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FOREWORD 

This paper  deals with a n  application of generalized linear programming tech- 
niques f o r  stochastic programming problems, particularly t o  stochastic program- 
ming problems with recourse.  The major points which needed a clarification he re  
were the  possibility t o  use the  estimates of the objective function instead of the 
exact  values and t o  use the approximate solutions of the dual subproblem instead 
of the exact  ones. 

In this paper  conditions are presented which allow to use estimates and ap- 
proximate solutions and sti l l  maintain convergence. The paper  is a p a r t  of the ef- 
f o r t  on the development of stochastic optimization techniques at the Adaptation 
and Optimization Project  of the System and Decision Sciences Program. 

Alexander B. Kurzhanski 
Chairman 

System and Decision Sciences Program 



CONTENTS 

1 Introduction 

2 A conceptual Algorithm 

3 Extension 

References 



COMBINING G- PROGRAMMING 
AND SAMPLING TECHNIQUES FOR 

STOCHASTIC PROGRAMS WITH RECOURSE 

A. Gaivoronski  and J.L. Nazare th  

Generalized Programming Techniques of Wolfe (see Dantzig [I]) enjoyed ear ly  

use f o r  solving stochastic programs with simple recourse  (Williams [14], Par ikh 

[8]) and t h e r e  has  recently been renewed interest  in t he i r  relevance f o r  solving 

more general  classes of stochastic programs (see Nazareth & W e t s  [7] - stochastic 

programs with recourse  and nonstochastic tenders ,  Ermoliev, Gaivoronski & Nede- 

va [4] - stochastic programs with incomplete information). Our interest  h e r e  is in 

stochastic programs with recourse  of the  form: 

minimize Ew[< c(w) ,  z > + Q(z,w)]  

s.t. 

Ax = b  

L S z S u  

where 

where w is  an element of some probability space  (W. B. P), A (ml X n l )  is  a fixed 

matrix, T(*) (m2 X n 2 )  are random matrices, c(*) (nl) ,  q(* )  (n2)  and A(*) (m2) are 

random vectors  and b (ml) a fixed vector.  W e  assume complete recourse  i.e. ( l . l b )  

always has  a solution. E, denotes expectation. Define c = E, [c (w )I. Then w e  can  

express  ( l . l a ,  b) as 

minimize < c , z  > + Q(z)  = F ( z )  



where 

The set of const ra ints  in (1.Za) w e  shall  denote by X. P r o p e r t i e s  of (l.Za, b )  

have been extensively studied (see Wets [13]) and,  in pa r t i cu la r ,  Q ( z )  c a n  b e  

shown to b e  convex bu t  i s ,  in general ,  nonsmooth. 

The generalized programming approach  applied to (1.2a) involves i n n e r  or 

g r i d  l i n e a r i z a t i o n  of th i s  convex program and r e q u i r e s  coordinated solution of a 

mas te r  p r o g r a m  and a (Lagrangian) subproblem defined as follows: 

Master: 

k k 
minimize x <c,  zj> A j  + x ~ ( z j )  A j  

j = 1  j =l 

where d ,vk  are t h e  dual multipliers associated with t h e  optimal solution of (1.3a) 

Sllbproblem: Find zk E R ~ '  such t h a t  L S zk s u and 

by par t ia l ly  optimizing t h e  problem 

minimize <dC , z > + Q(z ) 
l r z r u  

where d and vk denote t h e  dual multipliers associated with t h e  optimal solution of 

t h e  master program (1.3a) and 



We temporarily ignore all  considerations related to initialization of (1.3a), un- 

boundedness of t h e  solution in (1.3b), recognition of optimality and so on. (1.3a-c) 

show only t he  essential features  of the  method, namely, t ha t  the  master sends 

(prices) nk to the  subproblem which, in turn,  uses these quantities to identify an  

improving (grid) point zk + l. 

In many pract ical  applications, the  probability distribution of t he  random 

events i s  discrete  with relatively few points in t he  distribution and randomness is  

often res t r ic ted  to cer ta in  components of (l.la-b), f o r  example, to h( . ) .  In such 

cases j u d i c i o u s  computation enables ~ ( z j )  and i ts  subgradients to be  found ex- 

actly, see Nazareth [6]. These quantities are required both to define t he  objective 

function of the master (1.3a) and during the solution of ( 1 . 3 ~ )  to give an  improving 

point satisfying (1.3b). More generally however, ~ ( z j )  can  only be  approximated in 

(l.Zb), f o r  example, by a sampling procedure,  and exact  computation of i ts  value 

or of i ts  subgradients is  out of the  question because, i t  would be too expensive. We 

then seek to replace ~ ( z j )  in (1.3a) by a n  estimate, say  Ql. The generalized pro- 

gramming approach, extended in this manner, st i l l  continues to appear  viable and 

deserves  fu r the r  investigation, f o r  the following reasons: 

a )  I t  is w e l l  known (and in the  nature  of a "folk theorem") t ha t  fairly crude ap- 

proximations of the  underlying distribution in (l . la-b) (which then permit exact  

solution of the  resulting approximated recourse program) often produce quite rea- 

sonable estimates of the  "optimal" f i r s t  s tage decision. This can be  interpreted to 

mean tha t  fairly c rude  estimates Q l  in the  master program will often be  adequate 

to guide the  algorithm to a "reasonable" neighborhood of the  desired solution of 

the original recourse  problem (1.la-b). 

The (Lagrangian) subproblem ( 1 . 3 ~ )  does not have  to be optimized at each cy- 

cle.  For example, a l l  that  is  needed in the  case of exac t  estimates Q(zk  +I) ,  to pro- 

duce an improving point is tha t  the  condition (1.3b) be  satisfied. This suggests 

therefore  tha t  one seek to reexpress  this condition in the  t e r m s  of estimates 9: ft 
and combine it  with utilizing stochastic estimates of subgradients, stochastic quasi- 

gradient procedures  (see Ermoliev and Gaivoronski [5]) which are generally effec- 

tive, when they are applied to a problem that  does not have to be  pushed all the 

way to optimality. 



Our p a p e r  can  b e  viewed as a s tudy of generalized programming in t h e  pres-  

ence  of noise (whose magnitude d e c r e a s e s  as t h e  number of i tera t ions  increases)  

and with t h e  specia l  c h a r a c t e r i s t i c s  of r e c o u r s e  problems taken  in to  considera- 

tion. In section 2 w e  state a conceptual  algorithm and establish convergence under  

a p p r o p r i a t e  assumptions t h e r e b y  extending t h e  s t andard  proofs  (see,  f o r  example, 

Shap i ro  [lo], f o r  t h e  case when Q ( z )  i s  known exactly).  Some considerations con- 

cerning implementation are br ief ly  discussed. Finally extension to o t h e r  s tochast ic  

programming problems i s  considered in sect ion 3. 

2. A CONCEPTURAL ALGOEUTEW 

W e  use t h e  t e r m  "conceptual" h e r e  in t h e  sense  of Polak [9], and study t h e  fol- 

lowing algorithm f o r  solving (1.la-b). I t  will b e  convenient t o  assume tha t  all 

bounds L and u are finite so t h e  L 5 z 5 u i s  a compact set. 

The algorithm g e n e r a t e s  sequence of points z0 - . zk - - . which depend on  

element w of some probabil i ty s p a c e  (W. B. P) where w E W C RP, B - a - field, P 

- probabil i ty measure. The sequence zk converges  to t h e  solution of t h e  problem 

(1.1) in a c e r t a i n  probabil ist ic sense.  

Step 1: (Initialize): Choose a set of ml g r id  points z l ,  .... zml so t h a t  t h e  con- 

s t r a i n t s  

have a feasible solution. Set k --r m l. 

Step 2. (Form estimates) 

Define a subset  Nk of in tegers ,  Nk c 11,. . . . , k j, th i s  being t h e  set of g r id  points in- 

d ices  f o r  which estimates will b e  made. Define a n  in teger  s ( k ) ,  which controls  t h e  

precision of est imates.  Generally speaking s ( k )  i s  t h e  number of observations of 

t h e  function Q ( z ,  o) used to form t h e  estimate. Obtain t h e  new estimates QJ of 

~ ( z j ) ,  j E Nk and f o r  j C Nk t a k e  QJ = QJ I t  will b e  assumed t h a t  f o r  j E Nk 



in some suitable probabilistic sense. Initially f o r  k = mi, le t  Nk = 11, . . . , m 
For subsequent k ,  the s e t  Nk , integer s (k)  and estimates QI can  be  selected in a 

number of different  ways, some of which will be specified later.  

Step 3: (Solve Master): 

k 
minimize C (<c,  z j  7 + Qi) A j  

j = I  

Let # and vk be the associated optimal dual multipliers and Xf - optimal pri- 

mal variables. Define f lk  = f j :  A f  > O j .  In some versions of o u r  method i t  i s  neces- 

s a r y  at this point t o  redefine the set Nk and go t o  s tep  2 (examples will be given 

later).  Otherwise, go  t o  s tep  4. 

Step 4: (Define new grid point zk 'I). 

Define 

and consider the (Lagrangian) subproblem 

minimize <uk , z > + Q ( z  ) 
1 r t r u  

The new point zk is taken t o  be an  "approximate" solution t o  this problem, more 

precisely, i t  i s  necessary tha t  f o r  almost all w E W the re  exists a subsequence 

k,(,) such that  

<ukr,zkr+l>+ Q(z "+I) - min [<akr, z >+ Q(z)]  -+ 0 
1 s t s u  

Note, that  i t  is  not necessary tha t  



<ok, zk 'I >+ Q(zk 'I) - min [<&, z >+ Q(z)]  --, 0 
l % z % u  

fo r  the  whole sequence zk.  This makes i t  possible, f o r  instance, t o  use random 

search  techniques fo r  getting zk 'I. Some part icular  methods of choosing the  point 

zk 'l with this p roper ty  will be specified at the  end of this section. 

Step 5: (Iterate):  k --, k + 1.  Go to s tep  2. 

This algorithm has t w o  important differences from the  usual generalized 

linear programming algorithm. Firstly, i t  does not requi re  exac t  values of the ob- 

jective function (step 2). I t  is  only necessary t o  have estimates of the  objective 

values at the  grid points whose precision gradually increases. Secondly is  is  not 

necessary t o  minimize t he  Lagrangian subproblem a t  s t ep  4,  precisely; i t  i s  only 

necessary tha t  t he  cu r r en t  point zk 'l regularly comes to t he  vicinity of such a 

solution. 

Both modifications are necessary in o r d e r  t o  make use of generalized linear 

programming in a stochastic setting. 

In o r d e r  t o  prove convergence of this algorithm let  us consider i t ' s  dual re- 

formulation. Take 

Nrr) = min q(z , rr) 
l % r % u  

@(n) = min q k ( j ,  rr) 
l % j % k  

(2.7) 

Then algorithm (2.1)-(2.3) can be  considered as a maximization method f o r  the  

concave function Jl(rr) by successive polyhedral approximation of q(rr) by @(m). 

A t  s t ep  1 the  initial polyhedral approximation is  constructed, in s t ep  3 the  cu r r en t  

polyhedral approximation @ (rr) is  maximized, optimal dual multipliers d being 

the  solution of the problem 

In s teps  2 and 4 t he  polyhedral approximation is  updated. 

Theorem 1. Make the  following assumptions: 



1. Initial points xl ,  . . . , xml are such that  

b  E int c o f ~ x j ,  j = 1: m l ]  

where int means inter ior  and c o  convex hull. 

I Q ~  - Q ( x k ) l ,  rnax (QJ - Q ( x ~ ) I  = ~k -+ 0 
j Ehk I 

lim inf < U ~ , X ~ + ~ > + Q ( X ~ + ~ )  
T --.= f L T  I 
- rnin [ < u i , x > + Q ( x ) ]  

L S x S u  

Then F ( r k )  4 min F ( x )  a s .  where ik = A! xi and all  accumulation points of 
z E X  j E hk 

the sequence zk are solutions of (1.2) a s .  

Roof. Due t o  the assumption 2  w e  have 

sup J Q ~  - Q ( x ~ ) ( <  c < = a.s. 
k,j Ehk 

This together with boundedness of x k  gives: 

This together  with assumption 1 implies the boundedness of the sequence #, which 

can be seen as follows: Indeed, @ (d ) = rnax @ (n) and therefore 
n 

which follows from (2.5). On the  o ther  hand 

) rnin [<c ,  x j > + ~ i  - < + , h j  - b > ]  
l r j r m l  

r rnax [ C c ,  x j >  + @ ( k ) ]  + min [- <#,  AX^ - b > ]  
l r j r m l  l r j  r m l  

C -  rnax < + , h j - b >  
l r j r m l  

= C ,  - I I + ) )  max ,  AX^ - b  



- n k  in max < e , ~ z j - b > s C ~ - I l d ( l b  
13.1 i r jrnl  

f o r  some b > 0 due t o  assumption 1. 

Thus. 

which gives 

Therefore the  sequence 2 i s  bounded. According t o  the  assumption 3 of the 

theorem f o r  almost a l l  w E W exist  subsequence k, ( w )  such tha t  

<u&, 21; + I >  + Q(Z li + I )  - min [<crli, z > + Q ( Z ) ]  --r o 
l r r r u  

T 4  Using equality u4 = c - A n w e  obtain 

k ,  +1 k ,  +1 < c , z  > + Q ( z  ) - < n k r , ~ z  k,+1 - b > - ,b(nk') --r 0 (2.8) 

Due t o  the boundedness of the sequence d we may now assume without loss of 
* 

generality that  n4 -, n and therefore (1nli - n4+11) -, 0. Further  more from the 

definitions (2.4), (2.6) of the function ,b(n) and boundedness of the admissible s e t  X 

follows tha t  the function ,b(n) satisfies Lipshitz condition uniformly on n and there- 

fore  

as r -, 0 where C2 < 0 . 

Thus (2.8) implies 

k ,  +1 k ,  +1 
<c , z > + Q(2  ) - <nkr+', AZ 

k ,  +1 - b > - ,b(nkr+l) s T ,  

where max 10, 7,  -, 0 as r 4 0. 

Consequently 

k ,  +1 k ,  +1 
<c, z > + Q4+, - <nkr+l, kr + 1 - b > - ,b(nk'*l) 



But 

4 + I  k ,  + I  <c. Z > + Qkrll - <TT4+l, AZ' - b  > 

L min [<c. z j  > + Q L + ~  - <dl+' , ~ z f  - b  >I = 9kr+l(,kr+l 
1 S j  S4+1 

1 

Inequalities (2.9) and (2.10) give  

k,  + I  
( T T )  - ( T T )  S T + Q - Q ( z  4 + I )  

where together with assumption 2 mean 

,t+(TTk.) - +(a) s 7 :  

where max 10, ~ : j  -, 0 as r -, - a.s. 

On the o ther  hand 

k 
#r(TTkr) = max 9 ' ( r r )  

lr 

a m a x  min [<c,  d >  + Q ( z ~ )  - <n. A Z ~  - b > ]  -ck ,  
lr f E * %  

2 max ~ ( T T )  - cr; 
lr 

Inequality (2.11) now gives  

r; +(n ) + T: 2 max ~ ( T T )  - ck, 
lr 

which implies 

k 
~ ( T T  ') - max ~ ( T T )  -, 0 

lr 

and 

It; It; 9 (TT ) s rnax ~ ( T T )  + T: 
lr 

where max 10, T F ~  -, 0 as r -, = a .s . .  The last inequality together with (2.12) 

gives  

k k  9 ' ( T T  ') - max ~ ( T T )  -, 0 
lr 



Taking now a r b i t r a r y  k > k, w e  get: 

s m a x  min [<c ,  x j >  + Q ( x ~ )  - <rr ,   AX^ - b > ]  
" j ~ ~ k U ~ ' +  

-max min [ < c ,  x j >  + Q ( x ~ )  - < T T , A Z ~  - b>]  
jeA' 

+ 2  max E~ 5 2  max E~ 
k T S i  S k  k r S i  S k  

which together  with (2.12) and (2.13) gives 

The problem of maximization of @ (rr) is dual to (2 .2)  and therefore  

C (<c ,  z j >  + Q t )  Af - min F ( x )  
j E A ~  

2 EX 

Finally due to convexity of F ( x )  

which together  with (2.14) gives 

F ( z ~ )  - min F ( x )  a.s. 
2 EX 

which completes t h e  proof. 

W e  now study in t u rn  each of t he  assumptions upon which the  preceding 

theorem depends. Assumption 1 of the theorem can  always be satisfied if matrix A 

is  of rank m 

Let us  consider in m o r e  detail assumption 2, which deals with precision of 

function values estimates at "essential" points. It's fulfillment depends on the  ru le  

used a t  s tep  2 to determine the  s e t  Nk of cu r r en t  new estimates, the  integer  s ( k )  

which controls accuracy and the  method of obtaining estimates. Consider t w o  such 

rules  which guarantee tha t  condition 2 i s  satisfied. 



I. This is  the simplest ad hoc rule. Before s tar t ing the algorithm define a se- 

quence Ikp jF= l l  kp + 1 > kp a n d t a k e  s ( m l )  = s o  

Nk = 11,. . . , k j ,  s ( k )  = s ( k  - 1 )  + I  

Nk = [ k  j ,  s  ( k  ) = s (k  - 1 )  otherwise 

in o the r  words f o r  k = kp estimates at all grid points are updated with increased 

accuracy while f o r  k # $ the  estimate is  made only at the la tes t  point zk to en te r  

the set of gr id  points. The estimates themselves should possess only the  proper ty  

that  

An example of such estimate is  

z w k  f o r  j < k 

where w ' are independent observations of random parameters  from (1.1) 

2. The previous ru le  does not discriminate between recent  points and old ones, 

which might become redundant. Furthermore i t  i s  be t t e r  to base decisions on 

whether to increase precision on information which becomes available during 

iterations. The following adaptive precision ruLe takes  account of these factors.  

Let us define f o r  each estimate Q l  of the function value ~ ( z f ) ,  t he  number k j  

such tha t  

z j  E N4,  z j  Ni f o r  kt < i L k 

i.e. k j  i s  s tep  number when the  estimate of Ql w a s  last updated. Then the precision 

of t he  estimate character ized by number s ( k j ) :  



The steps 2 and 3 of the  method with this adaptive precision rule  are specified a s  

follows: 

Step 2 (Form estimates). There a r e  two possibilities 

(i) Preceding s tep  w a s  s tep  3. Then 

N~ = [ j  : j  E 4, and s ( k j )  < s ( k ) (  

s (k )  remains the same. For j  E @ get  estimates Ql such tha t  

go to s t ep  3 

(ii) Preceding s tep  w a s  s tep  5. Take s ( k )  = s ( k  - 1 )  and ge t  estimate Q: with the 

property (2.16). Put  Q l  = Q l  - 1 ,  j  < k .  If 

then take s ( k )  = s ( k )  + 1 

and update estimates f o r  j  E Nk such that  (2.16) is satisfied. If (2.17) is not satis- 

fied don't do any additional estimation and go t o  s tep  3. 

Step 3 (Solve Master). Solve (2.2) and take Ak = [ j  : hf > O (  where hf - solutions 

of (2.2). If s ( k j )  = ~ ( k )  f o r  all  j  E 4 then take hk = 4 and go t o  s tep  4 other- 

wise go t o  s tep  2. 

Thus, in this modification i t  i s  always assured that  through repetition of s teps  

2 and 3 that w e  get  such s e t  hk that  f o r  all  j  E hk precision of estimates Q l  

corresponds t o  number s ( k ) .  In this case besides property (2.16) some mild "in- 

dependence" conditions should be satisfied. Let us define by Bko-field generated 

1 by [ z l ,  . . . , z k ,  Q . . . Q:( a t  the  moment when k j  = k f o r  all  j  E hk.  I t  i s  

necessary that  exists o > 0 and f o r  any s (k )  exists 8, (k)  > 0 such tha t  



These conditions are satisfied, for instance for the estimates of the  type (2.15): 

This formula is  also valid for the f i r s t  estimate at the  point zk if w e  take in this 

case s ( k k )  = 0. I t  i s  assumed that  values w i  of the  random parameters  are in- 

dependent. Estimates (2.19) satisfy property (2.18) except  in the  trivial case 

~ ( z j )  E ~ ( z j ,  w  ), f o r  almost all w . 

Theorem 2. Suppose t ha t  conditions 1 and 3 of theorem 1 are satisfied and, in 

addition, (2.16),  (2.18) are fulfilled and rrk is  bounded a s .  Then (2.17) i s  satisfied 

infinitely often with probability 1 and, consequently, f o r  precision control  rule ,  

based on (2.17) assumption 2 of t he  theorem 1 i s  satisfied. 

Proof. Suppose tha t  exis ts  set Wl c W such tha t  f o r  w  E Wl condition (2.17) is 

satisfied only on finite number of iterations. This means t ha t  f o r  any o E Wl t h e r e  

exists k l ( o )  such tha t  f o r  k > k l ( o )  w e  have s ( k )  = s (o)  = const. Therefore any 

number L can e n t e r  t he  set Nk only once fo r  k > k l ( o ) .  Therefore fo r  o E W1 t ran-  

sition from the  s t ep  3 to s t ep  2 can  occur  only finite number of times. Thus, f o r  al- 

m o s t  all o E Wl exis ts  k z ( o )  k l ( o )  such tha t  f o r  k > k z ( o )  t h e r e  are no transi- 

tions from s tep  3 to s t ep  2 ,  i.e., only new estimates Q: will be made f o r  k > k z ( o ) .  

Therefore f o r  k > k z ( o )  w e  have 

where @ (.rr) is  defined in (2 .7)  and 

According to the  assumption 3 of the  theorem f o r  almost all  w  E W1 exists sequence 

k,  (w ) such tha t  

Due to  boundedness of t he  sequence d w e  can assume without loss of generali ty 

tha t  d - r r S .  Taking into account t he  fac t  t ha t  ,b(.rr) and @ ( r r )  satisfy the  

Lipshitz condition uniformly o v e r  .rr and k w e  obtain f o r  o E Wl and k,  > k 2 ( o ) :  



k +1 k,  +1 
+ ~ W n * ) + y , + Q c + ~ - Q ( z  I + ? ,  

* 4 where?, = 2 C 2 ( J n  - 1)-Oasr --. 
Condition (2.18) gives f o r  k ,  > k 2 ( o )  

fo r  some o > 0 and b = @,(,) > 0. Therefore f o r  almost all o E Wl exis t  k ,  > k 2 ( o )  

such tha t  

4 +l - Q ( z k r  + l )  < - 8 
Qk, + 1 

and 7,  + 7, < b / 2 .  This together  with (2.20) gives f o r  sufficiently la rge  r : 

q4(n*> s q ( n * )  - b / 2  

k k  k 
and therefore  q ' ( n  ') 5 q(n ') f o r  sufficiently la rge  r and w E W1. Hence 

k,  +1 k, +l 
+ Qk, +1 -4(z4+')  + Y , = V ~ + Q ~ , + ~  - Q(z 4 t 1 )  + 7 ~  (2.21) 

The condition (2.18) implies 

with o > 0,  3 > 0,  k ,  > k 2(o). Therefore  f o r  almost all o E W1 exis t  k ,  > k 2 ( o )  and 

I 7 ,  I < p/  2. This gives together  with (2.21): 

fo r  almost all  o E W1 and some k ,  > k 2 ( o ) .  W e  a r r ived  in contradiction with ou r  ini- 



tial assumption. Therefore assumption 2 of the theorem 1 is satisfied. Proof is  

completed. 

Let us now consider in more detail Assumption 3 of the Theorem 1 and the  

specific procedures  f o r  selection of the  point z k  at s t ep  4 of the  algorithm. 

These procedures  should satisfy assumption 3 of the  theorem; namely with proba- 

bility 1 exis ts  a subsequence k, such tha t  

~ ( z " ; + l . n " ; ) -  min ~ ( z ,  n " ; ) d .  
l r t r u  

The best choice is  v(zk ' I ,  d )  = min ~ ( z ,  d )  but this is  not feasible because 
l r t r u  

of inaccessibility of exac t  function values ~ ( z ,  n). W e  shall consider two pro- 

cedures  which do  not requi re  objective function values. 

1 Random search. Take probability measure R with nonzero density in the  set 

L 6 z 6 u and take successive points z1 . . zk  as independent observations of 

random variable z with distribution R .  Then (2.22) i s  fulfilled due to continuity of 

a(z ,  n). 

2 Stochastic quasi-gradient  method. (Ermoliev [ 3 ] )  This method will produce se- 

quence of points z such tha t  

a (zk ,  #) - min ~ ( z ,  #) -0 . 
l r t r u  

On each iteration t he  following calculation, are performed at the  s t ep  4 of t he  

algorithm: 

if zi < Li 

if ' "i 
z i  otherwise 

In par t icular ,  i t  i s  possible to take  

where d S  are optimal dual multipliers of the  following problem: 



Q ( z [ ,  u s )  = min [ < q ( w S ) ,  y > )W(wS)y = h ( w S )  - T ( w S ) z [ ]  
l r y r u  

and wS are independent observations of random parameters. - OD 

If problem (2.25) has bounded solutions f o r  a l l  w ,  2 ps = w, 2 p: < and 
s =o s = O  

mk -+ w as k -+ w then (2.23) is  satisfied and, consequently, assumption 3 of the 

theorem 1  is  satisfied too. 

3. EXTENSION 

Method, described in this section i s  applicable not only t o  the  stochastic pro- 

grams with recourse (1.1) but t o  more general problems of stochastic programming 

as well. Consider the  following problem: 

mimimize E'j (z , w ) (2.26) 

subject t o  p ( z )  S 0 ,  z E X 

The method and results remain essentially the s a m e  if w e  denote E'j ( z ,  w )  = 

Q ( z )  and substitute everywhere in the above discussion Q ( z )  f o r  <c ,  z > + Q ( z )  

and p ( z )  for  Az - b .  The initial points should satisfy now 

Master problem (2.2) obtains the form 

k 
minimize C QJ hj 

j =I 



X j  2 0 

where 91 a r e  estimates of Ef ( z j ,  w ). Subproblem (2.3) becomes 

min E f ( z ,  w )  - <#, p ( z ) >  
t E X  

The theorem l a  i s  proved similarly t o  the theorem 1: 

Theorem la. Take the following assumptions 

1 Function Ef ( z  , w ), p ( z )  are convex, the set X i s  compact. 

2 Exists e" X such tha t  p (g) < 0 and initial points z l, . . . , zml a r e  such tha t  

ax  min <e , p ( z j ) >  < 0 
d = l ,  j 
q "0 

max I~Q; - 9 ( z k > I ,  max 191 - ~ f ( z j ,  w)lj = ck -0 41.5. 
j E A ~  

lim inf ~ ~ f ( z '  +I, w )  - <xi ,  p ( z i  +')>I 
f +- i S f  

- min [Ef(z,  w )  - <xi ,  p ( z ) > ]  = 0 a.s. 
t E X  

Then E ~ ( z ' ,  w )  --r min[Ef(z, w ) l p ( z ) s O , z ~ X I  where Zk = C X:xj and all  
j E A ~  

accumulation points of the sequence zk a r e  solutions of the problem (2.26). 

Although o u r  primary concern he re  is with a conceptual algorithm, le t  us con- 

clude this section with a brief discussion of some considerations which apply in 

o r d e r  t o  make the algorithm implementable. 

a) Purging Strategy f o r  Grid Points: The above algorithm assumes tha t  all grid 

points a r e  retained but, when s torage i s  limited, i t  will be necessary t o  periodical- 

ly remove grid points. This subject has been extensively studied, see Eaves and 

Zangwill [2], Topkis [Ill in the context of cutting plane algorithms, and similar 

considerations apply here.  



b) Variance of Estimates: When developing estimates ~d using, f o r  example, (2.15) 

o r  (2.19), w e  can  a l so  maintain and  update t h e  va r iance  of est imates f o r  each  g r id  

point x i .  These can  than b e  usefully employed in refining t h e  decision ru les  at 

S teps  2 and 3. 

c )  Induced Constraints: When t h e  assumption of complete r e c o u r s e  (i.e. t h a t  ( l . l b )  

always has  a solution) cannot  be  verif ied a priori, then  i t  may happen tha t  f o r  

some combination of g r id  point xi and random paramete rs  w i  (in (2.15) and 

(2.19)). t h e  problem ( l . l b )  is infeasible. Following Van-Slyke and Wets [12], a n  in- 

duced const ra int  o r  feasibil i ty c u t  must then b e  deduced and introduced into t h e  

problem ( l . l a )  and correspondingly into t h e  master program (2.2). This extension 

r e q u i r e s  f u r t h e r  study. 

There  are a l so  a number of specia l  cases of t h e  genera l  problem ( l . l a ,  b)  

which permits refinements, with a view t o  enhancing efficiency, of t h e  algorithm 

descr ibed above.  One case of p rac t i ca l  in te res t  i s  s tochast ic  programs with 

r e c o u r s e  and non-stochastic t enders  (see Nazareth and Wets [7], where T(ml x n l )  

i s  a m e d  matrix. The master/subproblem p a i r  corresponding t o  (2.2) and (2.3) can 

then b e  reformulated as follows: 

Master: 

k 
minimize <c,  x  > + z ~1 Aj 

j =I 

where 

and 



Ql  is  an  estimate of the  value Q(xl) at the grid point XI, and cf , d and v k  are the 

dual multipliers associated with t he  optimal solution of t he  master (2.27). 

Subproblem: Consider t he  (Lagrangian) subproblem, 

minimize < q k ,  X> + Q(x) 
L sxsu 

where L and U are any suitable bounds implied by x s Zk and 1 4 z 4 u .  is  

again taken to be an "approximate" solution to (2.29). in the  sense discussed in 

Step 4, a f t e r  expression (2.3). 

I t  frequently happens t ha t  m i  << nl  i.e. tha t  only a few elements of the  prob- 

lem are stochastic. In this  case,  the above reformulation can considerably enhance 

efficiency, because the  optimization in the  subproblem (2.29) and the l inear  pro- 

gram in (2.28) which must be solved to obtain estimates Q! are both in a space of 
relatively low dimension. 
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