
W O R K I N G PAPER

PROBLEM INTERFACE FOR NONLINEAR DIDAS

Part 1: Static Systems

Andrzej Lewandowski

September 1 986
WP-86-50

I n t e r n a t i o n a l I n s t i t u t e
for Applied Systems Analysis

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

PROBLEM INTERFACE FOR NONLINEAR DIDAS

Part 1: Static Systems

Andrzej Lewandowski

September 1986
WP-86-50

Working Papers are interim reports on work of the
International Institute for Applied Systems Analysis
and have received only limited review. Views or
opinions expressed herein do not necessarily repre-
sent those of the Institute or of its National Member
Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

One of the important problerrrs of designing and inplementing Decision
Sqprt Syskm relates to the user friendliness and sirrplicity of problem
definition. This is especially important in the case when a d e l of the
system, constraints and objectives are described in tern of nonlinear
equations. In a l I existing implementat ions of decision support systems
this definition n u s t be perfod on the level of EORIWAN or other high-
level language, which requires a rather deep knowledge of -r prog-
ramning. Preparation of the problem, especially analytical -tion of
derivatives can also be the sour&! of errors.

In the paper the principles of inplatentation of user-friendly in-
terface to DIDAS system is presented. This interface utilizes the small
subset of the PASCAL language for defining the problem; the compiler of
the language perfom all the algebraic mnipllations necessary to analy-
tical calculation and captation of the derivatives. This concept sirrpli-
fies essentially the utilization of the DIDAS system and it can be exten-
ded for many other amlications.

Alexander Kurzhanski
Chairman
System and Decision Sciences Program

Table of Contents

INTRODUCTION

AUTOMATIC COMPUTATION OF GRADIENT

2 . 1 Application of general purpose languages

2 . 2 Preprocessors to high level languages

2 .3 Application of very high level symbolic

manipulation languages

2 .4 Formula manipulation languages

PROBLEM INTERFACES IN EXISTING IMPLEMENTATIONS OF

NONLINEAR DIDAS

POSSIBLE APPROACHES IN DESIGN OF PROBLEM INTERFP-CE

FOR NONLIKEAR DIDAS

4 . 1 Spreadsheet programs

4 . 2 The TR!Solver approach

4 . 3 Specialized programming languages

4 . 4 Extension of existing high level languages

EXTENSION OF PASCAL FOR APPLICATIONS IN DECISION

SUPPORT SYSTEMS

5.1 General assumptions

5 . 2 Definition of the language

5.3 Structure of the system

IMPLEMENTATION OF THE COMPILER AND INTERPRETER

EXTENSIONS

REFERENCES

APPENDIX

P R o B u M ~ m - D U l A S
Part 1: Static systmw

Andrzej Lewandowski

The existing experience with various implentations of interac-
tive decision support system - for example, of DIDAS type (Dynamic In-
teractive Decision Analysis and Support, see Grauer at all., 1984) in-
dicates, that one of the important features, deciding about real ap-
plicability of the software is sinplicity and user friendliness of the
mn machine interface (Lewandowski , 1986 . This problem is especially
important when constructing decision support systems for problems des-
cribed by nonlinear mathematical dels.

Problems described by mathematical models of linear structure
were investigated by m y authors and several approaches for defining
such problems interactively were proposed. Such problems are samehaw
easier to define because the entire &el can be specified as a col-
lection of vectors and matrices. Therefore, the task of defining the
problem - i.e. converting initial data and knowledge about the struc-
ture of the problem into a linear programning nrsllel can be performed
without essential conceptual problems. Several software tools w r t -
ing this task were proposed recently (Orchard-Hays, 1978, Fourer,
1983). Another approach, recently gaining on popllarity, is the use of
concept of a spreadsheet program.

When dealing with nonlinear models, the situation is much mre
complicated. One of the reasons is the negative character of the defi-
nition of nonlinear problems: "a nonlinear problem is such a problem,
which is not linear". Another source of difficulties is connected with
the requirement of calculating the derivatives of the objective and
constraints functions. These derivatives are necessary when applying
nonlinear programming methods, since practically only differentiable
optimization methods are sufficiently efficient and robust to be ap-
plied in interactive decision support systents. Usually the derivatives
must be calculated analytically by the user of the system and properly
interfaced to the rest of software. This task is time consuming and
can be a source of errors that are typically difficult to detect. Ano-
ther problem relates to the nature of problem interface - the user usu-
ally is forced to define his problem in EDEtlNW or other high level
language according to the specification of the interf ace provided by
the implementator of the system. This can be a rather complicated
task, requiring certain skills in c-ting.

All these difficulties must be overcome when we want to design a

user-friendly man machine interface for a decision support system. The
user friendliness of the man machine and problem interface is espe-
cial ly important for microcomputer implementations of the DIDAS sys-
tem. These implementations are especially dedicated for users not
being computer specialists.

The aim of this paper is to present a model implementation of a
flexible problem interface based on the PASCAL language. In order to
make the implementation sufficiently simple, a very small subset of
PASCAL was implemented. It is a straightforward task to implement the
sarrre features in full sized PASCAL, particularly since a source code
of several PASCAL cmpilers is available (PASCAL-S, see Wirth, 1981,
and PASCAL-P, see Nori at all, 1981 and Pemberton, 1982 . Despite the
simplicity of the implemented language, the problem interface descri-
bed in the paper is a rather powerful tool, which can be used for
defining quite complicated, practical problem.

The problem of gradient calculation was investigated by many
scientists working in the field of mathematical progrdng and sen-
sitivity analysis. The algorithmic approach for calculating deriva-
tives, was proposed for application in sensitivity analysis by Tosrrovic
and Vukobratovic (1972). One of the early works was done at IIASA by
Orchard-Hays (1978 , but his system was oriented only to automatic
differentiation of polynomials. Deep investigation of the problem of
differentiation of mathematical models, especially of implicit type
and dynamic models described by differential and difference equations
were performed by Wierzbicki (1977, 1985 . The most complete presenta-
tion of various techniques of gradient computation and possible ap-
plications of these techniques can be found in the monography by Rall
(1981) and his revue paper (Rall, 1980).

Let us analyze several existing approaches supporting the pro-
blem of autcanatic calculation of derivatives.

2.1 Application of general plrpose languaqes.

The first approach was proposed by Wegnert (1964) and later
exploited by Kalaba and others (Kalaba, 1965, 1983, 1984). They util-
ize FORTRAN to write programs for automatic calculation of deriva-
tives. The principles of the method (known as "table method") are as
follows:

- every variable is represented by 2 (or more) dimensional
array; the first element of the array contains value of the
variable, the next - values of first and possibly higher deriva-
t ives ,

- all standard functions and operators are emulated by special
subroutines; these subroutines calculate values of the result as
well as values of corresponding derivatives,

- mathematical expressions are camposed from the emulating sub-
routines in such a way, that the resulting program reflects the
tree structure of corrq?uted expression.

The following are the examples of subroutines which emulate addition

and multiplication:

SUBROUTINE ADD(XIYIR)
DIMENSION X(2),Y(2IIR(2)
R(l)=X(l)+Y(l)
R(2)=X(2)+Y(2)
RETURN

SUBROUTINE MUL(XIYIR)
DIMENSION X(2),Y(2),R(2)
R(l)=X(l)+Y(l)
R(2)=X(l)*Y(2)+Y(l)*X(2)
RFmTRN

If the user wants to calculate the value and the derivative of the ex-
pression like

he should prepare the following program

DIMENSION Xl(2),X2(2) ,X3(2) ,Rl(2) ,R2(2)
. . .
CaLL MUL(XlIX2,Rl)
CALL ADD(HIX3,R2)

Evidently, some "initial conditions" must be set for values of deri-
vatives; if the user wants to calculate the derivative of the above
expression with respect to xl, the following assignments must precede
the subroutine calls:

In the similar way, higher order derivatives can be calculated.
Details of this process can be found in the paper by Kalaba and Tish-
ler (1983).

Other languages were utilized for writing programs for autowatic
calculation of gradient. AU;OL 60 was used by Van de Riet, who in 2
volume report (Van de Riet, 1970) gives very detailed analysis of the
use of high level numerically oriented language for fomla analysis,
investigates such problems like fomla simplification and proposes
convenient tools for defining problems. A similar system, but written
in PASCAL, was designed by Shearer and Wlfe (1985). AU;OL 68 was used
as the implementation language by Ince and Robson (1980).

The approach presented above is evidently the simplest one. It
does not require special (usually very complicated) tools - it is
enough to have access to any high level language and certain "know
how" to define a particular problem. This approach is, however, avail-
able only for experienced programtrers and is too complicated for end
users. It can however be efficiently utilized for implementing dedi-
cated decision support systems, where the problem definition is spe-

cified on the implementation stage and remains unchanged during
utilization of the decision support system.

2.2 Preprocessors to high level 1-ges.

The direct utilization of high level languages is rather not a
straightforward task. It follows from two reasons:

- the implementator rrrust posses certain knowledge about the used
method;

- the mathematical expression m t be converted to postfix form;
in other words, it is necessary to perform manual "parsing" of
the expression. This process is time consuming and can be the
source of errors.

Parsing of mathematical expressions is a well recognized task
which can be easily caputerized. Therefore it is possible to create a
computer program which could convert the mathematical expression for-
mlated in standard notation, into high level program according to the
concepts presented above. Such programs are known as preprocessors.

The number of such preprocessors for fomla manipulation are
known. The AUXlL 60 based one was designed by Van de Riet (AEC ALGDL,
Van de Riet, 1973). This constitutes in fact a full featured language,
being the superset of ALGDL 60. All the standard features of ALGDL are
available to the user. Additionally new standard type f o d a makes
possible a rather extensive fomla manipulation. The source program
written in AEC ALGOL is translated to standard ALGOL and further pro-
cessed by ALGDL compiler. The AEC-AIX30L can be easily Wlemented on
any computer, because the preprocessor is written in standard ALGDL.
The only requirement is availability of U L compiler.

The other similar preprocessor is A m preprocessor (Kedem,
1980 , a FORTRAN based system. The principle of design is exactly the
same like AEC AUXIL. The user specifies his problem in extended FOR-
TRAN and the preprocessor converts the problem description into
sequence of standard EOE?IWW statements. Both systems are expandable -
the user can define his awn operators and supply his awn subroutines
and procedures performing necessary actions. Similar preprocessor -
CODEX and SUPER-CDDEX was developed by Rall (1981).

The preprocessors mentioned above constitute a very powerful
tool - h t also for experienced user. Good familiarity with the host
language is necessary to use these systems efficiently. breover, the
fomla-oriented features are rather sophisticated and long training
as well as some understanding of the internal organization of the sys-
tem is necessary to use them efficiently. The power of such systems
follows from the accessibility to all features of host level language
as well as the availability of the compilation product which itself is
a high level language program. This makes adaptation of the resulting
program relatively easy and ensures very high flexibility of this
approach.

2.3 Z-&plication of very high 1-1 symbolic mmipilation languages.

The number of special languages were developed which are either
especially designed for f o d a dpulation, or are more general px-

pose oriented, but are especially convenient for formula manipulation.

The most known language of this type is LISP (Winston, 1981).
Fomla differentiation and manipulation can be programmed in LISP
rather easily (Nicol , 1981 , hcwever for a programner having long ex-
perience with FORTRAN or PASCAL like languages mving to LISP is con-
nected with serious conceptual difficulties. A number of packages for
fomla manipulation were implemented in LISP, rmst of them for ap-
plications in theoretical physics.

A similar tool is MU-SIMP language developed by SoftWarehouse
for a broad range of microcomputers (Apple, IBM-PC and others) and
distributed by MICEIOSOFT (1983). This language is in fact an extension
of LISP, but unlike LISP which is a list processing language, MU-SIMP
is a tree processing language. This fact and much mre convenient syn-
tax of MU-SIMP makes this language an ideal tool for implementing for-
mula manipulation problems (Douglass, 1982). Together with MU-SIMP,
the MU-MATH system for symbolic fomla manipulation, implemented in
MU-SIMP is distributed. The power and the flexibility of the language
as well as the availability of m e codes of rather sophisticated
fomla maniplation algorithms, make this language the most promising
tool for progranming the user and problem interface for decision sup-
port system. This option however, has not been sufficiently inves-
tigated as yet.

Another general pxlrpose high level language which can be used
for implementing the formula differentiation and maniplation algo-
rithms is PROKG (Wlmham and Hall, 1985 . Programming the formula
manipulation in PROLOG constitutes a rather simple task - but simi-
larly like in the case of LISP, switching to this language can be
rather difficult.

All the languages listed above are oriented to processing of
symbolic information and lack such features like highly efficient
numerical computation, file processing and flexible access to screen
and keyboard. Interface to other general purpose languages like C or
PASCAL is limited or not available at all. Therefore certain effort is
necessary to analyze the practical applicability of these languages
for implementing the interfaces for decision sqprt systems.

From the very early history of caqmter science a lot of works
have been done on developrent the special Exlrpose languages for sym-
bolic fomla manidation. Currently, the MACSYMA and REDUCE are mst
known and are mst widely used (see Fateman, 1982 for detailed dis-
cussion). Symbolic mathematical conputation languages are also dis-
cussed by Wolfram (1985) who presents various approaches and discusses
the features of SMP - one of the mst powerful symbolic manipllation
languages currently available. The other language possessing certain
poplarity is PASCAL-SC (PASCAL for Scientific Cbqntation, see Kulish
and Miranker, 1983). PASCAL-SC was applied for gradient campltation by
Rall (1983, 1984).

The situation with formula manidation languages is similar to
the described above - these languages are usually very complicated,
require long training, interfacing to numerical and file processing
modules can be difficult. The c-ter resources necessary to ef f ec-

tively run symbolic manipulation programs are rather high (for exam-
ple, according to Wolfram, 1985, the kernel of SMP language contains
over 120000 lines of C code). Therefore, they can be rather considered
as tools for high qualified specialists in mathematics and computer
science, and it seems to be rather unlikely to use them as user front
end for decision support systems, or tools for implementing such front
end.

Currently, there exist 3 versions of nonlinear DIDAS: DIDAS-N
developed by Grauer and Kaden (19851, a specialized system developed
by Kaden and Kreglewski (1985) for solving decision problems relating
to groundwater management and general purpose D I M system implemented
by Kreglewski and others (Kreglewski, et. all., 1985). Let us analyze
the problem interfaces available in all these versions of system.

The interface used in Grauer's and Kaden's version of the system
is rather conceptually simple, but not very user-friendly. The equa-
tions describing objective and constraints functions must be program-
med in FORTRAN. The authors m l y the "skeleton" FORTRAN subroutine
with enpty "holes", where the user rmst locate his EDRTRAN code. This
is a rather complicated task - separate parts of the problem defini-
tion must be located in various places of the d e , and the code it-
self must be written taking into account the variable names and struc-
ture used in this skeleton subroutine. What makes defining the problem
especially difficult is the fact that, writing his code, the user must
properly aufanent all his fomlas with the penalty function tern and
their derivatives. This is conceptually rather difficult for a user
which is not familiar with mathematical programing algorithms and can
lead to numerous errors. Variable ~ m e s conflict is also probable.

The general purpose version of nonlinear D I M developed by Kreg-
lewski and others (1985) also needs a FORTRAN subroutine containing
the problem description. Unlike to the previous system, however, the
user rmst preserve only the general structure of the subroutine header
(formal parameters declaration) and COPlMON block. No variable conflict
can occur, and the standards according to which the body of the sub-
routine rmst be composed are quite clear and straightforward. The main
disadvantage of this interface relates to the definition of deriva-
tives - the user must calculate these derivatives analytically. This
is usually a t h consuming process and the source of various errors
that are difficult to detect.

To minimize the probability of occurrence of errors in analyti-
cal gradient cmptation, several authors proposed numerical proce-
dures for gradient checking. Detailed analysis of the problem, and
sample procedures were discussed by Wolfe (1982 . This approach was
utilized by Kreglewski (1985) in his version of the D I M system; a
similar procedure was implemented in MINOS-AUGMENTED nonlinear
programning system.

The simplest interface has the DIDAS-like system for solving
water management problems developed by Kaden and Kreglewski. This sys-
tem was designed to solve only one class of problems, therefore a
model of the system was programned only once, in a very efficient way.
The user interacts with the system only on the level of input data and

reference point selection.

Concluding, the following are the basic disadvantage of the ex-
isting impllementation of problem interface in nonlinear DIDAS:

- the user must complte analytically all derivatives of objec-
tive and constraint functions,

- the objective and constraint functions as well as all deriva-
tives must be programned in FURTRAN according to the specifica-
tion supplied by the implementator of the system; this specifi-
cation can be difficult to understand for non-experienced user,

- the user must be familiar with details of the compting en-
vironment of the corguter which he is working with - such like
program editor, compiler, linker, operating system c d lan-
guage etc. This is the most severe limitation, which restricts
essentially the usability of the system; a long training is nece-
ssary to work with the c-ter efficiently and without troubles
on this level of interaction.

- any changes of the model - the process being in fact one of
the important stages of interactive work with the system, cannot
be performed within the system.

k t us point out that problem definition and modification is one
of the most important stages of working with any decision support sys-
tem. The sequence: program editor - FORTRAN corrpiler - linker - opera-
ting system, being in the fact one of the stages of interaction with
the system, slows down essentially the interaction process, makes it
difficult and inefficient . Theref ore, the user friendliness of the
problem interface requires special attention - especially in the case
of nonlinear problems.

4. POSSIBLE APPRaACBES IN DESIml OF Pmmm llwmwzE Emt ImauwAR
DIn4s

Currently, there does not exist ready to use tools which could
be applied directly and without essential modifications for building
problem interface for nonlinear DIDAS. It is possible, however, to
adapt some existing methodologies of defining nonlinear problems for
applications in decision support system. Let us analyze the existing
options.

This method of interaction is very poplar and used in almost
all business oriented software. It can easily be adapted for defining
linear programning problems - it is very easy to enter the standard or
multiple criteria linear programning problem as set of matrices. There
exist commercial codes for defining and solving linear programing
problem which base on well known IMWS spreadsheet program (General
Optimization Inc., 1986). The interfacing between spreadsheet program
and linear programning solver is relatively easy - each spreadsheet
program can generate outpt files containing all data entered to the
spreadsheet cells. This file can be read easily by linear programning
solver; this solver can generate the solution file which can be im-
ported to the spreadsheet.

In the case of nonlinear problems the situation is not so easy.
In the principle, all spreadsheet programs make it possible to enter
and to use formulas as cell contents. Unfortunately, it is usually not
possible to transfer formulas to external file. It is possible to save
the whole worksheet on disk, but the file format is proprietary and
not described in the mual. Some options are available (like .PRN fi-
le in IDCUS) which make it possible to saving formulas in ASCII file,
but usefulness of such information is questionable. The mst severe
limitation is caused by lack of accessibility to the f o d a evaluator
module. Therefore, comnercial spreadsheet programs like LrM21S, MULTI-
PLAN and others cannot be used directly for defining nonlinear deci-
sion analysis problems.

The spreadsheet interaction methodology has however several
advantages, which could mtivate further research in this direction.
The properties of a spreadsheet which make this approach convenient
for the user are as follows:

- a spreadsheet belongs to the class of non procedural lan-
guages, i .e. the sequence in which the separate formulas are
evaluated depends only on the logical relationships between for-
mulas and data, not on the sequence in which they are appear in
the program text,

- rather extensive testing of program and data correctness can
be performed in a spreadsheet program; this is possible due to
existence of NULl; and N/AVAIL data types,

- program entering and editing are very easy in a spreadsheet,
- a large set of "business oriented" standard functions is build
into a typical spreadsheet,

- a spreadsheet is typically integrated with graphic and data
base subsystems.

As it was mentioned above, cowmercially available spreadsheet
programs cannot be used directly as the user front end for decision
support systems. It would be highly interesting however, to apply the
concept of spreadsheet for this purpose. To achieve this, either a
spreadsheet program mast be coded in one of the available high level
languages, or spreadsheet codes being in pblic d m i n could be used
for this m s e . One of the possible alternatives (due to several
restrictions, only for experimental implementations could be MICRO-
CALC program supplied by BORtAND together with TURBO-PASCAL (Borland,
1985).

The structure of MICRO-CALC (as well as similar spreadsheet
programs is quite straightforward - it consists of the interactive
interface, data spreadsheet and f o d a evaluator. The formula eva-
luator calculates all f o d a s present in the data sheet, after every
change in the spreadsheet or on user's request. To use MICRO-CATXI as
problem interface to DIDAS the following changes and amendments to
this system rmst be provided:

- selected variables rrnxst be marked as decision variables, ob-
jective variables and constraints variables,

- each "numerical" cell should contain not only values of the
objective, but also values of all derivatives with respect to
all decision variables currently defined. Therefore such spread-
sheet could be treated as a "dtilayer" one.

- the fonnula evaluator rmst be properly modified in such a way,
that conputing the value of fomla, all the derivatives should
be calculated sirrrultaneously,

- the formula evaluator should be implemented as procedure ac-
cessible both from the spreadsheet interface level and from the
solver (optimization routine),

- the interface between the formula evaluator and the solver
must be provided, in order to inform the solver about locations
of decision variables, constraint variables and objective varia-
bles.

All the above changes are rather easy to implement; the only
change which is mre complicated relates to incorporating the fomula
differentiation process into the formula evaluator routine. This is
discussed in a further section of the paper.

It was recognized relatively early, that conventional spread-
sheet amroach is not very useful for analysis of more complicated
problems arising in complex model applications. This takes place
especially, if model equations are fomulated in implicit £om, i.e.
in the form of set of equations which rrrust be solved in order to find
values of objective functions corresponding to given decision varia-
bles.

The standard spreadsheet programs can be -lied even in this
case, but resulting programs are not natural and this task requires
some "smart" programming techniques (see, e . g . Haynes , 1985 where
WITIS was applied to dynamic analysis of electronic circuits). There-
fore special approaches were developed to handle such problems.

One of the last and most interesting is the TK!Solver system
developed by Konopasek (1985) and comnercially distributed by Software
Arts for IEM-PC corrpxters. This system has spreadsheet like user inter-
face, which operates on two data sheets - the variable sheet and rule
sheet. In the variable sheet the user can define all the variables
needed to define his problem rorcpletely. Same of them can de defined
as input, the other are considered as output ones. The rules specify
relationships between variables in terms of equations. The rule equa-
tions can be entered to the system in any form and any order. The
second part of the system consists of the algebraic manipulator and
iterative equation solver. If the user changes definition of outpt or
inpt variables, modifies same rules or numerical values, the system
responds very quickly with new solution of the problem. On Fig.1 a
sarrp?le screen generated by TK!Solver is presented.

The TK!Solver concept is rather flexible and user friendly. What
is most important is the fact, that the equations can be entered in
any order and any £om - therefore this approach also can be treated

as non procedural. The presented framework seems to be ideal for
defining nonlinear problems. There were some attempts to apyly this
system for defining optimization problems (Konopasek, 1985 , but these
trials m t be treated as very initial ones. To convert the TK!Solver
program in a tool for an easy definition of nonlinear decision pro-
blems, - extensions would be necessary:

- an automatic derivative calculation routine should be build
into the algebraic manipulator and equation solver modules,

- additional tools providing access to data bases should be
available to the user,

- the set of available standard functions should be extended
essentially.

The source code of this system is not available, therefore di-
rect adaptation to decision m r t system is not possible. The con-
cept of TK!Solver however is one of the most interesting to be adapted
as user front end for decision m r t systems.

------------------- ------------------- VARIABLE SHEm ===================

St Inpt Name Outpt Unit Comnent -- ----- ---- ------ ---- -------

..................... RULE SHEET
S Rule
- ----

A + B = C * D
Sin(A - C) = Lag(e/f)/(C + e)

.. ..

Fig. 1 Sample screen generated by TK!Solver program.

4.3 Specialized p n q m u m i q languages.

It was recognized by many researchers, that in some cases ap-
plication of general purpose formula manipulation languages like
REDUCE or MACSDl4 for solving rather simple problems requires too rnach
effort and investments, especially if the user has no direct access to
one of the above mentioned languages. Therefore sorrre special software
tools oriented for solving one specific class of problems were desi-
gned. One of such tools is HESQ - the Hierarchical Equation Solver
developed by Derman and Van Wyk (19841, which, in fact, is a high
level programning language oriented to solving the implicit nonlinear
equations.

The HESQ system consists of the set of programs for interactive
solving and debugging models described by set of algebraic equations,
including their definition, examination and maniplation. Because mo-
dels usually contain data dependent elements, HESQ pennits the models

to include simple "vector" equations - i.e. equations whose left hand
sides are variables with one running index that rnay take on several
values. The following examples are taken from Derman's and Van Vyk's
Paper :

Inc~[1980:19841 = Revenue[1979:19831 + Extra

The above statement is equivalent to

Income[l908+il = Revenue[l979+il + Extra, 0 (i (4.

HESQ allows other useful shorthand notation, like

Vector [1:41 = 11, 2, alpha, -31

Vector [1:41 = [1+31

what generates the *licit arithmetic sequence [1,4,7,101.

Similarly, geometric and other sequences can be easily genera-
ted. Moreover, micros, array variables, conditions and IF - THEN -
ELSE statenm~ts can be used, as well as rather broad set of standard
functions and operators being at the disposal of the user. Complete
example of a problem solved by HESQ system can be found in the paper
quotd above.

The system lacks the derivative calculating features, but the
nature of the algorithm used, which utilizes the graph representation
of the model and dependencies between variables, makes necessary ex-
tensions possible.

A similar, simple to use modelling language irrp?lement.ed on the
IBM-PC ccanprter was described by Dunn (1983).

4.4 Extension of e x u 3 t m g
- . hi@ level 1-.

Another option, although not investigatd until now, is an ex-
tension of existing programning languages to make them specially sui-
table for prograrmning decision supl?ort systems. This can be achieved
by proper modification of the syntax of language. This option will be
discussed in the next section of the paper.

5. EXTENSION OF PASCAL m APPLImO%JS IN DECISION S U E K m ' sY!mPE.

5.1 General -ORIS.

We shall follow here a general assumption that the user should
have at his disposal a simple and flexible software tool for defining
decision problem based on nonlinear models. This tool (or language)
should possess following properties:

- it should be conceptually simple, even for user not being cm-
puter specialist,

- it should be sufficiently powerful to define even complicatd
decision problems,

- a friendly interface to the user should be provided, i .e. , a
user friendly environment for problem definition and analysis
must be created,

- an interface to an optimization problem solver must constitute
an integral part of the language; it means that all necessary
formula maniplations must be performed without intervention of
the user as well as that all infomtion necessary for the sol-
ver to run an optimization problem must be available.

The solution presented here can be treated as a model solution,
which is intended only to illustrate possible ways for resolving some
basic problems and proposing further extensions. The proposed and im-
plemented approach can however be applied to nontrivial practical pro-
blems without essential difficulties. Consequently, the resulting deci-
sion support system can be used as a prototype version for solving
test problems.

5.2 Definition of the language.

The language is a very small subset of PASCAL, known as PLO
(Wirth, 1976 , properly mdified for our purpses . The basic features
of this subset are as follows:

- the only available variable type is real, therefore there is
no need to specify explicitly the variable type,

- there are no input and outpt features,

- the following standard constructs of PASCAL are available:
- const and var declarations (however without type
definition),
- if ... then (no else!),
- proadme without parameters,
- begin ... end with standard PASCAL procedure nesting and
visibility rules,
- while ... do,
- standard PASCAL statements and mathematical functions.

- the following important PASCAL features are not available in
PLO :

- records, pointers, arrays, sets, character, integers,
strings and enmrated type,
- user defined types,
- repeat ... until,
- file type, file i/o and standard i/o procedures,
- else statement,
- case selectors,
- for loops.

There is also one more difference between PLO and standard PAS-
CAL - in order to call the procedure, call keyword must precede the
procedure me.

The following are extensions to PLO added here for the W s e

of applications in decision support systems:

- beside standard variables, functional variables are intro-
duced. These variables are defined in var section of the prog-
ram, just after declaration of standard variables. They are
defined using the keywords

vardec - for defining variables, which are the decision
variables, i.e. their values will be set by the optimiza-
tion routine (solver),

varobj - for defining variables containing values of ob-
jective functions,

varcon - for defining variables containing values of
constraints functions.

There exist some additional rules for using structured varia-
bles. The decision variables can be used only on the right hand side
of assignment statemmt, i.e. in expression. Their a w a n c e on the
left side of assignment statement is reported as compilation error.
The objective and constraints variables can appear only on the left
hand side of assignment statement. The attempt to use them in expres-
sion will also be reported as conpilation error. They can be used in
any place of the program (not necessary only once), but during the run
time a value can be assigned to them exactly o m . This is checked
during the run time; an error message is reported if a value is as-
signed to an objective or constraint variable more than once or not
assigned at all. Additionally, all functional variables must be defi-
ned as global ones, i.e. cannot be defined as local to any procedure.

5.3 Stsucture of the system.

The problem interface consists of the interactive text editor
which can be used for defining and updating programs, saving and
retrieving from disk etc. This part of the system is rather standard.

The compiler itself consists of the recursive top-down parser
(Wirth 1976,) which converts the source code into sequence of camMnds
of simple hypothetical stack rrrachine. This concept was very broadly
and successfully applied for compiler construction; for details see
Davie and Morrison (1981 or Pemberton and Daniels (1982 . The trans-
formed program is interpreted by the procedure which emulates every
camand of this stack machine. Tho interpreting routines are available
in the system - one calculates values of all variables defined within
the program, the second one - values of variables together with deriva-
tives of all objective and constraint variables with respect to all
decision variables.

The solver can invoke one of the interpreters. It depends on the
current stage of optimization, which one should be invoked. Therefore
the pseudocode for the procedure defining the optimization problem and
called by the solver (optimization routine) should be the following
(see Kreglewski at all., 1985, for details relating to interfacing
with nonlinear solver):

Procedure Fun (x : InputArray , Var Y : ValueArray ; Var Der : DerArray ;
{-- I
begin
Ibve X to Decision Variables Array1
Caae GlobFlag af

ValueOnly : ValInterprete;
ValueAndCerivatives : begin

Dif I nterprete ;
Ibve Values of Derivatives
from Objecrtive and Oonstraints
Derivatives Array to Derl

end;
end;
Ibve Values of Objectives and Constraints from Objecrtive
and Comtmhts Values Array to YI

end;

In the above pseudocode, GlobFlag is the global parameter, which can
take values f ram set (ValueOnly , ValueAndDerivatives) and is main-
tained by the solver.

5 .4 The 801- inter£ace.

To use the system effectively, it is necessary to transform in-
fomtion from solver to interpreter (values of decision variables)
and from interpreter to solver (values of objective and constraints
rows and their derivatives. This can be achieved through the following
data structure:

The following array must contain values of decision variables before
invoking the interpreter:

DecArr :Array[l..t&cMaxl of Real;

The following arrays will contain values of derivatives of objective
and constraints variables after exit from interpreter:

ObjDer :Array[l..ObjMax,l..IkcMa.xl of Real;
OonDer :Array[l..~,l..rkcMAxl of Real;

The following arrays will contain values of derivatives and con-
straints variables after exit from interpreter:

ConArr :Array[l..OxMsxl of Real;
ObjArr :ArrayCl..ObjmXl of Real;

The following arrays will contain narrres of constraints and objective
variables after successful exit f m canpiler. These names will appear
in the same order, like in declaration section. This information can
be utilized by m-rrrachine interface for entering the reference point,
defining right hand sides and types of constraints, displaying
results, etc.

DecNgne :Array[l. .Jkdbxl of Alf;
Ob-jNau~ :Array[l. .ObjmXl of Alf;
aonNanoe :Array[l. .OxMsxl of Alf;

The following arrays contain Boolean flags which are set by inter-
preter to TRUE when value is assigned to objective or constraint
variable. These variables can be inspected after exit from interpreter
and error message or other action can be undertaken by the system
deperxhng on their status. Utilization of these arrays is at the dis-
posal of system hplemntator.

O b j M :Array[l. .ObjMaxl of Boolean;
conset :Array[l..CbnMaxl of Boolean;

All the above variables rmst be declared as global to solver, conpiler
and interpreter, i.e., declared in the block containing all these
modules.

This problem will not be analyzed here in details. Only the in-
formation necessary to understand changes in original PLO compiler and
to enable performing necessary changes in the compiler and interpreter
will be discussed.

The following are extension to the compiler:

A. Extension of Block section, which allows declaration of func-
tional variables. The following are the portions of code responsible
for this task:

- Procedure SpecVarDeclaration, being the extension of VarDeclaration;

Procedure SpecVarDeclaration(VarType:Object);
I--- I
begin

if LastQmRead=Ident then
begin

Enter (VarType) ;
Getsym;

end
else

Error (4 ;

end; {of SpecVarDeclarationl

- Extensions in variable declaration section of Block prccedure;

if Las-ead in [VarObjSym,VarConSym,VarDecSyml then
if Lev< >O then

Error (33
else
Repeat

Case LastSydlead of
VarObjSym : Lx:=ObjVariab;
VarConSym : Lx:=ConVariab;
VarDecSym : Lx: =DecVariab;

end ;
Getsym;
Repeat

SpecVarDeclaration(Lx);
While LastsymRead=corrma do

begin
GetSym;
SpecVarDeclaration(Lx);

end;
if LastsymRead=semicolon then

else
Error (5 ;

Until Las-ead< >Ident ;
Until not (LastsyrMead in [VarObjSym,VarConSym,VarDecSyml);

B. Extension to Statement section, responsible for proper code
generation and processing arithmetic expressions containing functional
variables :

- extension of Enter procedure, which enters information about new
variables to symbol table;

Procedure Enter (k: object);
{-------------------------- 1
begin

tx : =tx+l ;
with Synfhble[tx I do
besin

Name:=LastIdRead;
kind : =k;
Case k of

Constant :begin
if abs(LastNmRead)>AMax then

begin
Error(30) ;
LastNmRead:=O;

end;
val : =LastMmJRead;

end;
Variable :begin

level:=lev;
adr: =dx;
dx: =dx+l;

end;
Ob jvariab: begin

level:=Ob~;
ObjPtr: =ObjPtr+l;
O b ~ C O b j P t r l :=Name;
adr:=ObjPtr;

end;
0onVariab:begin

level:=amMark;
ConPtr: =awrPtr+l;
~ C O o n P t r I :=Name;
adr:=awrPtr;

end;
DecVariab : begin

level : =-;
DecPtr: =DecPtr+l;
DecNameCDecPtrl :=Name;
adr:=DecPtr;

end;

Prozedure:level:=lev;
end; {of Case kl

end ;
end; Ienterl

It should be pointed out, that for functional variables meaning
of entries in Symbol Table is different, than for standard ones. Func-
tional variables m t always be declared as global, therefore the in-
formation usually contained in "level" field is not necessary in this
case. This field was utilized for keeping information about the type
of functional variable (DecMark, ConMark, ObjMark) . These marks are
negative, in order to make possible distinguishing between normal and
functional variables during the interpretation phase. Analogically ,
standard address handling procedure is not applicable in this case.
During the interpretation phase, values of functional variables are
not saved in standard stack frame, but in arrays which play a role of
solver interf ace (see previous section of the paper . Therefore sepa-
rate address pointers for each type of variable were defined (DecPtr ,
ConPtr , Ob jPtr . Values of these pointers are saved in "address" part
of the symbol table entry. Both fields - i.e. "level" and "adr" con-
tain full information about location and type of the variable.

- Modification of procedure Fador in the part responsible for code
generation for loading a variable;

Procedure Factor(fsys: SymSet);
I----------------------------- l
Var i: Integer;

FctSym:Symbol;
begin

Test(FacBegSys,fsys,24);
While Las-ead in FacBegSys do

begin
if Last!3ymEkad=Ident then

begin
i:=position(LastIdRead);
if i=O then

Error (11
else
with !3yMCable[il do

Case kind of
Constant :Genl(LITIOIval);
Variable :GenO(LOD,lev-1,adr);
DecVariab:GenO(IM),BxMark,adr) ;
ObjVariab,
ConVariab: begin

i: =O;
Error(34) ;

end;
Prozedure: Error(21);

end ;
GetSym;

end
else
if Last!3y&ead=Number then

- Modification of the procedure Statement in the part responsible for
code generation for storing functional variables;

begin Istatementl
if hmead=Ident then

begin
i:=position(hstIdRead);
if i=O then

Error (11
else
if not (SymTable[il.kind in

[Variable, ~j~Variab,OonVariabl) then
begin

if ~leCil.kird=~ariab then
Error (35

else
Error(l2);

i: =O;
end;

GetSym;
if LaslSyNtead=becomes then

Getsym
else

Error(l3) ;
expression(fsys);
if i< >O then

with Synfl?able [i I do
Case kind of

Variable :GenO(STO,lev-leve1,adr);
oBj~ari&:~enO(SlD,Ch$fark,adr) ;
~on~ariab:GenO(SlD,-,adr) ;

end;
end
else
if Lastsyn&!ad=CallSym then

It should be noted, that only for Objective and Constraint vari-
ables STOre code can be generated. This is not possible for Decision
Variables. Analogically, only for Decision variable L&D code can be
generated. This ensures preservation of described above rules for usa-
ge and access of functional variables.

C. Extensions in definition of Stack Machine and interpreter.

The basic data structure of the Stack Machine is the stack,
which is used as m r y pool for all variables used within a program,
and for all intermediate results occurring during the interpreting
process. In the described extension, functional variables do not use
stack. Instead, they utilize their own memory pools playing the role
of solver interfaces. All other variables are located on the stack
together with values of derivatives. Therefore the structure of the
stack used by extended interpreter is the following:

s : Array[l..StacSizl of Record
StacVa1:Real;
Stad)er:ArrayCl..~I of Real;

end;

The set of comnands of the Stack Machine remains unchanged, ex-
cept of extension of STO and L13D comoands:

LIT 0,a :
OPR 0,a :
LDD l,a :
KID -1,a :
S l,a :
S1D -2,a :
S1D -3,a :
CAL l,a :
INT 0,a :
JMP 0,a :
JPC 0,a :

load constant "a"
execute operation "a"
load variable, level "I", address "a"
load decision variable, address "a"
store variable, level "I", address "a"
store objective variable, address "a"
store constraint variable, address "a"
call procedure at adress "a" and at level "1"
increment t-register by "a"
jump to adress "a"
jump conditional to "a".

The only point requiring special treatment relates to the storing and
loading the functional variables. All the interpreting routines relat-
ing to mathematical expressions m t caqmte not only values of varia-
bles, but also values of derivatives. This can be done applying stand-
ard rules of differentiating mathematical expressions and elementary
functions.

The full specification of the Stack Machine which was used in
this particular implementation can be found in Wirth book (Wirth,
1976 . The following is the source code of the interpreter, together
with all extensions necessary for calculating derivatives. All the ex-
tensions responsible for calculating derivatives are printed in
boldface.

The canpiled program which is executed by the Stack Machine is
stored in array Code declared as:

Instr = Record
1: Integer;
Case f:Fct of

LIT : (LitVa1:Real);
om,
m,
m,
CAL,
INT,
JMP,
m,
JPC : (a: Integer);

end;

Code : Array[O..CxMaxl of Instr;

The basic data structure of the interpreter is the stack, used as in-
ternal memory pool. The stack is declared as:

s : Array[l..StacSizl of Record
StacVa1:Real;
StacDer:Array[l..DecMaxl of Real;

end;

The following is the source code of the interpreter:

Procedure DInterpret;
{------------------- 1
Var b,p,t,i,j: Integer;

Ins : Instr;

Function Base(1: Integer): Integer;
I--------------------------------- 1
Var bl: Integer;
begin

bl : =b;
While 1>0 do

begin
bl:=Trunc(s[bll.StacVal);
1: =l-1;

end;
base : =bl ;

end; IBase1

{Change sign:]

begin
t: =O;
b: =l;
p: =O;
s[ll.StacVal:=O;
s.StacVal:=O;
s[31.StacVal:=O;
for i:=l to Ob- do

ObjSetCil:=False;
for i:=l to CbMax do

CcmSetCil:=False;
Repeat

Ins:=Code[pl;
p: =p+l;

with Ins do
Case f of

LIT: begin
t: =t+l;

{bad number: 1 s[tl.StacVal:=LitVal;
for i:=l to DecPts do
sCtl.!5kderCil:=O;

end ;
OPR: Case a of

0: begin
t: =b-1;
p:=Trunc(s[t+31.StacVal);
b:=Trunc(s[t+21,StacVal);

end;
1: begin

s[tl.StacVal:=-s[tl.StacVal;
for i:=l to DecPtr do

sCtl .StacDerCil:=-
sCtl .StacDerCil;

end;
2 : begin

t : =t-1;
for i:=l to DecPtr do

IMd tip1 ication : 1

s[tl .SkcDer[il:=
s [t l . S t a c D e r [i l + s [t + l I . ~ [i l ;

s[tl.StacVal:=
s[tl.StacVal+s[t+ll.StacVal;

end ;
3: begin

ISubstraction:l t: =t-1;
for i:=l to Ilecptr do

s[tl .StacIkr[il:=
s [t l . S t a c D e r [i l - s ~ t + 1 l . ~ [i l ;

s[tl.StacVal:=
s[tl.StacVal-s[t+ll.StacVal;

end ;
4: begin

t: =t-1;
for i:=l to DecPtr do

s[tl.StacDer[il:=
s [t + l l . S t a c V a l * s [t l . ~ [i l +
s[tl .StacVal*s[t+ll .-[il;

s[tl.StacVal:=
s[tl.StacVal*s[t+ll.StacVal;

end;
5: begin

t: =t-1;
for i:=l to DeePtr do

s[tl.StacDer[il:=
(s [t + l l . S t a c V a l * s C t 1 . ~ [i l -
s[tl .~al*sCt+ll .!3acDerCil)
/4r(sCt+ll . W a l l ;

s[tl.StacVal:=
s[tl.StacVal/s[t+ll.StacVal

end;
6: s[tl.StacVal:=O;
8: begin

t: =t-1;
s[tl.StacVal:=
ord(s[tl.StacVal=s[t+11.StacVal);

end;
9: begin

t: =t-1;
s[tl.StacVal:=
ord(s[tl.StacVal<>s[t+ll.StacVal);

end;
10: begin

t : =t-1;
s[tl.StacVal:=
ord(s[tl.StacVal<s[t+11.StacVal);

end;
11: begin

t: =t-1;
s[tl.StacVal:=
ord(s[tl.StacVal>=s[t+ll.StacVal);

end;
12: begin

t : =t-1;
s[tl.StacVal:=
ord(s[tl.StacVal>s[t+11.StacVal)

end;

13: begin
t: =t-1;
s[tl.StacVal:=
ord(s[tl.StacVal<=s[t+ll.StacVal);

end;
end;

IDD: if 1>=0 then
begin

{ h a d variable:] t: =t+l;
sEtl.~tacVal:=s[base(l)+al.StacVal;
for i:=l to cb

s [t l . S t a d 3 e r [i l : = s [b a s e (l) + a l . ~ [i l ;
end
else
begin
t: =t+l;
s[tl.StacVal:=DecArr[al;
for i:=l to DecStr cb

if i=a then
s[tl.~[il:=l

else
s[tl.Stac&rCil:=O;

end;
STO: if 1>=0 then

begin
{Store Variable:] s[base(l)+al.StacVal:=s[tl.StacVal;

for i:=l to IkcPtx cb
s[base(l)+al .Stad)er[il:=s[tl .Stadkr[il;
t : =t-1;

end
else
Case 1 of

ObjtYark :begin
ObjArr[al:=sCtl.wal;
ObjSet[al: =True;
for i:=l to DecPtr cb

~ ~ [a l [i l : = s [t l . S t a c D e r [i l ;
t:=t-1;
end;

CbMark :begin
OonArrCal :=s[tl .ShcVal;
CbnSet[al :=True;
for i:=l to DecPtr cb

ConDer[al[il:=s[tl.StacDer[il;
t: =t-1;

end;
end;

CAL: begin
s[t+ll.StacVal:=base(l);
sEt+21.StacVal:=b;
sEt+31 .StacVal:=p;
b: =t+l;
p: =a;

end;
INT: t:=t+a;
JMP: p:=a;
JPC: begin

if sEtl.StacVal=O then

i Exp: 1

p: =a;
t: =t-1;

end;
FUN: begin

(Standard funct.1 j:=a-Ord(SinProc);
Case j of

(Sin: I 0 : begin
for i:=l to DecPtr do

s[tl .StacDer[il:=
aos(s[tl.~Val)*s[tl.Stadkr[il;

s[tl.StacVal:=sin(s[tl.StacVal);
end;

1 : begin
for i:=l to DecPtr do

s[tl.!3tacrDer[il:=
-sin(s[tl.~al)*s[tl .SbcDer[il;

s[tl.StacVal:=cos(s[tl.StacVal);
end;

2 : begin
for i:=l to DecPtr do

s[tl.!3tacRdil:=
l . 0 / s [t l . ~ V a l * s [t 1 . ~ [i l ;

s[tI.StacVal:=ln(s[t1.StacVal);
end;

3 : begin
for i:=l to IkcPtr do

s[tl .StacDer[il:=
l.O/s[tl .ShMal*s[tl .ShcDer[il
/ln(lO) ;

s[tl.StacVal:=ln(s[tl.StacVal)/ln(lO);
end;

4 : begin
for i:=l to JkcPtx do

s[tl .StacDer[il:=
exp(s[tl .SbcVal)*s[tl .Stadkr[il;

s[tl.StacVal:=exp(s[tl.StacVal);
end;

5 : begin
for i:=l to DecPtr do

s[tl .StacDer[il:=
1.0/2/aqrt(s[tl.~al)
*s[tl .StacDer[il;

sttl.StacVal:=sqrt(s[tl.StacVal);
end;

6 : begin
for i:=l to DecPtr do
if s[tl.stacVal<=O then
s[tl .~[il:=-8[tl .StacDer[il;

StacVal:=abs(s[tl.StacVal);
end;

end;
end;

end;
Until p=O;

end; Iof Dinterpretl

It should be rather clear from analysis of the above code, that
in the fact the table algorithm was applied for calculating deriva-
tives. It is necessary to mention additionally, that "illegal" proce-
dure was applied for calculating the derivative of abs function. This
is however the user's responsibility to ensure, that an expression
containing abs function is differentiable.

The software tool described above is rather a simple and a stra-
ightforward approach to the problem of building interface for defining
decision and optimization problems described by nonlinear models. Seve-
ral improvements and extensions are necessary, both to inprove the ef-
ficiency of the proposed interface, and for extending class of pro-
blems which could be solved utilizing this approach. The following are
the problem which could be investigated:

- Improvement of the efficiency. In the existing implementation
all formulas entered to the system are differentiated, independently,
whether this is necessary, or not. Evidently, in some cases this is
redundant - e.q. derivatives should not be calculated when computing
logical conditions in while or if statements. This can be achieved
rather easily, by extending definition of stack machine instruction:

Instr = Record
IlerCalc : Boolean;
1 : Integer;
Case f:Fct of

LIT : (LitVa1:Real);
OPR ,
m,
m,
CALI
INTI
JMP,
FUN,
JPC : (a: Integer);

end ;

where DerCalc is boolean flag set by cmpiler to False, when calcula-
tion of derivatives is not necessary. This flag rmst be tested during
interpreting phase; according to its value calculation of derivatives
can be skipped:

4 : begin
if DerCalc then

for i:=l to DecPtr do
s[tl .Stad)er[il:=
exp(s[tl.StacVal)*s[tl.StacDer[il;

s[tl.StacVal:=exp(s~tl.StacVal);
end;

Evidently, some rather trivial changes in code generation procedures
(GenO and G e n l) m t be performed.

It can be, however, rather difficult to perform more deep op-
timization of the calculation of derivatives. This is caused by the
fact, that it is not possible to analyze the dependencies between

variables defined within a program without making analysis of all pos-
sible passes of control. This is especially difficult (or even impo-
ssible) using the recursive descent, one pass canpiler. The following
is an illustration of this difficulty:

var n,...
vardec x,... ...
procedure pl;
bqin
n: =n+l;

end;
procedure p2;
besin
if a>b then

n: =x
else

n: =l;
end;
call p2;
call pl;

In the above example it is not possible to decide, whether statement
n: =n+l should be differentiated or not, without knowing the possible
values of a and b. mreover, when conpiling the procedure pl it is not
possible to know in advance about the dependence of variable n on deci-
sion variable x. Therefore, global analysis of the program structure
is necessary.

The easiest possible way to overcome this difficulty, is to
incorporate same tools into language, which muld mke possible direct
control by the user, which statements should be differentiated. This
could be achieved by introducing a new class of functional variables -
namely, the intemediate variables. They could be declared by varint
declaration. Using this variables, the following rules could be
established:

- all statements, which their left hand side of assignnrent in-
struction are functional variables, are differentiated,

- all statements, which their left hand side are ordinary vari-
ables (declared by var) and contain functional variables in
right hand side part of assignment instruction are treated as
illegal. Such situation is deteded and reported during ampila-
tion phase,

- all statements, which do not contain functional variables are
not differentiated.

The above rules can be used easily for deciding about necessary value
of the above mentioned DerCalc flag.

The other possible improvement of efficiency can be achieved by
applying more sophisticated algorithm for fonnula differentiation. The
~ t a t i o n a l effort, necessary for gradient calculation was recently
analyzed by Kim and others (1984). Similar remarks relating to this
problem were given by Wolfe (1982).

The algorithm applied in current implementation requires for gra-
dient cqtation the effort, which can be approximately estimated as
k*n, where k is the cost of calculation of function, and n - number of
decision variables. It was suggested by Wolfe and proven by Kim, that
under proper arrangement of the calculation process, this effort can
be reduced to l*k, where 1 is a small constant, not dependent on n
(Wolfe suggests, that in most cases value of 1 is between 1.5 and
2.5 . Rather essential reduction of cat-ptational effort can be ex-
pected when applying Kim's approach, especially for problem with m y
decision variables. This is however rather difficult to implement this
algorithm - the ccmplete expression tree m t be known for generating
the code for gradient evaluation. Therefore, a one pass compiler will
probably be not a proper tool for irrplementing this algorithm or es-
sential changes in parser structure and design should be necessary.

- Extension of PASCAL subset. The PLO subset used for model
implementation is rather extremely -11 subset of PASCAL, and many
language features are missing. It seeins, that arrays, structures, for
loops and other constructs available in full sized PASCAL could be
useful for advanced user.

The subset, which could be considered as an ideal compromise be-
tween simplicity and usability, is PASCAL-S. This subset, proposed by
Wirth for educational applications (Wirth, 1981) can be easily imple-
mented due to availability of the source code of compiler and interpre-
ter. The general design of the roarrpiler is the sarrre, like for PLO -
the compiler generates code for stack machine, which is ermlated by
interpreting program. Theref ore, the praposed approach for computing
derivatives can be applied without essential difficulties.

- Extension of the class of problems. The PLO subset was effi-
ciently used for creating a language for simdation dynamic poplation
models (Lewandcmska, 1986). Further extension of this approach in this
direction could be achieved by introducing new class of variables -
the state variables. Combination of these two extensions - i.e. exten-
sion for dynamic sirmlation and one for automatic differentiation,
could result in the system with automatic generation of conjugate
equations for gradient calculation. This could simplify essentially
solving decision problems described by dynamic models of differential
equations or difference equations type.

Burnham W.D. and Hall A.R. (1985). Prolog - Programring and Applica-
tions. MacMillan Education Ltd.

Davie A.J.T and Pbrrison R. (1981). Recursive Descent Compiling. Ellis
Horwood Publishers, Series: Cmputers and Their Applications, Vol. 14.

Dernran E. and Van Wyk Ch. (1984). A Simple EqLaation Solver and its Ap-
pl ication to Financial Model 1 ing. Software-Practice and Experience,
Vol. 14, December 1984.

Douglas B. (1982). Copemica Matematica - Scientists and Mathemati-
cians Will Welcome the Precision of MU-MATH. 80 Microcomputing,
June/ July.

Dunn G. (1983). Mainframe to Micro: Adapting a Financial Modelling
Language. The BYTE Journal, December 1983.

Fateman R . J . (1982 . Symbolic Manipulation Languages and Numerical
Computation: Trends. In: The Relationship Between Numerical Computa-
tion and Programning Languages, J.K. Reid, Ed., North-Holland.

Fourer R. (1983). Modelling Languages Versus Matrix Generators for
Linear Programning. ACM Trans. on Math. Software, Vol. 9, No. 2, June
1983.

General Optimization Inc. (1986). What's the Best - Linear Programning
Through a 1-2-3 Worksheet Interface - User's Manual.

Ckntelman W .M. (1982 . Programning Languages for Symbolic Algebra and
Numerical Analysis. In: The Relationship Between Numerical Comptation
and Programning Languages, J . K . Reid, Ed. , North-Holland.
Grauer M, Lewandowski A. and Wierzbicki A. (1984). DIDAS - Theory, Im-
plementation and Experiences. in: M. Grauer and A. Wierzbicki, Eds. :
Interactive Decision Making. Proceedings of an International Workshop
on Interactive Decision Analysis and Interpretative Cmpter Inteli-
gence, kcture Notes in Economics and Mathematical Systems, Vol . 229,
Springer Verlag, 1984.

Haynes J.L. (1985). Circuit Design with IDCUS 1-2-3. The BYTE Journal,
Vol. 11, 1985.

Ince D.C. and Robson K. (1980). An Algol 68 Based Algebraic Manipla-
tion System. Software-Practice and Experience, Vol. 10, pp. 427-430.

Kalaba R. and Tishler A. (1983). A Computer Program to Minimize a
Function with Many Variables Using C!oqmter Evaluated Exact Higher Or-
der Derivatives. -1. Math-tics and Cornput. Vol. 13, pp. 143-172,
1983.

Kalaba R. and Spingarn K. (1984) . Autamtic Solution of Optimal Con-
trol Problems. I. Simplest Problem in the Calculus of Variation. -1.
Math. and Comp. Vo1.14, pp. 131-158, 1984.

Kalaba R., Rasakhoo N. and Tishler R. (1983). Nonlinear Least Squares
via Automatic Derivative Evaluation. -1. Math. and Comp., Vol. 12,
pp. 119-137, 1983.

Kalaba R. and Spingarn K. (1984) . Automatic Solution of Optimal Con-
trol Problems. IV. Gradient Methods. -1. Math. and Cornput., Vol. 14,
pp. 289-300, 1984.

Kaden S. and Grauer M. (1984). A Nonlinear Dynarmc Interactive Deci-
sion Analysis and Support System (DIDAS-N) : User's Guide. WP-84-23,
International Institute for Applied Syetems Analysis, Laxenburg,
Austria.

Kedem G. (1980) . Automatic Differentiation of Computer Programs. ACM
Trans. on Math. Software, Vol. 6, No. 2, June 1980.

Kim K.V., Nesterov Yu.E. and Cherkaskij B.V. (1984). An Estimate of
the Effort in Computing the Gradient. Soviet Math. Dokl., Vol. 29,
No.2, American Math. Society, 1984.

Konopasek M. and Jayaraman S. (1985 1 . Constraint and Declarative Lan-
guages for Engineering Applications: The TK!Solver Contribution. Pro-
ceedings of the IEEE, Vol. 73, No. 12, December 1985.

Kreglewski, T. and Kaden, S. (1985). Decision Support System MINE.
Problem Solver for Nonl inear Multi-Criteria Analysis. International
Institute for Applied Syslxm Analysis, Laxenburg, Austria.

LRWandowska A. (1986). FOEMAN - the Interactive Program for Analysis
of Dynamic Popitation Wels. IIASA Working Paper, to appear.

LRWandowski, A., Kreglewski, T. and Rogwski, T. (1985). DIDAS-MZ and
DIDAS*: the Tra jectory-Oriented Extensions of DIDAS. In : Theory,
Software and Test Examples for Decision Supprt Systems, A. man-
*ski and A. Wierzbicki, Eds. International Institute for Applied
Systems Analysis, Laxenburg, Austria.

Lewandowski , A. , Kreglewski , T. and Rogowski, T. (1985 1 . DIDAS-NL -
the Nonlinear Version of DIDAS System. In: Theory, Software and Test
Examples for Decision Support Syslxm. A. LRWandwski and A. Wierzbi-
cki, Eds. International Institute for Applied Systems Analysis,
Laxenburg, Austria.

Microsoft (1983). MU-MATH/MU-SIMP System for MS-DOS.

Miller A.R. (1984). TK!Solver - A Tool for Scientists and Engineers.
The Byte Journal, December, 1984.

Nicol R.L. (1981 1 . Symbolic Differentiation a'la LISP. The BYTE
Journal, September 1981.

Nori K.V., Amman U., Jensen K., Nageli H.H and Jacobi Ch. (1981).
PASCAL-P Implementation Notes. In: PASCAL - The Language and its
Implementation. D.W. Barron, Ed., John Willey & Sons, 1981.

Orchard-Hays W. (1978 1 . DIF : Automatic Differentiation of Fortran
Coded Polynanials . RM-78-45, Research Memorandum, International In-
stitute for Applied Systems Analysis, Laxenburg, Austria.

Pemberton S . and Daniels M.C . (1982 1 . PASCAL Implentation - The P4
Carrpiler. Ellis Horwood Ltd, Chichester, 1982.

Rall L.B. (1980) . Application of Software for Automatic Differentia-
tion in Numerical CapAation. Corrputing, Suppl. 2, 1980.

Rall L . B . (1981 1 . Automatic Differentiation: Techniques and Applica-
tions. Lecture Notes in -ter Science, Vol. 120. Springer Verlag.

Rall L.B. (1983 1 . Differentiation and Generation of Taylor Coef f i-
cients in PASCAL-SC. In: A New Approach to Scientific Comptation,
U.W. Kulish and W.L. Miranker Ed., Academic Press, 1983.

Rall L.B. (1984). Differentiation in PASCAL-SC: Type GRADIENT. Softwa-

re-Practice and Experience. Vol. 10, No. 2, June 1984.

S .M. (1983) . Language Extension PASCAL-SC. In: A New Approach to
Scientific Comgutation, U.W. Kulish and W .L. Miranker Ed. , Academic
Press, 1983.

Shearer J.M. and Wolfe M.A. (1985). AGLIB, a Simple Symbol Manipula-
tion Package. Cormnunications of the ACM, August 1985, Vol. 28, no. 8.

Tomovic R. and Vukobratovic M. (1972 . General Sensitivity Theory.
Elsevier.

Van de Riet R. P . (1973) . ABC A W L - A Portable Language for Formula
Manipulation Systems. Part 1: The Language, Part 2: The Compiler.
Mathematical Centre Tracts, Amsterdam, 1973.

Van de Riet R. P . (1970) . Formula Manipulation in AIXXlL 60, Part 1 and
Part 2. Mathematical Centre Tracts, &wterdam, 1970.

Wengert R. (1964). A Simple Autamatic Derivative Evaluation Program,
Comn. of the Am, Vol. 7, pp. 463-464, 1964.

Wierzbicki A. (1977) . Mdels and Sensitivity of Control Systems. WNT
Publ., Warsaw (in Polish). English edition - Elsevier, 1985.

Winston P.H. and Horn B.K.P. (1981). LISP. Addison-Wessley.

Wirth N. (1976). Algorithms + Data Structures = Programs. Prentice-
Hall, Englewood Clifs, N.J., 1976.

Wirth N. (1981). PASCAL-S: A Subset and its Implementation. In: PASCAL
- The Language and its Implementation. D.W. Barron, Ed., John Willey &
Sons, 1981.

Wolfe P. (1982) . Checking the Calculation of Gradients. A m Trans. on
Math. Software, Vol. 8, No. 4, December 1982.

Wolfram S. (1985 1 . Symbolic Mathematical Cmputation. Communications
of the Am, Vol. 28, No. 4, April 1985.

Several changes has been made in PLO compiler plblished in Wirth
book - real arithmetic was added, standard PASCAL functions were
defined, as well as other changes relating to the application of the
PLO language as problem interface in decision support systems were
performed. Moreover, the program was mcdified to be ccsrpiled by Turbo-
Pascal. Therefore, for readers's convenience, the modified code of the
ccmpiler is attached to the paper.

Before invoking the c-iler, the program text m t be located
in the array declared as:

and number of lines of the program must be assigned to the integer
variable NoOfLinesInl3uff. Prior to calling the corrp?iler, the Corrq?Init
procedure m t be invoked. The user rmst supply the Error procedure
which is responsible for error handling.

Const
Now =21;
NoKw =14;
F c W = 15;
TxMax = 100;
NMax = 24;
AMax = 1.0e35;
LevMax = 8;
CxMax = 500;
StacSiz= 50;
De&ark= -1;
CIbjMark -2;
chwark -3;
DxMaX = 20;
ClbjMax = 10;
CbnMaX = 10;

{no. of reserved Words 1
{no. of keywords1
{first std. proc in keyword table1
{length of identifier table1
trrrax. no. of digits in numbers1
trcraximnn number1
t m x h depth of block nesting1
{size of Code Array1

TVpe
Symbol=
(N u l l , I d e n t , M H n b e r , P l u s O p , M i n ~ , T ~ ,
eql ,neq, lss, leq,gtr,geq, lparen,rparen,comma, semicolon,
perid,becomes,BeginSym,EndSym,IfSym,The,
~ i l e S v m , D o S y m , C a l 1 S y m , ~ t S y m , V a r S y m , V ~ j S y m , V a r D e c S y m ,
VarOonSym,ProcSym,SinProc,CosProc,LnProc,LogProc,ExpProc,
SqrtProc,AbsProc);

Alf =String[321;
Object = (Constant,Variable,Mariab,CIbjVariab,

OonVariab,Prozedure,StdFunct);
w e t = set of Symbol;
Fct = (LIT,OPR,LOD,STO,CAI;,INT,JMP,JPC,FUN); {functions1
Instr = Record

1: Integer;
Case f:Fct of

LIT : (LitVa1:R-1);
om.
m.
sm.
a.
INTI
J M P .
m.
JPC : (a: Integer); I displacent address 1

end;

Var
LastCharRead : char;
LastsymRead : Symbol;
LastIdRead : Alf;
LaslmRnRead : Real;
CharCount : Integer;
IntErrNo : Integer;
CodeAlocIdx : Integer;

Ilast character read1
tlast Symbol read1
tlast identifier read1
I last number read 1
{character count1
{interpreter Error1
{Code allocation index1

: Array[l..StacSizl of Record
StacVa1:Real;
Stad)er:Array[l. .Ikddaxl of m;

end;

Code : Array[O..CxMaxl of Instr;
Word : Array[l..NoRwl of Alf;
WSym :Array[l..NoRwl ofsymbol;
SSym : Array [char I of Symbol;
MnCode : Array[Fct I of Alf;

SynfJ!able: Array[O..TxMaxl of Record
Name: Alf;
Case kind:object of

Constant: (val: Real);
Variable.
Prozedure:(level,adr: Integer)

end;

I - Solver Interface 1

DecArr :Array[l..IkcMaxl of Red;
ObjDer :Array[l..Ob~,l..~l of Real;
QnDer : A r r a y [l . . O o n P l l a x , l . . ~ l of Red;
ConArr :Array[l..Cb&hxl of Real;
ObjArr :Array[l..ObjMaxl of RsaZ;

DecName :Array[l..DIzY2mxl of Alf;
ObjNamf3 :Array[l. .ObjMaxl of Alf;

00- :Array[l..OoMaxl of Alf;

*Set :Array[l..Ob~l of Boolean;
Conset :Array[l..OonMaxl of Boolean;

Procedure Conp?Init ;
I----------------- 1
Var i : Integer;
begin

for LastCharRead:='A' to ';' do
SSym[LastCharRead. I : =Nu1 1 ;

: =CallSym;
: =DoSym;
: =If Sym;
: =ProcSym;
: =VarSym;

I : =VarOb jSym;
I : =varQnSym;

ErrNo: =O;

end; Iof Corrp7Init1

Procedure Compile;
I---------------- 1

Procedure Error(n:Integer);
I------------------------- 1
begin

if ErrLine=O then
begin

ErrLine:=LineNo;
ErrNo : =n;

end;

end; Iof Error1

Procedure GetSym;
I--------------- 1
V a r i,j,k :Integer;

a:Alf;
v:Real;
Procedure GetCh;
I-------------- 1
Var LineLRngth:Integer;
begin

Linehmgth:=Iength(TextArr[LineNol);
if Charcount =LineLength then

begin
if LineNo<=NoOfLinesInWrff then

begin
LineNo:=LineNo+l;
Charcount: =o;
LastCharRead:=' ';

end
else
begin

WriteLn ('Program Incmplete' ;
Error (29) ;
Exit;

end;
end
else
begin

Charcount:=CharCount+l;
IastCharRead:=TextArr[LineNol[CharCountl;
If IastCharRead in ['a'..'zH1 then

LastCharRead:=Chr(Ord(LastCharRead)-32);
f=lld ;

end Igetchl;

begin IGetSyml
While LastCharRead = ' ' do

GetCh;
if LastCharRead in ['A'..'Z'l then

begin
a : =" .
Repeat

a:=a+LastCharRead;
GetCh ;

Until not (LastCharRead in['A'..'Z','o'..'g'I);
j:=O;
For i:=l to NoRw do

if a=hlord[il then
j: =i;

if j<>O then
Lastmead : =WSym[j I

else
LastSynd3ead:=Ident;

LastIdRead:=a;
end
else
if LastCharRead in ['0'. .'9' I then

begin
a : =" .
k: =O;
LastSyrMead:=Mnnber;
Repeat

a:=a+LastCharRead;
k: =k+l;
Getch;

Until not (LastCharRead in ['0°..'9','.'1);
if LastCharRead='E' then

begin
a:=a+LastCharRead;
k: =k+l;
Getch;
Repeat

a:=a+LastCharRead;
k: =k+l;
Getch;

Until not (LastCharRead in ['0'..'9','-','+'I);
end;

Val(a,LastNumRead,i);
if (k>P@lax) or (i<>O) then

Error(30);
end
else
if LastCharRead=':' then

begin
etch;
if LastCharRead='=' then

begin
LastsymRead:=becoms;
etch;

end

end
else
if IastCharRead='<' then
begin

GetCh ;
if IastCharRead=' >' then

begin
IastSmead:=neq;
GetCh ;

end
else
if IastCharRead='=' then

begin
U s w e a d : =leq;
Getch;

end
else

IastSymRead:=lss;
end
else
if IastCharRead='>' then

begin
Getch;
if IastCharRead='=' then

begin
Lastmead: =geq;
GetCh;

end
else

IastSynRead:=gtr;
end
else
begin

IastSymRead : =SSym[IastCharRead 1 ;
Getch;

end;
end IGetSyml;

Procedure GenO(x:Fct;y,z:Integer);
I-------------------------------- l
begin

if CodeAlocIdx>CxMax then
Error(1000)

else
begin

With Code[CodeAlocIdxl do
begin

f : =x;
1 : 7;
a: = z ;

end ;
CodeAlocIdx : =CodeAlocIdx+l ;

end;

end; Iof GenOl

Procedure Genl(x:Fct;y:Integer;z:Real);
I------------------------------------- l

begin
if CodeAlocIdx>CxMax then

Error(1000)
else
begin

With Code[CodeAlocIdxl do
begin

f:=x;
l:=y;
LitVal:=z;

end ;
CodeAlocIdx: =CodeAlocIdx+l;

end;

end; Iof Genll

Procedure ~est(sl,s2:SyrrrSet;n:Integer);

begin
if not (LastSynRead in sl) then

begin
Error(n1;
sl:=sl+s2;
While not (LastEQrMead in sl) do

GetSym;
end ;

end; Iof Test1

Procedure Block(lev,tx:Integer;fsys:SyrrrSet);

Var &:Integer;
i,txO:Integer;
cx0,xxO:Integer;
Lx:Object;

Procedure Enter(k:object);
I------------------------ 1
begin

tx: =tx+l;
with Sy~Wable[txl do
besin

Name: =LastIdRead;
kind: =k;
Case k of

Constant :begin
if abs(LastNmSead) >AMax then

begin
Error (30 ;
LastNumRead : = 0 ;

end;
val:=LastNm&tead;

end;
Variable :begin

level:=lev;
adr: =dx;
dx : =dx+l;

end;

Oa, jvariab : begin
level : =Obj@hrk;
Ob jPtr : =Ob jPtr+l ;
abjNaeCC%jPtrl:=Name;
adr:=cBjPtr;

end;
c0nVariab:begi.n

level : =cmMark;
ConPtr:=aonPtr+l;
~ C O o n P t r I :=NallE;
adr:=OonPtr;

d ;
DecVariab:begin

level : -4kdkmk;
DecStr : =DecPtr+l;
DecNanneCDecPtrI :=Name;
adr : =DecPtr;

d ;
Prozedure:level:=lev;

end; Iof Case kI
end;

end; tenter1

Function Position(id:Alf):Integer;
I-------------------------------- I
Var i: Integer;
besin

QMCable[Ol.Name:=id;
i: =tx;
while QMCable[il.Name <>id do

1 : =i-l;
Position:=i;

end; Iof Position1

Procedure ConsU)eclaration;
I------------------------- 1
Var Sgn : Symbol ;
begin

if Las-ead=Ident then
besin

*tsym;
if Lastwead in [eql , becomes I then

begin
if LastSymRead=becames then

Error(1) ;
Gem;
if LastSymRead=Number then

begin
Enter(Constant);
*tsym;

end
else
if IastsymRead in tPlusop,Minusopl then

begin
Sgn : =Lastmead;
Getsym;

if LastsymRead=Number then
begin

if Sgn=MinwOp then
LasWumRead : =-LasMead ;

Enter(Constant1;
GetSym;

end
else

Error (2 1 ;
end
else

Error (2 1 ;
end
else

Error (3 1 ;
end
else

Error (4 1 ;

end; Iof Constkclaration1

Procedure VarDeclaration;
I----------------------- 1
begin

if LastSyniRead=Ident then
begin

Enter(Variable1;
Getsym;

end
else

Error (4) ;

end; {of VarDeclaration1

besin
if LastSynRsad=IQnt then

besin
Enter(vaflype1;
Getsym;

end
else

Ermr(4);

end; {of SpecVarIkclaration1

Procedure Statement(fsys:SymSet);
I------------------------------- 1
Var i,cxl ,cx2: Integer;

Procedure Expression(fsys:SymSet);
I-------------------------------- 1
Var addop: symbol ;

Procedure Tem(fsys:SymSet) ;

Var mlop: symbol ;
Procedure Fador(fsys:SymSet);
I---------------------------- 1

Var i: Integer;
FctSym: Symbol ;

begin
Test(FacBegSys, fsys,24);
While LastSynStead in FacBegSys do

begin
if LastSymRead=Ident then

begin
i:=position(LastIdRead);
if i=O then

Error(11)
else
with SymtTableI i I do

Case kind of
Constant : Genl(LIT,O,val);
Variable : GenO(D,lev-leve1,adr);
Wariab: GenO(LfB,-k,adr);
ObjVariab,
OniVariab: begin

i:=O;
Error(34);

end;
Prozedure: Error(21);

end;
GetSym;

end
else
if LastSyrMead=Nmker then

begin
if abs (LastNuITRead) >Max then

begin
Error(30) ;
~astMmRead: =O;

end;
Genl(LIT,O,LastNuITRead);
GetSym;

end
else
if LastSymRead=lparen then

begin
Getsym;
expression([rparenl+fsys);
if LastSyn-Eead=rparen then

else
Error(22) ;

end
else
if Lastmead in StdFctSym then

begin
FctSym: =Lastmead;
GetSym;
if LastSyrnRead=lparen then

begin
Getm;
expression([rparenl+fsys);
if Last-ead=rparen then

begin

end ;

GetSym;
GenO(m,l,ord(FctSym) 1;

end
else

Error(22);
end
else

Error (23) ;
end;
test(fsys,[lparenl,23);

end; {of factor1

begin ITerm1
factor(fsys+[TimesOp,slashl);
While LastSymRead in [TimesOp,slashl do

begin
rmlop: =Las-d;
Getsym;
factor (f sys+ [Time-, slash I ;
if mlop=Time&p then

GenO(OPR,0,4)
else

~enO(oPR,0,5);
end;

end; {of Term1

begin texpressionl
if LastSy~~~Read in [PlusOp, MinusOpl then

begin
addop : =LastSynRead;
GetSym;
tenn(fsys+[Pl~, Mine]);
if addop=MinmQp then

GenO(OPR,O,l);
end
else

t enn(f sys+[P lusOp,Min~ l) ;
While LastSynSead in [PlusOp,Minusopl do

begin
addop : =La-ead ;
G e m ;
term(fsys+[Plusop,Minusopl);
if addop=PlusOp then

GenO(OPR,O,2)
else

GenO(OPR,O,3);
end;

end; {of Expression1

Procedure Condition(fsys:symset);
I------------------------------- I
Var relop: symbol ;
begin

expression([eql,neqIlssIgtrI1eqIgeql+fsys~;
if not (Las-ead in [eql,neq,lss,leq,gtr,geql) then

Error (20)

else
begin

relop:=LastSymRead;
G e m ;
expression(fsys);
Case relop of

eql:GenO(0PR,OI8);
neq:GenO(OPR,0,9);
lss:GenO(OPR,0,10);
geq:GenO(OPR,O,ll);
gtr:GenO(OPR,0,12);
leq:GenO(OPR,0,13);

end;
end ;

end; Iof Condition]

begin Istatement]
if LastSymRead=Ident then

begin
i:=position(LastIdRead);
if i=O then

Error (11
else
if not (syMl?able[il.kind in

IVariable,Oa,jVxiab,aOnVxiabl) then
begin

if SydhbleC i I .kind=DedVariab then
Error(35)

else
Error(l2);

i: =O;
end;

G e m ;
if LastSymRead=becames then

G e m
else

Error(l3) ;
expression(fsys);
if i<>O then

with SynU!able[i l do
Case kind of

Variable :~enO(Sm,lev-leve1,adr);
UbjVari;rh:GenO(SlD,Oa,jMark,adr) ;
a O n V ~ i a b : G e n O (S I D l ~ l a d r) ;

end;
end
else
if LastSyniRead=CallSym then

begin
G e m ;
if LastSyx@ead< >Ident then

Error (14
else
begin

i:=position(LastIdRead);
if i=O then

Error (11

else
with SyMhble[il do

if kind=Prozedure then
GenO(CAL,lev-leve1,adr)

else
Error(l5);

GetSym;
end;

end
else
if ~astspRead=If Sym then

begin
GetSym;
condition([ThenSym,~o~yml+fsys);
if LastSynBead=ThenSym then

Getsym
else

Error(l6);
cxl : =CodeAlocIdx;
GenO(JPC,O,O);
statement (f sys ;
Code[cxll.a:=CodeAlocIdx;

end
else
if ~astsymRead=Eeginsym then

begin
Getsym;
statement ([semicolon I EhdSyrnl +fqs) ;
While LastsymRead in [Semicolonl+StatBegSys do

begin
if Lastmd=semicolon then

else
Error(l0) ;

s t a ~ t ([s e m i c o l o n , E n d S y m l + f s y s) ;
end;

if LastsymRead=EndSym then
*tam

else
Error(l7);

end
else
if La&SyrMead=WhileSyrn then

begin
cxl : =CodeAlocIdx;
Getam;
condition([DoSyml+fsys);
cx2 : =CodeAlocIdx;
GenO(JPC,O,O);
if LastsymRead=DoSym then

Get*
else

Error (18 ;
stat€inent(fsys);
GenO(JMP,O,cxl);
Code[cx2l.a:=CodeAlocIdx;

end ;
test(fsys, [1,191;

end; {of Statement1

begin I block1
d x : =3;
tx0 : =tx;
~able[txl.adr:=CodeAlocIdx;
GenO(JMP,O,O) ;
if lev > LevMax then Error(32);
Repeat

if LastSymRead=ConstSym then
begin

GetSym;
Repeat

ConstDeclaration;
While LastSynRead=com~ do

begin
GetSym;
ConstDeclaration;

end;
if Las~ead=semicolon then

GetSym
else

Error (5 ;
Until Lastmead< >Ident;

end;
if LaslSydiIead=VarSym then

begin
GetSym;
Repeat

VarDeclaration;
While La&Sy~&ead=com~ do

begin
Getsym;
VarDeclaration;

end;
if Las~ead=semicolon then

Getsym
else
Error(5);

Until LastSymKead< >Ident;
end;

if IastSymdGead in E V a r C l b j S y m , V a r C o S y m , V ~ l then
if k < > O then

Error (33 1
else
mt

cast? LastSymRead of
Var0bjSym:Lx: =ObjVariab;
varOonSym:Lx: =Oonvariab;
varDecSym:Lx: =DecVariab;

end;
GetSym;
rCepeat

Spe&artezlaration(Lx ;
While -=axma do

begin
GetSym;

SpecVarDeclarati~n(Lx ;
erd;

if LastSymRead=aemi0010(1 tben
GetSym

else
Error(5) ;

until G d s y m € d < >Ident;
Until mt (UdSydkd in

Vambjsym,Varoonsym,VarDecsyml) ;
While LastSynStead=ProcSym do

begin
GetSyro;
if La-d=Ident then

begin
enter(Prozedure);
Getsym;

end
else

Error(4);
if La-d=semicolon then GetSym

else Error(5) ;
block(lev+l,tx,[Semicolonl+£sys);
if LasfSynSead=semicolon then

begin
GetSym;
Test (StatBegSys+ [Ident , ProcSym I , £ sys ,6)

end
else

Error(5);
end ;

Test(StatBegSys+[IdentlI~1BegSys17);
Until not (La-ead in DeclBegSys);
Code[~able[txOl.adrl.a:=CodeAlocIdx;
~able[txOl.adr:=CodeAlocIdx;
cxO : =CodeAlocIdx;
GenO(rn,O,dX);
statement([semicolon,EndSyml+fsys);
GenO(OF'R,O,O);
Test(fsys,[1,8);

end; {of block1

begin
Getsym;
block(O,O,[periodI+DeclBeg~ys+Sta~~~s);
if -cad< >period then

Error (9);

end; {of ~arcpile1

