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ABSTRACT

Human mortality and aging have frequently been modeled as stochastic
diffusion processes. Estimates of the parameters of these processes have
been made from various longitudinal studies. This paper shows how the
stochasticity intrinsic to those processes will propagate through time
and generate uncertainty about the future physiological state of the
population. Variance expressions are derived for the future values of
the physiological variables; and for the conditional survival functions
and conditional life expectancies which reflect the uncertainty in the
future values of the physiological variables. The results show that a
major component of uncertainty is due to mortality. This suggests that
the limits to forecasting may be different in physiological systems
subject to systematic mortality than in physical systems such as weather.
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I. INTRODUCTION

In the physical sciences, especially in meteorology, there are well
developed theories about the limits to forecasting because of the propaga-
tion of uncertainty in initial conditions and because of the stochasticity
of the process during the forecast period. This paper examines a similar
problem for biological systems and establishes certain analytic results
¢concerning the limits on the ability to forecast changes in health status
and mortality rates in human populations. To establish such limits, one
must first specify the form of the process under consideration and then,
for the specific process, determine how uncertainty (i.e., the variance
of the forecasted quantity) increases with time.

The development of our analytic model p¥oceeds along different ave-
nues than other investigations. For example, Matis and Wehrly (1979) de-
veloped expressions for the variances of certain conditional parameters in
stochastic compartmental systems (e.g., the conditional survival probabii—
ity) based upon models which included various combinations of effects due
to four distinct classes of stochasticity. Two of these classes (Rl, R2)
of stochasticity referred to random changes a.) in initial values, or b.)
in hazard rates, between replications of an entire experiment (population).
However, we wish to focus on a single population (experiment), and will
not pursue this type of stochasticity. Two other classes (Pl, P2) of
stochasticity referred to random effects a.) due to discrete numbers of
particles in the system or b.) due to random rate coefficients of the
particles. In the limit, as the sample size tends to infinity the P2-
stochasticity gives rise to a continuous distribution which is isomorphic
to the fixed frailty model presented in Vaupel et al. (1979) and in Manton
and Stallard (1980, 1981, l984a,b). Matis and Wehrly (1979) noted this
point and suggested that their system could be extended to include a class

of stochastic models with random differential equations, but they did not



pursue this avenue.

This paper considers the class of stochasticity due to stochastic
differential equations for the particular case of multivariate Gaussian
diffusion processes of the type defined in Woodbury and Manton (1977) and
Yashin et al. (1985a). For this special case, it is shown that these pro-
cesses give rise to a form of P2-stochasticity in which the rate coeffi-
cients are random among particles but for which the assumption of fixed
frailty is not made. This suggests that these new models will be more
biologically realistic than the fixed frailty models in two important
aspects. First, we know from clinical and epidemiological evidence that
the risk of death depends upon the physiological state of the individual.
Consequently, a substantial component of the uncertainty in the risk of
death will be due to the effects of this physiological heterogeneity.
Second, we know that such physiological variables evolve over time in a
manner that can be described by a multivariate diffusion process. Thus,
an additional component of the uncertainty in the risk of death in our
mortality forecast will be due to the effects of diffusion. Thus, we
need to determine the variance, and its change over time, of the parameters
of a conditional 1life table whose parameters are themselves functions of
a multivariate diffusion process in survival-relevant physiological vari-
ables.

The stochastic process model we have selected is due initially to
Woodbury ana Manton (1977). This model describes the evolution of mortal-
ity risks as a two component process governed by the Kolmogorov-Fokker~
Planck equation. The special case of a multivariate Gaussian diffusion
process can be described by a.) a linear autoregressive model of change
‘in the physiological variables, and b.) a quadratic function describing
the relation of the hazard rate to the values of the physiological vari-

ables. This two component process and the functional forms selected for



each component (i.e., linear dynamics and quadratic hazard dependency) have
been found to describe human physiological change and mortality in a number
of epidemiological studies of chronic disease (Manton and Woodbury, 1983, 1985;
Manton et al., 1985). For example, there is considerable epidemiological
evidence to suggest the appropriateness of the quadratic hazard function
for total mortality (Tyroler et al., 1984). The quadratic hazard function
also is consistent with the physiological dynamics of several general
theories of human aging and mortality (Woodbury and Manton, 1977, 1933a,b).
Yashin et al. (1985a) considered this stochastic process model in
detail and extgnded it to the case where not all the variables defining
the physiological state relevant to survival were measured. Yashin et al.
(1985b) considered the problem of producing maximum likelihood estimates
for parameters when both observed and unobserved variables were assumed to
influence mortality and p?esented a maximum likelihood estimation strategy.
This paper considers the stochasticity of the survivaltcurves generated by
this process; shows that this is a form of P2-stochasticity (Matis and
Wehrly, 1979) in which the mortality rates are random because they are
functions of a stochastic process; and discuss certain limits to forecast-
ing under such a process.

IT. STOCHASTIC PROCESS MODEL

We will take the model of human mortalityv developed by Woodbury and
Manton (1977, 1983a,b)and extended by Yashin et al. (1985a) as the
basis for our analysis of the uncertainty of future mortality rates. This
model is composed of a stochastic process with two distinct components.
One component describes the evolution of the physiological status of sur-
vivors. The second component describes the risk of death among persons
with specific physiological characteristics. The first component can be
defined by specifying that the change in Yt’ the stochastic process describing

physiological status, satisfies the following stochastic differential



equation,.

dy_ = [ay(e) + a (0) Yt]dt + b()dv_ (1)

where t > 0, Wt is k-dimensional Wiener process, Y0 is an n-dimensional

vector of Gaussian random variables with joint distribution N(m ); the

0’ Yo
elements of the vector ao(t) and the matrices al(t) and b(t) are bounded
functions of time.

The second component can be defined by assuming that the mortality
rate for individuals in each cohort is a nonnegative definite quadratic

function of the process Y, as follows,

u(t, YD = Y;: Q(t) Y, + uy(e) . (2)

This function was called the conditional mortality rate in Yashin et al.
(1985a). The unconditional or observed mortality rate u(t) is the mathe-

matical expectation of u(t, Yt)’ given by
B(e) = Elu(t, ¥ |T>t] ’ | (3a)
= erlQ(e) v ] + = Q) m, + uy(e) , (3b)

where T denotes time of death, where Yt is distributed as N(mt, yt), and
o and Y, are the solutions of the following ordinary differential equa-
tiomns,

dmt

3 = [ag(0) +a () o ] -2y Q) m (4)

dy
oo = a(0) v, + v, a](e) +b(e) B'(E) - 2 v, QE) ¥, (s)

If the parameters ao(t), al(t), b(t), Q(t) and uo(t) are specified
as known functions of time (or are known constants) one can forecast
future mortality simply using Eqs. (3), (4), and (5). These forecasting
equations can produce projected trajectories for the survival probability
and the parameters of the distribution N(mt, Yt) of survivors. However,

these equations say nothing about the wvariability of the conditional



mortality rates, nor of the trajectories of the conditional survival
probabilities. In the following section we derive the variances of these
conditional survival quantities.

ITI. VARIANCE ESTIMATES FOR MORTALITY FORECASTS

In order to characterize the uncertainty of future mortality rates
we need to derive estimates of the variance of certain forecasted quantities.
In this section we derive expressions for the variance of the conditional
mortality rate, u(t, Yt), the conditignal survival probability, 2(t, YS),
and the conditional life expectancy, e(0, YZ), where Yg = {Ys,s e[0,t]} de-
notes the entire trajectory of the stochastic process over the interval
[o0,t].

A. Variance of the Conditional Mortality Rate

By definition, a forecasted future mortality rate refers to mortality
in the subpopulation of iﬁdividuals still alive at the targeted time of the
forecast. This means that the variance of the forecasted conditional mor-
tality rate at time t should be calculated conditionally both on the phy-
siological characteristics of the population (Yt) and on the event {T>t}
where T is the time of death. The conditional Gaussian property of the
distribution of the process (i.e., Yt n N(mt’ Yt)) and the quadratic de-
pendence of u(t,'Yt) on Yt allow us to determine the formula for the vari-
ance of the conditional mortality rate. The results can be formulated in
the following theorem:

Theorem: Let the conditional mortality rate u(t, Yt) depend upon

the process Yt as specified in equation (2). Let Vu(t) denote the

conditional variance of u(t, Y;) given {T>t}. Then,

V() E{[u(t, Y - u(t)J?|T>t} (6a)

2 erfQ(e) v, Q) v ]+ 4 mp Q) v, Qe) mp, (6b)

where o and Y, satisfy Eqs. (4) and (5).



The proof of this theorem is based on the results for calculating
the variance of the quadratic form for independent random variables given
by Seber (1977). This we generalized to the case where the random vari-
ables are not independent but can be transformed as indicated in the
Appendix.

B. Variance and Covariance of the Conditional Survival Probability

We now consider the calculation of the variance and covariance of
the conditional probability of survival. Let 2(t, Y) = 2(t, Yg) be the

conditional survival functionm,

2(e, T) = B(T>t|Yp) | (7a)
= exp{-fg udu, Yu)du} (7b)

Cre
= exp{-/ [Y! Q(w) Y + uy(u)lduls (7¢)

and let 2(t) be the unconditional survival function,

L(t) = P(T>t) (8a)
= exp{-fg p(u)du} (8b)
= exp{—fg[tr[Q(u) yu] + m; Q(u) n + uo(u)]du}, (8¢)

where m and Y, are the solutions of the differential equations (4) and

(5). Let Vl(t) = C2<t’ t) denote the variance of 2(t, Y):

v, (e E[e(e, Y) - 2(£)]? (9a)
= E[22(t, Y)] - 22(t), (9b)

and let Cz(s,t) denote the covariance of 2(s,Y) and 2(t,Y). Then for

E[2(s,Y) 2(t,¥)] - 2(s) 2(t) (10a)

(9]
)
~
(0]
-
"
~
H

(s) (s) (s)’ (s)

exp{—fg[tr[Q(u) Yy 1+ T Q(u) més) + ués) (u) Jdu}

(10b)
) (s) (s)

(s
exp(-/glerfaC@) v ] + @) o(w) m, + ug® (wldul,

where



(s) (s) : 2 Q(uw), 2 UO(U), if u <s
Q(w), 110 (u) = (11)
Q(uw), uo(u), if u > s ;
and where m(s) and Y<S) are the solutions of the following ordinary differen-

u u

tial equations

(s)
dm (s)
s [y + 2,0 201- 2y ) 2, @ =a)  ap
(s)
dy. (s)
L =2 (0 v+ ¥ Al + b b - 27 ) ¥, P =y, am

C. Variance of the Conditional Life Expectancies

Life expectancy at birth (time t = 0) can be calculated easily when
the age (time t) specific mortality rates are known. The conditional life
expectancy e(0, Y) = e(0, Y;) is the average survival time for a specific

trajectory of the stochastic process Yt, or

e(0, Y) = f &(t, Y)dt. (14)
The average life expectancy at birth e(0) can be calculated by taking the
mathematical expectation of the expression for e(0, Y):

e(0) = E[e(0, Y)] , (15a)

Ig 2(e) dt. (15b)
Let Ve(O) denote the variance of e(0, Y). Then

E[e2(0, Y)] - e2(0) (16a)

V. (0)

f; f; C,(s, t) ds dt. (16b)

D. Life Table Parameters

The sequence of survival function values 2(t), t €{0,1,2,...} may be
used to form the forecasted cohort life table using the following standard

formulas (Chiang, 1984):

d(t) = 2(t) = 2(t+l) (17)
q(t) = 1 - 2(t+1)/2(t) (18)
L(o) = /5w du (19)
T(t) = /, 2(u) du (20)

t



e(t) = T(t)/a(t). A (21)
Replacing 2(t) inm (17)-(21) with 2(t, Y) results in a corresponding life
table for the trajectory Yg with parameters d(t,Y¥), q(t,Y), L(t,Y), T(t,Y),
and e(t,Y) whose expectatioms are d(t), q(t), L(t), T(t), and e(t), re-

spectively, and whose wvariances are:

V (£) = V() + U, (e+1) - 2 él(t, t+1) (22)
Vo (8) & (Y (e+1) + [1 - a(0)]2v () - 2[1 - a(e)] ¢, (x, e+1)}/22(e)  (23)
v (&) = sE J‘E+l C,(s,u) ds du | (24)
v (8) = ST ST Co(s,u) ds du (25)
v (e) & [Vp(e) + e2(e) v (t) - 2 e(t) Cpp(t)]/22(r), (26)

where CgT(t) denotes the covariance of 2(t, Y) and T(t, Y), given by

CZT(t) = ft Cz(t, u) du. - 27

IV. APPROXTIMATIONS BASED ON A DISCRETE TIME MCDEL

Calculation of the life table parameters in (17)-(21) requires only
that we have the correct values of lt = 2(t), m and Y, at integer values
of t. These may be estimated using the discrete time form of the model

described in Manton et al. (1985). In this form of the model, the contin-

uous time parameters ao(t), al(t), b(t), Q(t), and uo(t) are replaced with

s . = ' .
the discrete time parameters aOt’ alt’ Zt bt bt’ Qt’ and Hop s and Egs.
(1) and (2) are replaced by:
= + + +
Tewp = 3 ¥ (T + 3 )Y + b W, (28)
= ! -+ . .
me (V) = YL QYo + g, (29)

Let ﬁt be the mathematical expectation of ut(Yt)' Then

e = Elu () |1>t] (30a)
= tr[Qt Yt] + m; Q. m_ + g, (30b)

Let vut be the conditional variance of ut(Yt) given {T>;}. Then, following



the arguments léading to (6b) one can show that
= -+ '
Ve =2trlog v o v l+émio v o Q m, (31)
where m_and Y _ satisfy Egs. (4) and (5).
Let £ (1) = 2, (Yg) be the conditional survival function in the dis-

crete time model,

b (1) = P(Toe|¥E) = expl-r§ u (¥ )dul, (32)

and let lt be the unconditional survival function,

2, = P(T>t) = exp{-fg w, dul . “ (33)

Then a necessary and sufficient condition that lt = 2(t) for integer values

of t, as assumed above, is

fg T du (34a)

‘- t €{0,1,2,...} -
fo By du. (34b)

t
fo My du

| A

The inequality (34b) is a form of Jensers inequality (Matis and Wehrly,
1979).

Let Cl denote the covariance of RS(Y) and Rt(Y) in the discrete

s,t

time model. Then, for s <t

CR_S’t = E[zs(Y) lt(Y)] R N (35a)
=408 _
Rt Rs Rt , (35b)
where zés) is obtained from iterative application of the following equations

(Woodbury and Manton, 1983a; Manton et al., 1985):

(s) (s) 4(8)y=1 _(s) : (s) _
Yeel = I & (Tag) (02 v .7 )T % (a0 (g™ =) (36)
mt(:-ls-;_ = aOt + alt més)* 5 (37)
(s) , p(s)*
(s) _ ,(s) (8) 4(s) % (s) (’“c "t )
Py T b TRy Q| expdo2 g 2
(38)

(06 - D |

(s) _

+



lo.

where
(s)* _ _(s) (s) ~(8)y=1 _(s) ~(s) _(s) (s) _
m m " - 2(1+2 Ye Qt ) Y. Qt m (m0 = mo). (39)
The functions UES) and Qés) are:
2Q, 2u,, ift <s
Q(S) (s) _ ¢ ot
t * Mot (40)
Qt’ Hoe , if t > s,
(s) = v ofs) (s)
me T =YL QT Y g, . (41)

The variance of lt(Y) is obtained from Vlt = Clt,t'

The discrete time model life table parameters dt’ qt, Lt’ Tt’ and e,
are defined by replacing 2(t) in (17)-(21) with lt; the corresponding life
tables for the trajectory Y; with parameters dt(Y), qt(Y)’ Lt(Y), Tt(Y),
and et(Y) are defined by replacing 2(t) in (17)-(21) with Zt(Y). The
integration of Zt and zt(Y) in (19) and (20) can be performed with the

trapezoidal rule, yielding, for the means of Lt(Y) and Tt(Y):

Lt ~ (lt + 9.t+l)/2 (42)
w-1

Tt Al + ¢ . (zt A0, t 2w (43)
u=t+1

and, for the variances of Lt(Y) and Tt(Y):

Vie 2 Vo ¥ Voer1)/2 ¥ Cyp e (44)

\Y

- Led CEt] (Le] )

le

1]
where h[t] = (%,1,...,1) is the (w-t) vector containing % in the first

element and 1's elsewhere and CEt] is the (w-t) x (w-t) submatrix obtained

by deleting the first t rows and columns of CZ = {CZS u}' Corresponding
b

formulas for the variances of dt(Y), qt(Y) and etCY) are obtained by re-
placing the continuous time functions in (22), (23) and (26) with the cor-

responding discrete time analogues, i.e., V. , C L V.., € and

it ZS,t’qt’ t? Tt t

Cth, where Cth denotes the covariance of lt(Y) and Tt(Y), i.e.,
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w-1 [

t]

Cth L hu Czt,u
u=t

. (46)

V. OBSERVATIONS ON THE LIMITS TO FORECASTS OF SURVIVAL

The evolution of uncertainty in the forecasts of mortality is com-
plex and does not admit readily to pure analysis because of the interde-
pendence of the multiple aspects of the'process. For example, Manton et
al. (1985) studied how various combinations of diffusion (Zt) and regres-

sion (a,., and alt) would affect the trajectory of the observed mortality

Ot
rate (ut). It was found that the mortality rate was relatively insensi-
tive to the magnitude of diffusion as long as diffusion and regression were
’

in approximate equilibrium. Indeed, the trajectory of the mortality rate
seemed to be more sensitive to the total variance of the physiological
variables than to the particular combination of diffusion and regression
which generated that variance. Nonetheless, we can make certain important
qualitative observations from an analysis of the variance expressions and

their arguments, provided above. Specifically, Eqs. (12Z) and (13)

represent the basic differential equations for the process. For the stable

case, when coefficients ao, al, b and Q are constants, one can find the
dm dyt
solution of these equations for the conditions T = 0 and rraie C.

Depending upon the initial conditions, m, and Yo? the time evolu-

0
tion of the variance of both the conditional survival function (Eq.

(10)) and the conditional life expectancy (Eg. (26)) can occur over

time in complex ways. For example, since the variance calculations in (10)
involve the forcée of selection (i.e., Q), the variance of the conditional
survival probability 2(t, Y) is initially VQ(O) = 0, followed by'an in-
crease to some peak value, followed by a decline ultimately to Véw) = 0.

We note that the variance of 2(t, Y) also is governed, in part, by the pro-

cess governing change in the means and covariances of the physiological

vardables. In Eq. (10) we have quadratic forms involving both mgs)
and Yés) as well as m and Ye (compare (4) and (5) with (12) and (13)).
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(s)
t

(s)

N and v

The expressions m correspond to the survival function associated
with the mortality rate u(s)(t, Y) in (7b). For Vl(t), the coefficients for
this expression will be twice as large (i.e., 2 Q(t) and 2 uO(t)) as the
normal hazard rate u(t, Y). Since E[z(t,Y) 2(t,¥)] is the first term in
(10) this means that increases in age specific mortality will tend to de-
crease the age at which the peak value of Vl(t) occurs. This effect is
further promoted by the process governing change in mgs) and Yés) (i.e.,
(12) and (13)). Again, mortality operates to reduce both sets of para-
meters. This is because the terms involving mortality rates in (12) and
(13) are twice as large as in (4) and (5). Thus mortality selection will
tend to have a strong variance controlling effect--both through the direct
effect of mortality and through the indirect effect of risk factor dynamics
on the expectation of the squared conditional survival function, 2(t, Y).
This suggests that the time dependence of the variance of the conditional
survival probabilities is more complex than in the case of physical systems
because of the changing equilibrium with time and age of mortality and risk

factor dynamics.

VI. EXOGENOUS FACTORS AND THEIR EFFECT ON MORTALITY FORECASTS

To this point we have discussed uncertainty which results from in-
dividual heterogeneity and the evolution of individual characteristics
over time. It is apparent that there are many factors that are exogeneous
to the individual that will impact upon his survival. For example, en-
vironmental pollution may adversely affect the survival chances of an
individual, as may changes in economic conditions. Since these forces
are often observable it will be useful to include their effects in
mortality forecasts and in estimates of the uncertainty of the mortality
forecasts. This can be done simply by gxtending the vector Yt to in-
clude such environmental factors.

For example, suppose that climatic factors influence human mortality.
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We could include temperature and other climatic variables in the wvector

Yt. The equations describing changes in the exogenous component of Yt
would be those that describe seasonal and other changes in temperature,
whereas the changes in the endogenous component of Yt could be modeled

as dependent on the exogeneous component. If, as a first approximation,

we assume that all persons are affected equally'by changes in temperature
then we only need to estimate one term in the quadratic hazard for tempera-
ture. On the other hand, it is more likely that temperature would have a
greater effect on certain population groups (e.g., the elderly) in which
case interaction terms involving temperature and age (or other relevant
variables) would have to be included in the hazard function. This would
imply a more rapid selection of certain groups under certain changes in

the temperature compoment of Yt' The dynamic equations describing the
change of temperature (or some other exogeneous factor) would not, how-
ever, be affected by mortality selection so that no further modification

of the time series equations for forecasting temperature would be neces-
sary. Similarly the effects of a whole range of exogenous factors might

be represented in mortality forecasts and in estimates of the uncertainty
of those forecasts, where the added stochasticity was not due to the
diffusion process describing the physioclogical changes of the individual
but to the uncertainty of the climate forecasts. Similarly macro-economic
variables could be included as elements of Yt’ where each person is impacted
by economic factors, where mortality does not affect Yt’ and where estimates
of the trajectory and uncertainty of the economic components are generated
by a macro-economic simulation analysis.

VII. DISCUSSION AND SUMMARY

We have developed variance formulas for the conditional mortality
rates, conditional probabilities and conditional life expectancies for the

case where mortality depends upon a set of physiological variables whose
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change is driven by a Gaussian diffusion process. This represents a con-
siderable extension of the variance formulas for P2~stochasticity provided
by Matis and Wehrly (1979) for the case of a fixed frailty life table
model, and recognizes the variability of forecasts due to the physiological
heterogeneity of the population and the diffusion of that heterogeneity.

The formulas derived can be easily calculated and the coefficients
of the basic process can be estimated using maximum likelihood procedufes
for longitudinal data (e.g., Manton et al., 1985; Yashin et al., 1985b).
Thus the model represents a potentially useful tool for the empirical
analysis of the uncertainty of mortality in a human cohort. Moreover, an
evaluation of the form of the equations shows that the uncertainty in fore-
casts of human mortality processes propagates very differently thyough ‘
time than does the uncertainty of forecasts of the future state of certain
physical systems, e.g., weather. This is because the interaction of risk
factor dynamics and selective mortality represents a more complex set of
dynamic forces. For example, in our analysis of Eqs. (10) = (13) we
showed that one effect of mortality selection will be that the variance
of 2(t, Y) will decrease after an initial rise. These equations suggest
that models for forecasting uncertainty in human survival will require
the development of analytic approaches different from those used in many
physical systems.

The variance calculations presented in this paper can be extended to
the case where mortality is influenced by factors exogenous to the physio-
logy of the individual organism. TFor example, certain variables at the
societal level (e.g., sanitation, environmental quality, water quality,
level of health services, level of economic development) can have an effect
on mortality. If one can specify the form of the dependency of mortality
on these exogenous factors, then their effects on thé mortality forecasts

and on the uncertainty of those forecasts can be determined from the
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equations above in two ways. First, one can assume that such exogenous
factors affect all persons equally (i.e., their effect on the population

is homogeneous). In this case we can include an exogenous component in the
set Yt which is the same for all persons but which changes according to some
specified process, with some associated diffusion or uncertainty. Thus
both the uncertainty and secular trend of exogeneous factors may be in-
cluded in the mortality forecasts and in their anticipated uncertainty;
Second, one may introduce the exogenous factors into the set Yt and assume
that there is a differential effect on mortality or on endogeneous risk
factor dynamics over the population. In this case a population component
more sensitive to economic or sanitary conditions may be more rapidly se-
lectéd from the population. Thus the wvariance com%utations provided

herein can reflect uncertainty arising from both physiologically endogenous

and exogeneous processes.
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APPENDIX
The proof of the theorem is facilitated by the following auxiliary
lemma (Seber, 1977).
Lemma. Let z' = (zl,...,zn) be independently Gaussian distributed accord-
ing to N(O, 02 1) where I is the n x n identity matrix, and let A be ann x n
symmetric matrix. Then
E[(z'A z)2] = 2 o" tr A2 + o%(er A)2 .
Proof. Switching to scalar notation, we have
E[(z'A 2)2] = E § & E aij a, E(zi zj 2, zl).
Observe that the indepeﬁdence of the components of z yields
o4, for i=k, j=L, j#k
o%, for i=g, j=k, j#L
o4, for i=j, k=L, j#k
m,, for i=j=k=g
0 , otherwise ,

where m, is the fourth moment of the distribution of z;. This allows one

4

to write
' 27 = <% 2
E[(z'A 2)2] =o¢ 5 § ais

+g% T a,, a,,
ij 1] Jj1

4
T LIy A

+ (m, -3 o) L a2, .
i ii

Switching back to matrix notation, one can see that the first term is ot

tr A2, as is the second term, because aji = aij; the third term is o*(tr A)?;

the fourth term is zero, because m, = 30" in the case of a Gaussian distri-
bution. Making these changes, one obtains the result.
Corollary. Let x' = (xl,...,xn) be independently Gaussian distributed

according to N(8, o2 I), and let A be an n x n symmetric matrix. Then
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Var(x'A x) = 2 o% tr A2 + 4 o2 ' A% @,

Proof. From the definition of variance, we have

Var (x'a x) = E[(x'A x)2] - E2(x'A x). (C1)
Let z = x-6, so that z ~ N(O, o2 I). We evaluate each term in (Cl)

separately.

(a) E(x'Ax) =E[z'Az+20'Az+68'A8])

=oZtr A+0'A® (C2)
() E[(x'A x)2] = E[(2'A 2)2 + 4 (8'a 2)2 +26'A 9 2'A 2

+(8'A0)2+40'Azz'Az+48'A06'A z]. (C3)
The first term in (C3) is given in the lemma; the second term evaluates to &
62 8' A29; the third term evaluates to 2(8'A 8) 02 tr A; the fourth term
evaluates to (6'A 8)2; the fifth and sixth terms evaluate to zero because

E(zi) = 0 and 1:‘,(2:.L z. 2 ) =0, all i, j, k. Hence,

h) K
E[(x'A x)2] = 2 o% t&r A2 + 4 02 8" A28 + oY(tr A)2
+2 (8'A 8) 02 tr A+ (8'A 8)2. (C4)
Observe that the sum of the third, fourth, and fifth terms is equal to the
square of E(x'A x) in (C2). Hence, from (Cl), the first two terms of (C4)

give the variance.

Proof of the Theorem. In this proof we suppress the index t for notational

simplicity. By assumption, Y' = (Yl,...,Yn) is Gaussian distributed accord-
ing to N(m,Y), where vy is an n x n positive definite symmetric matrix. Hence,
there exists a nonsingular n x n matrix R and a random vector x' = (xl,...,xn)
such that
vy=RR" and Y = R x,
where x is independently Gaussian distributed according to N(R-l m, I).

Let Q be an n X n nonnegative definite symmetric matrix and let the matrix

A =R'QR, It follows that A is also an n x n nonnegative definite symmetric
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matrix.
Let u(Y) be the nonnegative definite quadratic function of Y:
H(Y) =Y QY + p4
= x'" Ax+ Hg*
In accordance with the result of the corollary to the lemma, one can write:
Var[p(Y)] = var[x'A x]
=2¢tr A2 +4n @R A2 R g
=2¢tr (R"QRR'QR) +4m' QR R Qm.
By replacing tr(R' Q RR'Q R) with tr (Q R R' Q R R') and R R' with v,

one obtains the result of the theorem given in Eq. (6b).



