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Foreword

Population heterogeneity dynamics is one of the research directions in
IIASA's Population Program. One typical and practical problem related to hidden
heterogeneity is the estimation of the heterogeneity distribution.

This paper describes the approach to such an estimation which is based on the
method of structural minimization of mean risk. It is shown how this method can be
implemented to some real data. The main ideas of the method are also described.

Anatoli Yashin
Deputy Leader
Population Program
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Structural Minimization of Risk in
Estimation of Heterogeneity Distributions

Anatoli Michalski*, Anatoli Yashin**

1. Introduction

Assume that there are two random variables z and T and both marginal distri-
bution of T and conditional distribution of T given z are known. What can one say

about the distribution density of z?

The version of this problem is known in econometrics and demography: T is in-
terpreted as a random duration or death time, z is the latent (helerogeneity) vari-
able which characterizes the individual’s differences in susceptibility to transi-
tions or death [1,2,3].

Denote by f(z), U(t) the probability densjty functions of random variables z
and T respectively and by k(¢ | z) the conditional distribution density function of T

given z. We assume that all these densities exist.

It is easy to see that functions U(t), k(t |z) and f (z) are related as follows
Ut) = [ k(t|z)f (z)dz . 1)

Formula (1) is the first kind integral Fredholm equation with respect to function
f (=) with kernel function k{t |z). To find f(z) when U(t) and k(f |z) are given
means to solve the integral equation (1) with respect to f(z). It turns out that the
solution of this equation is unstable. It means that small disturbances in kernel
function can produce big changes in f(z). Moreover, if in addition the kernel
function is also unknown then equation (1) can have a non-unique solution.

The last property has the important consequences for applications. It means,

for instance, that one should use maximum ancilliary information to specify the

kernel function & (¢ | z) as precise as possible before the data processing.

*Anatoli Michalski, Institute of Control Sciences, Profsojusnaja 65, Moscow, USSR
xxAnatoll Yashin, Population Program, IIASA, A-2361 Laxenburg, Austria
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Another important remark is that in applications one usually does not have
the precise knowledge of the distribution density U(¢). The typical information
which come out of, say, clinical studies are the observed death times for a sample
of n individuals. It is clear that such circumstances can only complicate the esti-

mation problem of f(z).

Recently many publications were devoted to the problems of modeling and es-
timation of heterogeneity in population analysis using other approaches. Shepard
and Zeckhauser [4] showed that heterogeneity could be responsible for overesti-
mates of the results of medical improvements. Keyfitz and Littman [5] demonstrat-
ed that ignoring heterogeneity leads to incorrect calculations of life expectancy.
Vaupel and Yashin [2,3] described many paradoxes and puzzles which can be ex-
plained using the heterogeneity concept. Heckman and Singer [1] considered the
identification problem in econometric models for duration data both for
parametric and nonparametric cases. They have found in particular that the esti-
mates of the model for duration data are sensitive to the assumptions about hetero-

geneity models. Manton et al. [6] came Lo the similar conclusion.

One idea which is discussed in our paper deals with the nature of such sensi-
tivity. It turns out that very often the identification in the presence of hidden

heterogeneity is an ill-posed problem, related to the solution of equation (1).

Some properties of this equation which are relevant to our study are dis-
cussed in chapter 2. In chapters 3 and 4 we describe the approach to the solution
of equation (1) given the information about » death times. Chapter 3 focuses on
the analysis of artificial data which were generated by the models of heterogene-
ous mortality. Chapter 4 demonstrates the results of the application of the
developed approach to the real data. In both chapters the data processing algo-
rithms were based on so-called structural minimization of mean risk approach. The

main ideas and results of this approach are given in the Appendix.

2. Estimation of Hidden Heterogeneity as an I11-Posed Problem

The three major mathematical problems are related to equation (1). The first
is about when the solution of this equation exists. The second is about whether the
solution is unique. The third is about how sensitive is the solution to the distur-

bances of the function U(¢).
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In this paper we will not analyze the first problem, referencing publication [7]
for those who are interested in a deeper understanding of the existence condi-
tions. The nonunicity problem will be demonstrated in a particular case. Since the
sensitivity problem is very important for the data analysis we will focus our main
attention in this paper on this problem.

Let us consider an example of an ill-posed problem which can arise in demo-
graphic applications. Assume that the conditional density (kernel function) can be

represented in the form

f
k(t|z) =z\t)ezp(—z [ A(s)ds) . )
0

It is well known that if the kernel function is smooth, then slight variations of U(Z)
can produce the big changes in f(z) [B]. One can see that if A(Z) in (2) is smooth,

then one can expect instability in the solution of equation (1).

The conditional density function k(f |z) given by (2) corresponds to the well-
known proportional hazard model of mortality, where z is a heterogeneity variable
and A(?) is the underlined hazard. Assume that A(f) = aXy(f) where a is some
scale parameter. Let us show that for different values of a one can find the dif-

ferent solutions of the integral equation (1).

The equation (1) now will be
t
Uu(t) = f zaX(t)ezp(—za f Ao(T)Xd 1) (2)dz @)
0

where U(.) is a density function for observed survival times.

Denote by f4(z) the solution of (3) for the case & = 1. For any other value of

a one can write
t
] /
U(t) = [ uho(tdeap (- [ ho(man rera g,

where u = az. Since for any fixed a equation (3) has a unique solution cne may

write
1
fq(z) = ‘a—f(z/a)

The relation between solution of (3) and function f4(.) follows from the next ex-

pression
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J(z) = af(az)

The last stalement shows, that using different values for parameter a we have dif-
ferent shapes for density of hidden heterogeneity variable, i.e., the solution of (3)

is not unique when a is unknown.

3. Estimation of Hidden Heterogeneity

In this chapter the new approch to the solution of equation (3) is considered.
The approach takes into account the instability property of the solution of equa-
tion (3) and the lack of information about the distribution density U({). The
method is based on the structural minimization of mean risk. The ideas of this ap-
proach are outlined in the Appendix. To implement these ideas consider the family

of functions {@(z)] where
Qz) = —lnf z2A(t)exp(—=2 f A(s)ds)f(z)d=z C))
0 0

and f(z) is some distribution density function of z with A(f) > 0. Let us take the

mean risk functional in the form
G =~f Qz)U(z)dz

General theory of structural minimization of mean risk considers mean risk func-
tional with nonnegative loss function @ (z). In our case it is not so. However, as-
suming thal the distribution of z is concentrated on a finite interval one can al-
ways add some positive constant to all functions from this family and make them po-

sitive withoul changing the optimal point of the functional.

The functional G with such @(z) is the particular case of so-called mixed en-
tropy functional. It takes its minimal value on the solution of equation (1). The em-
pirical risk functional will be as follows

1 & |7 g
Gy === Y In|f zNz,)ezp(~z [ A(s)dsf(z)dz (5)
0

L n=1 0

which coincides with the minus likelihood functional.
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As a first example let us consider the families of functions {@,{ in the form of

(4) where the functions f; (z) are supposed to be a histogram

1 &
Si(z) =_i- E ak‘iﬁk,i(z) (6)
k=1
1
where a; ; 20, b ag,y =1, and Hg ;(z) are the step functions equal to
k=1

1

———  — when z =z <z and equal to 0 otherwise, z, ;,, £ =1,2,...,%
_ k1 k+1,1 k.,
ZE+1,1 T %1

are fixed points z4; =0, z, 1= 1, ay 4 are the parameters of the histogram, 7 is
the number of the parameters.

We used the values z; ; = (k-1)/1 for creating the histogram. One can use
any other set of z, ; if there is information on subinternational inside [0,1] where

density function f(z) changes fast. If there is no such preliminary information,

then one should use equidistant points Zpq-

The histogram approximation of densities is widely used in statistical prac-
tice. It presupposed the finiteness of the possible values of z. The number of in-
tervals of the histogram will be dél.ermined during the structural minimization of
risk procedure. We assume that the distributions f(z) are all defined on the in-
terval [0,1]. This interval can be changed if one has preliminary information on

where the distribution of z is concentrated.

It is important to emphasize that we do not assume real distribution of hetero-
geneity parameter to be in form (6). Expression (6) gives only an approximation of
real distribution and to implement structural risk minimization method we don’t
need to know the precise form of this distribution.

Now it is easy to construct functional families fij by changing the number of

parameters i in (6). So family {@,} will be given by functions
F1(z) = aq4f14(z) + axHy4(2) ")
family {@,} will be given by expression (8)
F2(z) = a1l 15(2) + azlizy(z) + agall3x(z) ®)

and so on. We will use the uniform greed z44,234,...,244 for which
(Z¢ 414 — 2¢ 4) =1/1. In the case if one has more information on heterogeneity
distribution, one can use other special greeds with different knots. The only thing

is important that the grid is to be fixed before one starts to implement the struc-
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tural risk minimization method, because the inequality (A5) in the Appendix is valid
only in this case. If one will try to fit the greed to the experimental data, than one
can have wrong result.

Substituting (6) into (5), one can see that in every family @; one is to minimize

the functional

L 1 «a Az..) _ _
6, =-3% In % 3 k,1 n (e B(zndzky _  ~P(Tn)Zk414 ©)
k

21 A% B(zy,)

—B(Tn)zp1 _ e 'ﬁ(rn)zk+l.i)>

+ B(xy ) (2 4 ZE 41,1

where

Bzp § = Zpy1,10 ~ 2,0 o

In

B(z,) = [ As)ds
0

where Zg,q are the knots in the greed for (6).

Following the structural minimization of mean risk approach one should minim-

ize the functional of empirical risk (8), then compare the values of the functionals

L = j
lnf zA(f)exp(—=z f A(s)ds)fi'(z)dz
Bi - _l 7=1 0 0
J4 a \/ Ki(In(L/K;) +1 —Ing

L

for different ¢ and choose the minimal value of B,. Here f{(z) denotes the histo-
gram constructed by minimizing functional (5) in the family of histograms with %
paramelers.

As a second example let us consider the situation when preliminary informa-
tion is available on the heterogeneity distribution. Assume that heterogeneity
variable z can take the finite number of known values. One needs to estimate the
respective probabilities observing a sample of survival times z4,z5,...,2; . This ap-
proach corresponds to the case when the population under investigation consists
of a finite number of homogeneous subgroups and we know the values of hetero-
geneity variable for each of these subgroups. This situation is simpler than above
but it is relevant for many praclical situations. In real life we can have informa-

tion aboul surviving in, say, genetic subgroups and we may be interested in pro-
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portions of these subgroups in the total population.

To use our method for this case we rewrite expression (4) in the form
1 T
Q(z) = =ln (Y Z;Pyhexp(=Z; [ NdT))
Jj=1 0

where Pj =P(z = zj).
As a matter of fact now we estimate not function but some numbers and instead

of functional family {@], now one can use just i dimensional vector space, where i

is number of fixed groups minus 1 because the sum of Pj is to equal 1.

Now one can check different hypotheses about subgroups in total population.
When we consider different numbers of groups we have different families and

minimizing expression

L 1 In
Y In( Y Z;PyA exp(=Z; JR:£)))
B = 1 n=1 4= 0
=
i{In(L/i)+1) —lng
1 -
4 :

on proportion Pj and number of groups i we will find the best suitable number of
subgroups and proportions for them.

To demonstrate the power of the method, we performed calculations with sam-
ples, generated with known probabilistic distributions. We considered the continu-

ous distribution of heterogeneity variable with density function
f(z)=1/(Bz) , z €le 1]

where B is some known parameter. The density function corresponds to the case

when the heterogeneity variable can be expressed in the form used in Cox’s model
[9]

z =e AU

and U is a random variable with uniform distribution on the interval [0,1]. For

both examples the numerical calculations were provided.

In the first case we estimated the continuous density (f (z)) by histogram. The
number of paramelers in the histogram was determined on a given sample by the
method described above. Typical estimale of continuous distribution (f(z)) is
shown in Chart 1. In Table 1 we put the value of parameter B8, sample size L, deter-

mined number of paramelers in histogram i, probabilily of every subinterval in
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correspondence with f(z), P, and estimated probability of every subinterval in

correspondence with the histogram P.

Table 1. Table 2.
L i P P N L P P
1 50 3 0.45 041 2 50 0.70 0.65
0.31 0.29 100 0.70 0.71
024 030 0.30 0.29
100 3 0.45 0.48 300 0.70 O0.70
0.31 0.36 0.30 0.30
0.24 0.16 4 50 0.40 0.44
300 5 0.29 0.33 0.30 0.32
0.23 0.25 0.20 0.18
0.19 0.13 0.10 0.05
0.16 0.15 100 0.40 0.38
0.13 0.14 0.30 0.31
3 50 3 066 089 0.20 0.21
0.21 031 0.10 0.10
0.12 0.00 300 0.40 0.40
100 3 06 0.72 0.30 0.30
021 028 0.20 0.21
0.12 0.00 0.10 0.09
300 S5 052 0.50 6 50 0.30 0.24
0.20 0.23 0.25 0.20
0.13 0.15 0.20 0.22
0.09 0.12 015 0.8
0.06 0.00 0.05 0.06
9 50 4 0.85 1.00 0.05 0.10
0.08 0.00 100 0.30 0.34
0.04 0.00 0.25 0.22
0.03 0.00 0.20 0.19
100 5 0.82 0.88 0.15 0.10
0.08 0.12 , 0.05 0.08
0.04 0.00 0.05 0.07
0.03 0.00 300 0.30 0.33
0.02 0.00 0.25 0.28
300 6 0.80 0.79 0.20 0.20
0.08 0.21 0.15 0.13
0.05 0.00 0.05 o0.02
0.03 0.00 0.05 0.04
0.03 0.00 ' ‘
0.01 0.00

From Table 1 one can see that the larger the sample size, the better the esti-

mation, but even in the case of small sample one still has a goed estimation.



Chart 1.

J3(z) A

0 0.33 0.66 1.0 z

In the case of mix distribution when heterogeneity variable may have only
fixed values we estimated probabilities of these values, or proportions between
different states of heterogeneity variable. In Table 2 we put number of subgroups

in population ¥, sample size L, real proportions P, and estimates P.

Here again one can see that the larger the sample size, the better the estima-

tion, but in small sample case the estimate is good either.

4. Experiments with Real Data

In this chapter we present the results, obtained by treatment of real data.
The data file was exlracted from the Umea Data Base with kind help of Gun Stenflo
{(Umea University, Sweden). The file included records of survival time for children
born in one parish by mothers not older than 26 years in 1818-18395. That file was
separated in two subfiles in accordance with parent's occupation. First subfile in-
cluded records for children of farmers, workers, rural proletarians and cases
with no occupational reference. The second subfile included the rest and in fact it
was records with unknown occupation. We had 196 records in the first subfile and
979 in the second one. It was found that survivalship of children in these two files
is different. For children of farmers, workers, rural proletarians and no occupa-
tional reference the mean value of survival time was 1180 days. B07 of this group

survived more then 200 days, 507 survived more than 540 days and 207 survived
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more then 2000 days. For children of parents with unknown occupation the mean
value of survival time was 427 days. 807 of this group survived more then 90 days,
507 survived more then 200 days and 207 survived more then 500 days. Histograms

of survival time, based on these two files are presented on Charts 2 and 3.

Chart 2.

Ssurvivalship Proportions

31

for Children of Phisical Workers

(in percents)

]

.3 )
= 7
-
Illl‘l-lkl_i_ia_'_-l__i day's

0 500 100D 1500 2000 2500 300 3500 HODD 4sSO00  SO000

It is worth mentioning that the percent of dead children in the first subgroup
is three times less than in the second one. In numbers per cents are 18.57 for the
first subgroup and 53.07 for the second one. Such a situation could happen for in-
stance, if the subgroup with unknown occupation has had more cases with bad feed-

ing of the children and only "strong chaps’ survive.

To demonstrate the use of the method we put back records from the two sub-
groups together. Information about surviving in those two subgroups, which we ob-
tained on the preliminary investigation, was used as apriory information. We set a
hypothesis that the general sample consists of two homogeneous sets. The value of
hazard rate for the first set we assumed to be equal to the estimate of hazard rate,

calculated on surviving times in records for children of physical workers. For the
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second set we put hazard rate equals to the estimate of it, calculated on surviving
times in records with unknown occupation of parents. The numbers were 0.000847
and 0.00234 for the first and the second sets, respectively. For estimation of ha-

zard rates we used maximum likelihood estimate in the form

b=
1/1L

g

2]

i=1

Then we applied our method to estimate the proportion between two mentioned
sets in the general sample. By calculations on IBM. PC we estimated the proportion
between first and second sets as 5/13. In our data file the relation between
records with occupation more than four to records with occupation zero was 5/14.
So the estimation is rather close to the original value. It means that the method

can be successfully used for estimation of hidden heterogeneity.

Chart 3.

3 Survivalship Proportions
for Children of Parents

with Unknown Occupation
{in percents)
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Appendix

Structural Minimization of Mean Risk in Small Sample Cases

Equation (1) can be solved using special probabilistic techniques for its solu-
tion. The approach is based on the methods of structural minimization of mean
risk. Comprehensive analysis of this problem was developed by Vapnik [10]. More
detailed consideration of integral equations’ solution problems related to the mean

risk minimization was done by Michalski [11].

The idea of mean risk minimization method is as follows. Let X be a random
variable with distribution function F(z). Let {@: @(z) = 0] denote the class of all

nonnegative functions such that for each function @(z ) the functional
G = [ Qz)dF(z) (A1)

exists. The functional G is called the mean risk functional. To minimize the mean
risk means to find the function @* from the family of functions {@] such that mean
risk takes the minimal value on @*. Note that if the distribution function F(z) is

known, the approach to minimization of a mean risk is straightforward.

In many practical problems, however, the distribution function of X is unk-
nown, but the sample of independent realizations of X is often available. If the
sample is large enough the problem is equivalent to the mean risk minimization with
a known distribution function. If the sample is small then one should use another
approach to minimize the mean risk. Such approach is called the structural minim-
ization of mean risk [10].

It turns out that the property of sample to be small” or "large” depends on
its size I and on the properties of functional family {@]. This crucial property of

functional family is called the "complexity" of this family.
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The main idea of structural minimization of mean risk method is to substitute
the unknown mean risk functional (A1) by the empirical risk functional G; which is

completely defined by the sample of random variable X:

1 L
j:
to structurize the functional family (@], selecting several classes of
(@,1.1@,), . . ., (@, ] and making minimization within each class.

The first step in this procedure seems to be natural since the sample of X is
the only information about unknown distribution. The next step deserves special

explanation.

Minimizing the empirical risk within the class {@] one should be sure that its
minimizing function is close enough to the function that minimizes the mean risk.
The guarantee of this closeness is the uniform convergence of the empirical risk
functional to the mean risk functional when the size of the sample L tends to infini-
ty.

The uniform convergence of empirical risk means that for any fixed € the pro-
bability P

G -6

P, =P — = A3
el {QEiQf G ¢ (43

goes Lo zero when the size L of the sample tends to infinity. It turns out that pro-
bability P, depends on the property of a functional class {@{. This property is
represented by the notion of "complexity” of a class {@{]. The precise mathemati-
cal definition of the measure of complexity X of a functional class one can find in
[10]. Later we will give the measure of complexity for some particular functional

classes.

If the uniform convergence exists then probabililty P can be estimaled as

follows
P,y < (—e)K Lt (A4)

where K is the complexity index. One can see from this inequality that the less X
is, the better is approximation of mean risk by the empirical one. it means that in
the "simple" classes of functions one can find more precise estimation of the mean

risk.
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To implement this result to the problem of mean risk minimization using the
sample of values of random variable X, let us consider the system of functional
classes {@,] € {@,] c - - [@,] with the increasing indices of complexity. Let us
show how in this case the inequality (A3) can be used. Taking into account (A4) we

have
P =P[ su (G—) >t < (Le)K‘e L (AB)
Qe G !

where K; is the complexity index of {@,].

Denoting by ¢ the right-hand side of inequality (AS) one can easily find the

formula for € when ¢, L, and X; are given

L
K, (ln— +1) -1
_\/1(nKi ) ng
E=
L

Using this expression one can estimate the mean risk value by the empirical risk

L
KlIn—+1)—1
—— < =
G L

Gr
G < . (AB)

\/Ki(ln—L— +1) -1lng
1 it
L

This formula makes sense for all functions from the class {@,{ if the denominator in

using formula

or

the right-hand side is positive. Note that the reached value of mean risk in the

class {@,;] has an upper bound B,

min &
QefQ;] L

\/Ki(ln—é— +1) —1n g
Ky
1= L

Thus for each functional class {§;] and given L and ¢ one can calculate three

variables: &,, GLi, and B; which correspond to the value of relative uniform ap-
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proximation error, minimum value of empirical risk in the class IQ” and the upper
bound of the reached value of the mean risk at the minimum point of the empirical

risk in the class {@;].

In the classes with small X; the value of &, is small and the empirical risk
gives a good approximation for the mean risk. However the minimum value of the
empirical risk GZ can be high and consequently the reached value of the mean risk

upper bound 5; can also be high.

With the increasing of the complexity of the class {@, +1§ the approximation of
mean risk by the empirical risk became worse, the value of £; 4 became larger but
the maximum value of the empirical risk Gf *1 is decreasing since (@, € {@;,4) As
a result of that the upper bound B, ,4 is also decreasing. Starting from some level
of complexity of the class {@,{, say K., the growth of the error ¢, is not compen-
sated by the decreasing of the value of the empirical risk Gf and the upper bound
of the reached value of the mean risk starts to grow. It means that {@,.} can be
chosen as a proper class in which the minimization of the empirical risk will
guarantee the minimal value of the upper bound for the reached mean risk with
given probability 1 —¢.

One example for the system of classes [Qif can he given by the algebraic poli-

noms of different degrees:

1-1
Q3 = Q. y) =y - ¥ a;z))¥
j=0
where ay are the arbitrary parameters. If the sample of the couple (z,y) is given

then one can calculate the value of the empirical risk and the value of 7; which we

will identify with the estimation of the mean risk

By solution of the mean risk minimization problem using the finite sample of
couple (z,y) we will understand the function @* which givees the minimum of the
empirical risk in the class {Qi.}. This value depends on sample size L, sample
values, and the validation value of the uniform approximation of the mean risk by
the empirical one 1—¢. In practical calculations this value is often taken as .95.

The typical situation is represented in Figure 1.

The important property of the structural mean risk minimization is that it
does not require that the minimizing function belongs to the functional family {@].
The method allows to make the best guaranteed approximation based on the finite

size of the experimental sample and set of classes {Qlf,{Q?_I,... . Moreover, it
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Figure 1.

-
&; values X
Gf values
—————————— B‘_. values

turns out that in the case of finite samples sometimes one should exclude the
minimum point from the functional class [10].

Let us explain the notion o complexity index K for functional family {@]. As-
sume that one has a sample T = le,...,XLj of random variable X. For any given
number C > 0 and function @ (z) one can divide the sample T into two subsamples T’
and T using the rule: number Xj belongs to subsample T7 if Q(Xj) > C and to sub-
sample T if 0(:51) =< C. Changing the number C and taking all possible functions
Q(z) from {Q] one gets different subsamples. The maximal number of different
divisions for all possible samples having the size L is called the complexity func-
tion of the class {@] on the samples having the size L. This function depends on
the sample size and the functional family. We will use the notation mg (L) for this
function. It is clear that mQ(L) < 2L, 1t turns out that the complexity function ei-

ther equals 2L or starting from some number X satisfies the inequality

mo(L) < (£ e)¥
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where X is the critical sample size. The variable X depends only on the properties

of the functional family {@] and is called its complexity index.

The value of X in some cases can be easily calculated. If, for instance,
N-1

@z, y)=(y — 2 anj)z then K = N. Another example corresponds to the case
Jj=0

when the function @(z) has not more than N extremums and z is scalar. In this
case XK =N + 1 [10].

Note thal everywhere in this chapter the explanation of mean risk optimiza-
tion was conducted in terms of functions of one or two random variables X and Y.
One can easily see that the approach is appropriate for an arbitrary number of

random variables.
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