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r(c+np(y)) sr(c,p(y)) S r(c-np(y))
Now we have the estimate:

c

[
R(c.py) = [ r(t,pp(y))dt = [ r(t-npy(y))dt
T T
c-—n I'—m
= [ r(t.py(yNdt =R(c.py) + [ r(t.py(y))dt
T'—m T

c
+ [ r(t.py(y))dt SR(c,py) + Mym
c—n

where

M, =2 max (e = LT (M =b |}

Finally this gives for arbitrary functions p,.p, €L (V.Z,H which
satisfy (48):

sup | R(c,py) — R(c.py) = My
[~

(49)
This inequality implies
sup ! WS (c) =S *1(c) | < M6, (50)
c
suplWs(c)—VS(C)lSM“As (51)

We shall consider the method (31)

¢St =5 +ps€s

E(€/c% - ,c%) =VE(c®)
as nonstationary maximization method [15,16] and prove that
max WS (c) - W) —0
[

with probability 1.

In order to do this we need the definition of soptimal set X (&):
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Xs (&) =fc,.max WS (c)-WS(c,) < &}
[+

and optimal set
X, =lc imax WS(c)=WS(c")} =X (0)
[+
It was proved that C exists such that Hg (v .H) | l_ < C for all H €G.

Therefore according to the definition of WS there are three opportuni-

ties:
(1) Xg(&) cte: lel=2cy
(if) Xg(&) € le: ¢ 2 —2CY{ and fc: ¢ 2 C C X (&)

(iii) Xg(&) € fc: ¢ <2C{ and fc: ¢ £ —C{ < X (&)

foralls, 0<e¢=<¢ and some ¢ >0. Thisshowsfor0 < <&
d (X (), X 41(8) = A (X (&), X 41(8))
where
X, (&) = fe: le =20, ceX (o)}

and d denotes Hausdorf distance. Sets fs(e) are compact and applying

to them Lemma 2 and (50) we obtain

d (X (&), Xg 44 (&) = M5d,

8CH

where M5 = and we used also condition 3 of the theorem. This

inequality enables us to get the following estimate for

wS = min ll¢S=2/RPand @S = min (CS+1-z)2
ZEX,(C) zEX’(C)

where C < » a.s. due to part 1 of the proof. Denoting now
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This inequality is true for all ¢ > 0 which gives
max WS (c)-WS(c¥) — 0
c

with probability 1. Consider now arbitrary convergent subsequence

¢k — ¢’ of the sequence ¢¥. Due to compactness of the sequence H*

we can assume without loss of generality that
H* - F G, YH') = %a)é v (H). According to condition 3 this means
€
Woy,HY—g(y. Bl =0
which gives, according to (49)

sup | W (c)=w"(c)! =0
[+

where W'(c) =R (c.g (w .H')). Therefore W' (c') = max W'(c) accord-
c

ing to the Remark to theorem 1, this means that all solutions of the

problem

max HYdH
HEa{g(y )

have the representation

H%(4) for AcZ¥(c",g(y.H"))
H(4) = {H5 (4) for AcZ (¢ .g(y.H))
HY(AY=2H(A)Y=H' (4) for AcZ%¢c".g (v .H"))

But according to theorem 2, # ‘s among these solutions which together

with
Hrsew) —g@w.BEHIL =0

completes the proof.
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E(r§*l/rd - tH =0, T E(tH% < =,
1=0

S Eti<eo, Ti>0.
1=0

According to the martingale theorems [17] this gives

Yri<eo Y i< (55)
1=0 i=0

with probability 1. Making now summation from k& to s, substituting

(53) into (62) and applying (49)-(51), (54) we obtain:

s=1
ws swk-Mg Y (wt—rh + 7§

(56)
1=k

where Mg = 2/ 3C,

r§ = SN B SNl N
Mg ps Mg ps Mg
s -1 s -1

S = i i

T = i+ Y 7}
1=k 1=

According to the assumptions 3,4,5 we have 6./ p; — 0, &; — 0 which

gives 7§ — 0 as s — =. We obtain from (55) that 7§ — 0 with proba-

bility 1.

Inequality (56) is the basic inequality which gives after fairly standard

argument (see [14-16]) w® = énxirz )(cs —2z )2 — 0 with probability 1 for
z eXy(c

0 < ¢ < &. Definition of function W° (c) implies

(WS (c)-WS (cp) | < Male =,

and therefore

max WS (c)—WS(c5)< e + Magvw*
c
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cS:c¥ €X(e), les—¢s =S

we obtain:

S+1—ES)2 =(c* +pSEs—ES)2 (53)

= wS +2p VE(c¥)(c® %) + p(£5)?

ws s (c

+2p (85 VSN =) s w®

+2ps(VS(c5) VS (™)) + p2(£5)?

+2ps (€5 =V N(cS =) s w®

+2p(W3(€S),cS =) + 4AM4ps A

+ p2E)E +2p5 (65 VE(CS )N =)
Let us estimate the term WI(c®)(c®—c®) and assume at first that
¢S ©X,(¢), therefore c¢® #¢°. Assuming |5 1 <2C for sufficiently
small ¢ and taking WS (c') = max W= (c) we obtain:
E=WS(c)—W(CS) s WE(Ec™)(c' =€)

slws@Es)llc' =5 s 3¢ [wsEs) !
which gives

1wg<5=>|z%

for ¢¥ € X;(¢&). This implies

£ s
3Cw (54)

= =S
WE(Es)(e* =) =
which is also true for c¥ € X (¢) because in this case w® =0,

Let us denote 1'12 = 2p (85 =VE(c®))(c® =), 1'22 = psz(fs)2 and consider

L4 o
sums ), T{and ) T} Due to assumption 5 we have
1=0 1=0
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Theorem 3 means that if HA(ZO(c.f(s ¥ ))) =0 starting from some s
then the measure A% = (¢S .7 (s,y)) defined in (23) is good approximation
for the optimal solution if s is large. If this is not the case then f(s,v) can
still be used for constructing optimal solution, but more careful choice of ¢

is needed.

4. PARAMETRIC DEPENDENCE OF g (v ./) ON MEASURE

The method described in the previous section is actually general
framework for solving problem (7)-(9). In order to implement it, we have to

specify how to compute function f (s ,y ) satisfying
Nresv)-gw.&85)L

without calculating distribution #°. This can be done for particular ways of
dependence between gradient g (¥ ,#5) and measure #5. One such important

case will be studied in this section. It will be assumed that

glv.H)=Qv.a) (57)

where

a = [ q(y)aH
Y

g(y) =), - e (W)

and functions ¢ (¥ ) and @ (¥ ,2) are known. This case includes, for instance,
finite population sampling example described in the introduction. Function
¥(M) from (7) usually has the form: ¥(M) = trace (M7P for p in [—1,]
with » =0 interpreted as det (M _1) (D- optimality) [2-6]. Therefore in this

case

g(y,H) = ph T ()M P Vh(y) (58)
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and in particular for p =0 it is possible to take

g(v.B) =rT(y)M 1h(y) (59)

where

M =M = [ h(y)RT(y)aA,
Y

i.e., finite population sampling is covered by (57).

If (57) is true, step 2c of the algorithm can be performed in the follow-
ing way:
uS* = (1-a)u’ + a7 (60)
E(nS/u® - u’) = fo(y)aA® (61)
Y

S(s+l,y) = @y, us*
The process depends on the random element » from probability space in
which sequences 7S from (60) and £ from (31) are defined. All subsequent

statements about convergence, boundedness and other properties are ful-

filled a.s. with respect to probability measure in this space.

In these notations we shall get ¢ (¥ %) = Q(y .a%) where

a’ = [q(y)aH*
Y

Note that algorithm reduces to (31) and (60)-(61), formula (30) is not needed
as long as we can compute ©°. Vector n° from (61) can be easily computed
in many cases. For instance, if H% and H' have densities H) and H, with

respect to Lebesque measure, 75 can be chosen as follows:

7S = wNe () A (%)

where
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_ H}o®) if of €Z¥(c®.Q(y . u®))
Hy(o®) = .
H;(os) otherwise

w?S is distributed uniformly over ¥ and wu(Y) denotes Lebesque measure of Y.

The conditions for convergence of algorithm (30), (59)-(60) are sum-

marized in the following theorem.

THEOREM 4. Suppose that assumptions 1,2,5,6 of the theorem 3 are satis-

fied and the following additional conditions are fulfilled:
1. q;(¥) €L (Y.EHY), i=1:

2. llew.a)-Qw.a)ll_—0asa’ —a,

lew us*hy - Q@ us)ll s, —»0ass — =,

3. E(ln® — fq@)dhAS B u - us)sm,
Y

S are bounded a.s. and for any converging subse-

Then the sequences u¥,c
S s s » . s
quence u ' fF—u’,c*—c’ exists measure H' €G, such that

V(H') = max ¥(H) and
HeG,

Cdy o {,T(A) ford cZ*c @@ u'))
B _)' 4) ford cZ(c'.Qy.u"))

PROOF. It is sufficient to prove that conditions 3 and 4 of theorem 3 are
satisfied. Condition 3 is obviously satisfied due to assumptions 1 and 2 of
the theorem. Let us prove that lluS—gS [l =0 a.s. This will give

lg (v .H#S)=f(s,y)!!lo — 0 a.s. Denoting z°¥ = fg (¥ )dH® we obtain the fol-
Y

lowing estimate:
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[lys+l—qs+1iR = |[(1-ay)us +a;n® —(1-ag)as — a 25 | R

= (1-—a$2) Hus—s R+ 2ag (1—-ag)(u’ —a®,n* —2%)

+alllns—=slP

which gives

Ellustl—gs*lif < (1-a )2F lus—aS|R + M a?

This inequality proves that [luS—aS!l =0 a.s. due to Y ag == and
i=1

Y a? < = Properties of the measures H“ ' and functions g¢,(y) yield
1=1

boundedness of the set

Ag =la: a.=fg(y)dH.H€G{
Y

which together with continuity give
low.a®) - us)ll, =0 as.
We have also supHQ(y ,uS)H_ < a.s. due to boundedness a.s. of the
Y

sequence ©S. All conditions of the Theorem 3 are satisfied and proof is

completed.

The second part of assumption 2 is actually satisfied auvtomatically and
is only needed together with condition on stepsize 6./ p; — 0. If @(y,a) is

locally Lipschitz with respect toa, i.e.
low.e) —@u.a)lly = Llla =l
assumption 2 is fulfilled automatically because in this case 6; ~ ag.

In some problems & (y,a) is not continuous with respect to a every-
where. In fact in optimal experiment design and finite population sampling

@(y,a) is not defined for some a, because matrix M7t from (59) may not
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exist. In this case theorem 4 remains correct if we assume that condition 2

is satisfied for @ € 4 where 4 is closed, Ag C Aandus €4 foralls.

In the remaining part of this section we shall consider in more detail
the finite population sampling with D-optimality criterion and derive from

(31), (BD)-(B1) specific algorithm for this case. We shall assume that matrix

M = [ry)rT(¥)aH
Y

is invertible for all H € G, and h, (¥) € L (¥, Z,H%). Method (60)-(61) will

be transformed to

Mg g = Q—ag)M; + agn® (62)
E(n°/ My "+ M) = M(H®) (63)
F(s,y) =hT(WMTR(Y)
The method (62)-(63) requires matrix inversion on each iteration. This can

be avoided by using the following equality:

deT

(I +deT)_1=I——T—
1+d‘e

(64)

much in the same way as it is done in recursive least squares. Suppose, for
instance, that measures A* and H' has densities H;; and H,f, with respect to
Lebesque measure. In this case we can take

M4y = Q—ag)My + ag VA (05)RT(0%)H ()

where o° is distributed uniformly over y. If By = Ms_l then (64) gives the

following algorithm:

J S ag () Hy () By h(e)R (%) B ©5)
ST e 7 1—as+asu0’)§§(w3)hT(ms)Bsh(ws)
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cS*t =S + p o (WUYHS(w5)=b) (66)

- H¥S) if RT(05)Bgh(0S) > ¢S
Hys(ws) =0, s .
Hy (%) otherwise

and u(Y) is the Lebesque measure of Y. If (¢",B") is some accumulating

point of the sequence (¢ * B¢) then the measure A * with density Hy':

Hy@W) it hT()B h () <c’

Hyw) = Hy(y) if hT(¥)B 'R(y) >¢’

and such that A'(Y) = & will be optimal measure.

S. NUMERICAL EXPERTMENT
We used method (65)-(66) for solving the following problem:

1

min det [(/ h @R T@W)H, W)dy) ] (67)
-1
subject to
0 <H, (y) =05 (68)
1
S Hy)dy =05 (69)
-1
where
1
h(y) = |y
yz

The problem can be solved analytically and the solution is

\ 05 f-1sy < -0.71, -021sy <021, 0.7l <y <1
Hy(y) - 10 otherwise

The optimal value of objective function' ¥’ = 132.13.
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The method (65)-(66) was applied with initial value of level ¢? = 1, ini-
tial matrix B, diagonal with diagonal element 100. This choice corresponds
to the density of initial measure F?; = 0.5 on the whole interval [ -1,1] which
is very poor initial approximation. The stepsizes p; and ag were taken

piecewise-constant.:

0.1 1<s <150

0.02 151 ss = 300
ps = {0.01 301 <s =450
0.002 451 s =650
0.0008 651 <s = 900

0.008 1 =<s <150
ae = 10.001 151 =5 =450
0.0002 451 =s <900

150 runs were performed with the same initial values for ¢° and B,, same
stepsizes but with different sequences of random numbers, chosen indepen-

dently. Thus we obtained 150 sequences
fcsd, By 443%, 7 =1:150

where j is used for indexing different runs. For each iteration we calcu-
lated averaged violation Af of constraint (69) by measure H5J with density

H‘: 'j

0.5 if Rt )Bg ;jh (y)>c™

$,J =
Hy - |0 otherwise
150 1
T | [ HJ(y)dy —0.5]
af = 12
150

The averaged difference A; between value ¥(H® /) of objective function (67)
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and optimal value ¥’ was also computed:

150
by

. L (s dy—v' |

s o J
by = 150

Evolution of these two quantities gives impression about average behavior

of algorithm. The results are summarized in the following table:

Iteration Stepsize Stepsize

number
S Ps ) ¢’ A‘ls AZS
10 0.1 0.008 1.450 0.5000 98.3
50 0.1 0.008 3.450 0.5000 98.3
100 0.1 0.008 4,534 0.0738 84.1
150 0.1 0.008 4.614 0.0640 87.1
240 0.02 0.001 4.850 0.0317 186.0
300 0.02 0.001 4.695 0.0138 8.4
350 0.01 0.001 4.697 0.0142 8.5
400 0.01 0.001 4.685 0.0121 7.7
450 0.01 0.001 4.669 0.0116 7.1
500 0.002 0.0002 4.685 0.0083 5.6
650 0.002 0.0002 4.661 0.0083 4.5
800 0.0008 0.0002 4.664 0.00867 3.7
300 0.0008 0.0002 4.662 0.0056 3.2

 cSY
Here ¢* =%—- They show that algorithm behaves reasonably well,

especially taking into account that the intitial point was very far from

optimal solution. The first two rows of the table differ only in value of c¢$

because during the first approximately 80 iterations H.j J =0.5. After this

constraint violation Af and the difference between the current and optimal
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value of the objective function Af rapidly decrease until iteration 300 and
then continue to decrease, but more slowly. In 900 iterations we obtained in
average 0.012 relative accuracy in constraint violation and 0.035 relative
accuracy of determining optimal value. Note that each iteration requires

computation of A (y ) only at one point.
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