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FOREWORD

This paper presents the first results on a new statistical approach to the
problem of incomplete information in stochastic programming. The tools of nondif-
ferentiable optimization used here help to prove the consistency of (approximate)
optimal solutions based on an increasing information on the true probability distri-
bution without unnatural smoothness assumptions. They also allow to take fully into
account the presence of constraints.
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ASYMPTOTIC BEHAVIOR OF STATISTICAL
ESTIMATORS AND OPTIMAL SOLUTIONS FOR
STOCHASTIC OPTIMIZATION PROBLEMS

Jitka Dupatova and Roger Wets

1. INTRODUCTION

The calculation of estimates for various statistical parameters has been one
of the main concerns of Statistics since its inception, and a number of elegant for-
mulas have been developed to obtain such estimates in a number of particular in-
stances. Typically such cases correspond to a situation when the random
phenomenon is univariate in nature, and there are no "active’ restrictions on the
estimate of the unknown statistical parameter. However, that is not the case in
general, many estimation problems are multivariate in nature and there are res-
trictions on the choice of the parameters. These could be simple nonnegativity
constraints, but also much more complex restrictions involving certain mathemati-
cal relations between the parameters that need to be estimated. Classical tech-
niques, that can still be used to handle least square estimation with linear equality
constraints on the parameters for example, break down if there are inequality
constraints or a nondifferentiable criterion function. In such cases one cannot ex-
pect that a simple formula will yield the relationship between the samples and the
best estimates. Usually, the latter must be found by solving an optimization prob-
lem. Naturally the solution of such a problem depends on the collected samples
and one is confronted with the questions of the consistency and of the asymptotic

behavior of such estimators. This is the subject of this article.

To overcome the technical problems caused by the intrinsic lack of smooth-
ness, we rely on the guidelines and the tools provided by theory of nondifferenti-
able optimization. In fact, the problem of proving consistency of the estimators,
and the study of their asymptotic behavior is closely related to that of obtaining
confidence intervals for the solution of stochastic optimization problems when
there is only partial information about the probability distribution of the random

coefficients of the problem. In fact it was the need to deal with this class of prob-
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lems that originally motivated this study. We shall see in Section 2 that stochastic
optimization problems as well as the problem of finding statistical estimators are

two instances of the following general class of problems:

find x € R"™ that minimizes E{f(x, £){ ,

where f:R"x = — R | {+ «{ is an extended real valued function and ¢ is a random

variable with values in =; for more details see Section 3. It is implicit in this for-
mulation that the expectation is calculated with respect to the true probability

distribution P of the random variable ¢, whereas in fact all that is known is a cer-

~

tain approximate PY. Our objective is to study the behavior of the optimal solution
(estimate) xV, obtained by solving the optimization problem using P" instead of P to
calculate the expectation, when the [PY, v =1,...] is a sequence of probability
measures converging to P. In Section 3 we give conditions under which consistency
can be proved. Constraints on the choice of the optimal x are incorporated in the
formulation of the problem by allowing the function f to take on the value + «. The

results are obtained without explicit reference to the form of these constraints.

There is of course a substantial statistical literature dealing with the ques-
tions broached here, beginning with the seminal article of Wald (1949) and the
work of Huber (1967) on maximum likelihood estimators. Of more direct parentage,
at least as far as formulation and use of mathematical techniques, is the work on
stochastic programming problems with partial information. Wets (1979) reports
some preliminary results, further developments were presented at the 1980 meet-
ing on stochastic optimization at IIASA (Laxenburg, Austria) and recorded in Solis
and Wets (1981), see also Dupacova (1983a, b) and (1984b) for a special case. In a
projected paper we shall deal with estimates of the convergence rates, as well as

with the convergence of the associated Lagrangian function.

2. EXAMPLES

The results apply equally well to estimation or stochastic optimization prob-
lems with or without constraints, with differentiable or nondifferentiable criterion
function. However, the examples that we detail here are those that fall outside the

classical mold, viz. unconstrained smooth problems.
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Restrictions on the statistical estimates or the optimal decisions of stochastic
optimization problems, follow from technical and modeling considerations as well as
natural statistical assumptions. The least square estimation problem with linear
equality constraints, a basic statistical method, see e.g. Rao (1965), can be solved
by a usual tools of differential calculus. The inequality constraints however intro-
duce a lack of smoothness that does not allow us to fall back on the old stand-bys.
In Judge and Takayama (1966), Liew (1976) the theory of quadratic programming is
used to exhibit and discuss the statistical properties of least square estimates sub-

ject to inequality constraints for the case of large and small samples.

In connection with the maximum likelihood estimation, the case of parameter
restrictions in the form of smooth nonlinear equations was studied by Aitchinson
and Silvey (1958) including results on asymptotic normality of the estimates. The
Lagrangian approach was further developed by Silvey (1959), extended to the case
of a multisample situation by Sen (1979) including analysis of the situation when the

true parameter value does not fulfill the constraints (the nonnull case).

Typically one must take into account in the estimation of variances and vari-
ance components nonnegativity restrictions. Unconstrained maximum likelihood
estimation in factor analysis and in more complicated structural analysis models,
see e.g. Lee (1980), may lead Lo negative estimates of the variances. Replacing
these unappropriate estimates by zeros gives estimates which are no longer op-
timal with respect to the chosen fitting function. Similarly, there is a problem of
getting negative estimates of variance components, see Example 2.3. In statistical
practice, these nonpositive variance estimates are usually fixed at zero and the
data is eventually reanalyzed. In general, such an approach may lead to plausible
results in case of estimating one restricted parameter only and it is mostly unap-
propriate in multi-dimensional situations; see e.g. the evidence given by Lee

(1980).

The possibility of using mathematical programming techniques to get con-
strained estimates was explored by Arthanari and Dodge (1981). As mentioned in
the introduction we use mathematical programming theory not only to get inequali-
ty constrained estimates but to get asymptotic results for a large class of decision
and estimation problems which contains, inter alia, restricted M-estimates and sto-
chastic programming with incomplete information. In comparison with the results
of ad hoc approaches valid mostly for one-dimensional restricted estimation our
method can be used for high-dimensional cases and without unnatural smoothness

assumptions, in spite of the fact that the violation of differentiability assumptions
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cannot be easily bypassed by the use of directional derivatives (in contrast to the
one-dimensional case).

EXAMPLE 2.1 Inequualily constrained least sguares estimation of regres-
sion coefficienils. Assume that the dependent variable y can be explained or
predicted on the base of information provided by independent variables
Xgs - o0 Xpe In the simplest case of linear model, the observations Yy ony are sup-

posed to be generated according to

y1=§x”51+81, j=1,...,V,
1=1

where B4, ..., ﬁp are unknown parameters to be estimated, &y, i=1, ..., v,
denote the observed values of residual and X = (XIJ) is a (p, v) matrix whose rows

consist of the observed values of the independent variables.

In the practical implementation of this model, there may be in addition some a
priori constraints imposed on the parameters such as nonnegativity constraints on
the elasticities, see Liew (1976), a required presigned positive difference between
input and output tonnage due to the meeting loss, Arthanari and Dodge (1981). As-

sume that these constraints are of the form
AB=c

where A(m, p), c¢(m, 1) are given matrices. The use of the least squares method

leads to the optimization problem:

v 2
minimize ) Yy = i: Xy 51]

=1 1=1
(.1)

subject to i: ay By scpk=1,...,m,
1=1

which can be solved by quadratic programming techniques.

In our general framework, problem (2.1) corresponds to the case of objective

function:

2
if x€S=[x|Ax=c}{,

f(x, &) = [fo - i: £1%y
1=1

(.2)

=+ o« otherwise



with the PY the empirical distributions.

Alternatively, minimizing the sum of absolute errors corresponds to the op-

timization problem

v
minimize ) IyJ - f: Xy B |

j=1 1=1
(2.3)

subject to f: aklﬁ,SCk , 1<k<m,
i=1

which can be solved by means of the simplex method for linear programming, see
e.g. Arthanari and Dodge (1981). The formulation of (2.3) is again based on the em-

pirical distribution function P, the objective functions is:

f(x, &) =& — f: Lxy| if x €S
1=1

(2.4)

=+ o otherwise

Note, that this function f is not differentiable on S.

Finally, when robustizing the least squares approach, instead of minimizing a
sum of squares a sum of less rapidly increasing functions of residuals is minimized,
see e.g. Huber (1973):

Yy — §1x” 51]

| 4
minimize ) p
J=1

(2.5)

subject to fzak,ﬁISCk , 1<k=m.
i=1

The function p is assumed to be convex, non-monotone and to possess bounded

derivatives of sufficiently high order, e.g.

p(u) = %uz for |u|<ec

2

=c|u|—%c for |u|l=c .

This also fits the general framework; the objective function is:

f(x, &) =p

o — f: fjxi] if x€S
1=1



(2.6)
=4+ o otherwise

and the empirical distribution function PV is again used to obtain (2.5).

EXAMPLE 2.2 Heywood cases in factor analysis. The model for confirmative

factor analysis (Iéreskog (1969)) is
x =Af +e

where x(n, 1) is a column vector containing the observed variables, f is a column
vector containing the k common factors, e(n, 1) is a column vector containing the
individual parts of the observables components and A(n, k) is the matrix of factor
loadings. It is assumed that f and e are normally distributed with mean zero,
var f = @ and var e = ¥, which is diagonal. Consequently, x is normally distributed

with mean zero and with the variance matrix
T=A¥YAT+ 0 . 2.7)

The parameter vector consists of the free elements of A, ¥ and ¢ and it should be
estimated using the sample variance matrix S of observables x. This is done by

minimizing a suitable fitting function, such as
£,(Z,8S) =log|Z| +tr(SE7!) ~log|S| - n (2.8)

{(the maximum likelihood method), or
£,(E.S) = %tr((s —DV)? , (2.9)

where V is a matrix of weights (the weighted least squares method). Evidently,
both (2.8) and (2.9) with (2.7) substituted for Z, are objective functions of non-
trivial unconstrained optimization problems, which can be solved by different
methods such as the method of Davidon—Fletcher—Powell (see Fletcher and Powell
(1963) or by the Gauss—Newton algorithm. In practice, however, about one third
of the data yield one or more nonpositive estimates of the diagonal elements ¥, of
the matrix ¥, which are individual variances. These solutions are called Heywood
cases and to deal with them, (2.8) or (2.9) should be minimized under conditions

¥, 20,i=1,...,n Thusthe appropriate formulation defines f as follows:
f(£,8) =f(X,8) if ¥2=20, i=1,...,n

=+ o otherwise



and similarly for f,.

EXAMPLE 2.3 Negative estimales of variance componenits. Consider a gen-

eral linear model with random effects

y =2y + i X{By +¢ (2.10)

=1
where y(v, 1) is the vector of observations on the variable y, Z(v, r), X;(v, ry),
i=1,...,p, are mutually uncorrelated random vectors with Eﬁl =0,

var B = a,zlri, i=1,...,p and Ee¢ =0, var ¢ = aglu, and 74, - - -, I 03,...,05

are unknown parameters to be estimated.

One of the simplest examples is the following variance analysis model for ran-
dom effect one-way classification: Consider k populations where the j-th measure-

ment (observation) in the i-th population is given by

yU=,u,+a1+eU, j=1,...,n, i=1,...,k. (2.11)
In (2.11), uis the fixed effect, ay, i =1,..., k, is the random effect of the i-th po-
pulation and ey is residual. Random variables 4, -« .08y and €411 - - - 1 € ACE in-

dependent with distributions N(O, af) and N(O, aez), respectively. The parameters
M, 02, o2 are to be estimated. The traditional estimates of the variance components

e
2 o2 in model (2.11) are obtained by a simple procedure: one equates the mean

08' e
squares
1 1 k n R
S, = -
k(n—=1) "¢ k(n-1) 121 121 Gray =51
and
1 1 ¥ - -
S, = - ,
k —_ 1 a k —_ 1 1%:1 n(yi. y.)
= _1 _ - _ 1 K . .
where y; = F Ejn=1yij' i=1,...,k, and y_ = E 21=1 Ejn=1 Y1y with their ex-

pectations aez and aﬂzn + aez that give the estimates

21
sZ k(n—l)Se (2.12)

1 s —sf] . (2.13)

w
® o
1}
3|~
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2

Whereas Sa

is evidently nonnegative, this need not be the case of saz. so that the

problem of negative estimate of the variance component saz comes to the fore.

The resulting estimates (2.12), (2.13) of the variance components in (2.11) fol-
low also as a special result of the MIVQUE and MINQUE estimation developed for
the general model (2.10): Unbiased estimates of a linear parametric function

Y P_o 0fq, are sought in the form yTAy where
AZ =0, A(v, v) is symmetric matrix (2.14)

and which are optimal in some sense. The MIVQUE estimates correspond to a matrix
A that minimizes the variance of yTAy subject to the conditions (2.14) and the
MINQUE estimates correspond to a matrix A that minimizes tr(A(I + ) P_, X, X,T))2
subject to conditions (2.14). In none of the mentioned approaches, however, the na-
tural nonnegativity constraints on the estimates of the variances 012, i=1,...,p,

are introduced explicitly.

Again, there are two possible explanations of negative estimates of variance
components: the model may be incorrect or a statistical noise obscured the under-
laying situation. Among others, Herbach (1959) and Thompson (19862) studied vari-
ance analysis models with random effects by means of different variants of the
maximum likelihood method under nonnegativity constraints. Correspondingly, in
terms of the general model, we have for instance

_nk k. _ k-1
f(c2 o2 uy)=(n) ? (¢2+na? 2(c% 2

k n

1 ag
cexp{-=5 Y X Oy -w?~———
20g 1=1)=1 g, +n

o N

if 220, o220

=— o otherwise ,

Similarly, nonnegative MINQUE and MIVQUE estimates are of interest.

EXAMPLE 2.4 M-estimales. Let @ be a given locally compact parameter set,
(=, A, P) a probability space and f:®x = — R a given function. For a sample
{€¢,, ..., &) from the considered distribution, any estimate TV = T"({;, ..., £,)

€ 0 defined by condition



v
TV € argmin ) f(T £y (2.15)

=1
is called an M-estimate. In the pioneering paper by Huber (1967) (see also Huber
(1981)), nonstandard sufficient conditions were given under which }1'Y} converges

a.s. (or in probability) to a constant ¥, € ® and asymptotic normality of

VU(TY — ¥,) was proved under assumption that 8 is an open set.

The problem (2.15) is evidently a special case of our general framework; the
PV again correspond to the empirical distribution functions and we have uncon-
strained criterion function. We shall aim to remove both of these assumptions to
get results valid for a whole class of probability measures P¥ estimating P, which
contains the empirical probability measure connected with the original definition

(2.15) of M-estimates, and for constrained estimates.

EXAMPLE 2.5 Stochastic opiimization with incomplele informaiion. Con-

sider the following decision model of stochastic optimization:

Given a probability space (=, 4, P), a random element ¢ on =, a measurable

function f:R" x = — R and a set S cR"

minimize E{f (x, §)} = [ f(x, £)P(d¢) onthe set S CR" . (2.16)
:

A wide variety of stochastic optimization problems, e.g., stochastic programs
with recourse or probability constrained models (see e.g. Dempster (1980), Ermo-
liev et al. (1985), Kall (1976), Prékopa (1973), Wets (1983)) fit into this abstract

framework.

In many practical situations, however, the probability measure P need not be
known completely. One possibility how to deal with such a situation is to estimate

the optimal solution x* of (2.16) by an optimal solution of the problem

minimize ff(x, £)PY(d¢) on the set S ¢ R"
=4

where PV is a suitable estimate of P based on the observed dates. In this context,
there are different possibilities to estimate or approximate P and the use of em-
pirical distribution is only one of them. The case of P belonging to a given
parametric family of probability measures but with an unknown parameter vector

was studied e.g. in Dupadova (1984a, b).
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For problem (2.16), large dimensionality of the decision vector x is typical.
This circumstance together with nondifferentiability (or even with noncontinuity)

of f and with the presence of constraints raises qualitatively new problems.

3. CONSISTENCY: CONVERGENCE OF OPTIMAL SOLUTIONS

From a conceptual viewpoint or for theoretical purposes, it is convenient as
well as expedient to study problems of statistical estimation as well as stochastic
optimization problems with partial information, in the following general framework.
Let (=, 4, P) be a probability space, with = — the support of P — a closed subset of
a Polish space X, and 4 the Borel sigma-field relative to =; we may think of Z as
the set of possible values of the random element ¢ defined on the probability space

of events (2, 4, ﬁ'). If P is known, the problem is to:

find x* € R" that minimizes Ef(x) , (3.1)
where
Ef(x):= [ f(x, §)P(d¢)) = Eif(x, £) (3.2)
E

and
f:R" X Z — R Yfoo] = (— o0, =)

is a random lower semicontinuous function; we set
(Ef)(x) ==,

whenever éb f(x, §) is not bounded above by a summable (extended real-valued)

function. We refer to
dom Ef : = {x|Ef(x) < oo}

as the effective domain of Ef. Points that do not belong to dom Ef cannot minimize
Ef and thus are effectively excluded from the optimization problem (3.1). Hence,
the model makes specific provisions for the presence of constraints that may limit

the choice of x. Note that by definition of the integral, we always have
dom Ef C {x[f(x, §) < o a.s.] .

An extended real-valued function h:R" — R = [— =, =] is said to be proper if
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h >— e and not identically + oo; it is lower semicontinuous (I.s¢c.) at x if for any

sequence (xk);':l, converging to x
1§(m inf h(x¥) = h(x) ,

where the quantities involved could be « or —e. The extend real-valued function f

defined on R™ X = is a random lower semicontinuous function if
forall £ € =, (-, €& isl.sc. (3.31)
fis B"® A — measurable (3.3ii)

where B" is the Borel sigma-field on R". This concept, under the name of "normal
integrand”, was introduced by Rockafellar (1976), as a generalization of Caratheo-
dory integrands, to handle problems in the Calculus of Variations and Optimal Con-
trol Theory. When dealing with problems of that type, as well as stochastic optimi-
zation problems such as (3.1), the traditional tools of functional analysis are no
longer quite appropriate. The classical geometrical approach that associates func-
tions with their graph must be abandoned in favor of a new geometrical viewpoint
that associates functions with their "epigraphs” (or hypographs), for more about
the motivation and the underlying principles of the epigraphical approach consult

Rockafellar and Wets (1984). The epigraph of a function h:R"? — R is the set
epi h =[x, a) eR* X R|h(x) < al .

Rockafellar (1976) shows that f:R" x = — R is a random l.sc. function if and only

if
the multifunction £ epi f(-, £) is nonempty, closed-valued |, (3.4i)
the multifunction ¢ » epi f(-, £) is measurable ; (3.4ii)

recall that a multifunction ¢ [(¢): = — R"*1! is measurable if for all closed sets

FcRn+1
Fr'iF):={¢c =N NF#¢lca

for further details about measurable multifunctions see Rockafellar (1976), Casta-
ing and Valadier (1976), and the bibliography of Wagner (1977) supplemented by
loffe (1978). We shall use repeatedly the following result due to Yankov, von Neu-

man, and Kuratowski and Ryll Nardzewski.
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PROPOSITION 3.1 Theorem of Measurable Selections. If I": = 2 R" is a closed-
valued measurable mullifuncliion, then there exisis a least one measurable
selector, i.e. @ measurable function x:dom I' — R" such that for all ¢ € dom T,

x(§) € T(¢), "wheredom T': = [£ € Z|T(¢) # ¢} =T 1RY) €4.

For a proof see Rockafellar (1976), for example. As immediate consequences of the
definition (3.3) of random l.sc. functions, the equivalence with the conditions (3.4)

and the preceding proposition, we have:

PROPOSITION 3.2 Let f:R"x = — R be a random L.sc. SJunction. Then for

any A measurable function x: Z — R", the function
Eb f(x(€), &) is A ~measurable

Moreover, the infimal funciion
&b inf f(-, £&):= infxeRnf(x, &)

is A-measurable, and the set of optimal solution
£ argmin f(-, €): = {x|f(x, & =inf f(-, &)}

is a closed-valued measurable multifunction from = into R", and this implies

that there exists a measurable function
£ x*(¢):dom (argmin f(-, £)) 3 R"

such that x*(¢) minimizes f(-, £) whenever argmin f(, £) # ¢.
For a succinct proof, see Section 3 of Rockafellar and Wets (1984).

If instead of P, we only have limited information available about P — e.g. some

knowledge about the shape of the distribution and a finite sample of values of § or
of a function of £ — then to estimate x* we usually have to rely on the solution of an

optimization problem that "approximates” (3.1), viz.

find x¥ € R" that minimizes EYf(x) (3.5)
where
EYf(x):=E"If(x, &)] = [1(x, OPY@$) . (3.6)
S

The measure PY is not necessarily the empirical measure, but more generally the
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"best” (in terms of a given criterion) approximate to P on the basis of the informa-
tion available. As more information is collected, we could refine the approximation
to P and hopefully find a better estimate of x*. To model this process, we rely on
the following set-up: let (Z, F, w) be a sample space with (¥¥)_; an increasing se-
quence of sigma-field contained in 7. A sample ¢ -- e.g. ¢ = {¢1, £2,... ] obtained by

independent sampling of the values of § -- leads us to a sequence [PY(:, ¢),

~

v =1,...] of probability measures defined on (=, 4). Since only the information
collected up to stage v can be used in the choice of PY, we must also require that

forall A €4
Eh bP"(A, ¢) is FY-measurable .

Since PY depends on ¢, so does the approximate problem (3.5), in particular its

solution x". A sequence of estimators
xV:Z—-R"Mv=1,..]4

is (strongly) consistent if p-almost surely they converge to x*, this, of course, im-

plies weak consistency (convergence in probability).

The following results extend the classical Consistency Theorem of Wald (1940)
and the extensions by Huber (1867), to the more general setting laid out here
above. Consistency is obtained by relying on assumptions that are weaker than
those of Huber (1967) even in the unconstrained case. To do so, we rely on the
theory of epi-convergence in conjunction with the theory of random sets (measur-

able multifunctions) and random l.sc. functions.

A sequence of functions [g":R" — ﬁ, v =1,...] is said to epi-converge to

g:R" — R if for all x in R", we have

liminfg"(x") = g(x) forall {xY] -1 convergingto x , 3.7)
YV —> oo
and
Jor some [xV] -1 converging to x,limsupg'(x¥)=sg(x) . (3.8)
V—>no0

Note that any one of these conditions imply that g is lower semicontinuous. We then
say that g is the epi-limit of the g, and write g = epi—lim,_, .g". We refer to this
type of convergence as epi-convergence, since it is equivalent ot the set-
convergence of the epigraphs. For more about epi-convergence and its properties,

consult Attouch (1984). Our interest in epi-convergence stems from the fact that
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from a variational viewpoint it is the weakest type of convergence that possesses

the following properties:

PROPOSITION 3.3 [Attouch and Wets (1981), Salinetti and Wets (1986)]. Sup-
pose |g; gV:R" — -}i, v=1,. 1 is a collection of functions such that g =

epi-lim, _, .g". Then

lim sup (inf g¥) < inf g , (3.9)

Vv —+w

and, if

x¥ € argmin g"* for some subsequence fvp. k =1,...}

and x = limy _, ,x¥, it follows that
X € argming ,

and
k1im (inf g"® = inf g ;

so in particular if there exists a bounded set D C R" such that for some subse-

quence fv,, k =1,... 4,
argmin g'¥ M\D#*¢ ,

then the minimum of g is attained at some point in the closure of D.
Moreover, if argming # ¢, then lim,_, (inf g¥) = infg if and only if
x € argmin g implies the existence of sequences (&, 20, v =1,...{ and {x¥ € R",

v =1,...] with

lim &, =0, and lim x" =x

VvV —+mo Vv —+mo
such that for all v =1,...

x¥ € g, —argmin g¥: = {x|g¥(x) s ¢, + inf g¥] .

The next theorem that proves the u-almost sure epi-convergence of expecta-
tion functionals, is build upon approximation results for stochastic optimization
problems, first derived in the case f(:, §) convex (Theorem 3.3, Wets (1984)), and
later for the locally Lipschitz case (Theorem 2.8, Birge and Wets (1986)). We work

with the following assumptions.
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ASSUMPTION 3.4 ’Continuities" of f. The funciion

f:R" X = — (= oo, o]
with

dom f:= [(x, &)|f(x, §) < { =S x =, S C R" closed and nonempiy ,
ts such that for all x € S,

&b f(x, §) 1is continuous on Z=
and for all £ € =

xb f(x, § 1is lL.sc. on R" ,

and locally lower Lipschitz on S, in the following sense: to any x in S, there
corresponds a neighborhood V of x and a bounded continuous funclion

B8:= — R such that forallx’ €V n\Sand ¢ € =,
f(x, &) —f(x", £) < 8(&) " lIx = x| . (3.10)

ASSUMPTION 3.5 Convergence in distribution. Given the sample space

(2, F, u) and an increasing sequence of sigma-fields (F'"): -4 contained in F, let
PY:4 xZ —[0,1], v=1,...
be such that for all { € Z
PY(-, ¢) is a probability measure on (=, A) ,
and for all A € A
¢ PY(A, ¢) is FY-measurable
For p-almost all ¢ in Z, the sequence
}P"(- O, v=1,... | converges in distribution to P ,

and with P =:Po(-, ¢), for all x €S, the sequence [PY(-, &) =¢ is f(x, -)-tight
(asympiotic negligibility), i.e. to every x € S and € > 0 there corresponds a com-

pact set K, C Z such that for v =0, 1,...
Jax [T OIPY@E O <& (3.11)
£

and
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fzinfxERnf(x, HPY(AE, &) >— o . (3.12)

The assumption that
£ dom f(, &) : = [x|f(x, §) <o} =S

is constant, which is satisfied by all the examples in Section 2, may appear more

restrictive than it actually is. Indeed, it is easy to see that

dom Ef = M dom f(-, &) ,
(el

if Z is the support of the measure P and for all x € MN¢ez dom f(-, &), the function
f(x, ‘) is bounded above by a summable function. Then, with S = Neex dom f(-, &)

and

f(x, §) if x €S
+ -
f7(x, &) = + oo otherwise ,

we may as well work with f* instead of f, since
Ef(x) =Ef*(x) =Eif*(x, &) ,

and now £ dom f*(:, §) =S is constant.

Assumption 3.4 implies that f is a random lower semicontinuous function (nor-
mal integrand). Indeed, for all £ € =, f(-, §) is proper and lower semicontinuous

(3.3.i) and (x, &) f(x, £) is B" ® A-measurable (3.3.ii) since for all a € R,
lev, f:= {(x, §)|f(x, §) = a] is closed

To see this, suppose {(xk, fk)§;=1 C lev,f is a sequence converging to (x, £); then

from Assumption 3.4 we have that for k sufficiently large, and all ¢
f(x, & <f(xX, & + BOIx —x¥|,

in particular
fx, £ < f(x*, £ + Bllx —x*| < a + gllx —x¥|

where 8 = maxeszﬁ(f) is finite, since B(-) is bounded. Now (b f(x, ¢) is continu-

ous on =, thus taking limits as k goes to o, we obtain

f(x, §) <a + ﬂklim Ix =x¥ll=a ,
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i.e. (x, £§) €lev,f. Since f is a random l.sc. function if follows from Proposition 3.2

that
éH infxERf(xl é) =:7(£)

is measurable. Thus condition (3.12) does not sneak in another measurability condi-

tion, it requires simply that the measurable function 7 be quasi-integrable.

Huber (1967), as well as others see e.g. Ibragimov and Has’minski (1981), as-
sumes that S is open. Since constraints usually do not involve strict inequalities,
this is an unnatural restriction, except when there are no constraints, i.e. S = R"
in which case S is also closed. In any case, whatever be the optimality results one
may be able to prove with S open, they remain valid when S is replaced by its clo-
sure, assuming minimal continuity properties for the expectation functionals, but

the converse does not hold.

‘ To simplify notations we shall, whenever it is convenient, drop the explicit
reference of the dependence on ¢ of the probability measures PY and the resulting
expectation functionals EYf, nonetheless the reader should always be aware that
all u-a.s. statements refer to the underlying probability space (Z, F, u). We begin
by showing that Ef, as well as the EYf, are well-defined functions.

LEMMA 3.6 Under Assumptions 3.4 and 3.5, there exists Zy €F, u(Zy) =1
such that for all ¢ € Zy, Ef and {EYf, v = 1,... | are proper lower semicontinuous

Sunctions such that
S =dom Ef =dom EYf(-, ¢)

on which the expectation functionals are finite.

PROOF Let us first fix ¢, and assume that for this ¢ all the conditions of As-

sumption 3.5 are satisfied. If x £ S, then f(x, {) = « for all £ in £ and hence

Ef =EYf = o, i.e.,
S >dom Ef, S >domEYf .

With P® =P, for x € S and any ¢ >0, there is a compact set K, (Assumption 3.5)
such that

S fx, HPY(AE) = (max; ek IT(x, £)]) - PY(K,)
:4 § €K,

+ fz\KJf(x, £)|PY(d¢) < o,
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as follows from (3.11) and the fact that f(x, -) is continuous and finite on K, C =.
Thus E¥f(x) < .

The fact that Ef > — o, and EYf > — o follows directly from condition (3.12). It
is also this condition that we use to show that the expectation functionals are lower
semicontinuous since it allows us to appeal to Fatou's Lemma to obtain: given

{x¥] -, a sequence converging to x;

liminfEf(x¥) 2 [ lim f(x¥, §)P(d¢)
VvV —+ oo

Yy —+ >

2 [f(x, §P(d¢) = Ef(x)
where the last inequality follows from the lower semicontinuity of f(-, £) at x. Of
course, the same string of inequalities holds for all {PY, v =1,...].

Since the above holds for every v u-almost surely on Z, the set
Zo = [¢ € Z|EYf(-, ¢) isfinite,lsc.on S, for v=0,1,...4

is of measure 1.0

THEOREM 3.7 Suppose {[EYf, v =1,...] is a sequence of expectation func-
tionals defined by

EVf(x) = [, f(x, HPYAE) = EVIf(x, &)}

and Ef(x) = E{f(x, £)} such that f and the collection {P; P¥, v =1,...| satisfy As-

sumptions 3.4 and 3.5. Then, u-almost surely

Ef = epi-lim EYf = ptwse—lim E¥f

y—+w V— >

where ptwse—lim,_, . E'f denotes the pointwise limit.

PROOF The argument essentially follows that of Theorem 2.8 Birge and Wets
(1986), with minor modifications to take care of the slightly weaker assumptions
and the fact that the expectation functionals depend on (. We begin by showing that
u-almost surely Ef is the pointwise limit of the EYf. We fix ¢ € Z, and assume that
the conditions of Assumption 3.5 are satisfied for this particular ¢. Suppose x € S,

and set

h(§):=1(x, § .

From condition (3.11), it follows that for all £ > 0, there is a compact set K, such

that for all v
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VLI CORTIE

Let 7,.:= maxeextlh(,t)l. We know that 7, is finite since K, is compact and h is con-

tinuous on = (Assumption 3.4). Let h® be a truncation of h, defined by

h(¢) if Ih(&)| = v,
he(¢) =4 7, if h(§) > 7,
~7. T h(® <o,

The function h¢ is bounded and continuous, and for all ¢ in =

[hé(& | =Ih(H)] .

Now, from the convergence in distribution of the PV,

lim [a5:=fgh=<s>P"<ds>] = [pOP@H:=a* .

V— =

Moreover, for all v

Jag hOP@H <& .
Now, let

a,:=EM() = [ MOPYAD + [, H(OPY@H .
We have that for all v

lay = afl =1 [y (PO —hEENPY@D[ <22
and also

|Ef(x) —af|<2¢ .

(3.13)

These two last estimates, when used in conjunction with (3.13) yield: for all € > 0

|Ef(x) —a, | <6& .
Thus for all xin S

Ef(x) = lim EYf(x) = lim a, ,

Yy —+ Yy —+
and since, by Lemma 3.6,

S =dom Ef =dom E'f ,
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it means that Ef = ptwse—lim EYf, and that condition (3.8) of epi-convergence

V—b>

is satisfied, since we can choose [x" = x{f,"._.l for the sequence converging to x.

There remains to verify condition (3.7) of epi-convergence. If x & S, then for
every sequence {x"] ., converging to x, since S is closed we have that x¥ ¢ S for

v sufficiently large and hence EVf(x") = =, which implies that

lim inf EYf(xY) = o = Ef(x) = = .

YV —bo

If x €S, and {x"]7., is a sequence converging to x, unless x” is in S infinitely
often, lim inf, _, . EYf(xY) = =, and then condition (3.7) is trivially satisfied. So let

v=1 €S. For v sufficiently large, from (3.10) it follows that

us assume that {xV

there is a bounded continuous function 8 such that

f(x, £€) —B(&) - IIx — x| < f(x", &) .
Integrating both sides with respect to PY, and taking lim inf, _, .. we obtain

lim EYf(x) — lim BY: |jx — xY| < lim inf EVf(x")
V—+ V—+m=

Y —+ o0

where gY = f B(§€) PY(d¢) converge to a finite limit since the PY converge in distri-

bution to P, and by pointwise convergence of the EYf this yields

Ef(x) < liminfEYf(x") . O

V—rem

To apply in this context, Propositions 3.2 and 3.3, we must show that the ex-

pectation functionals {EYf, v = 1,... | are random l.sc. functions.

THEOREM 3.8 Under Assumptions 3.4 and 3.5, the expectation funciionals
EYf:R"xZ — R, for v=1,...,

are p-almost surely random lower semicontinuous funciions, such the (b

epi EYf(:, ¢) is FY-measurable.
PROOF Lemma 3.6 shows that there exists a set Z, CZ of u-measure 1 such

that for all ¢ € Z,, the multifunction
¢ epi BEVI(., $):Z2,3 R"*1 g nonempty, closed ~valued .
This is condition (3.4.i), thus there remains only to establish (3.4.ii), i.e.

¢ epi EYf(-, ¢) is F¥Y~measurable
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for v =1,.... Theorem 3.7 proves that with respect to the topology of convergence

in distribution, the map
PYb epi EYf is continuous .

Moreover, since ¢ PY(A, ¢) is F¥’-measurable for all A € 4, it means that given

any finite collection of closed sets {F; ¢ Z}i_, and scalars {g8;]., € [0, 1], the set
(¢ €Z|PY(Fy, &) < B, i=1,...,q} €FY

which means that the function
¢ PY(, ¢):Z — P:= fprobability measures on (=, 4)}

is FY-measurable. To see this, observe that the 'convergence in distribution’-

topology can be obtained from the base of open sets
IQeEPIQF) <Py, i=1,...,k},

see Billingsley (1968), that also generate the Borel field on P. Thus
¢ epi EI(, ¢)

is the composition of a continuous function, and a FY-measurable function, and
hence is F¥-measurable.O

In the proof of Theorem 3.8, we have used the continuity of the map PP
epi EYf, in fact Theorem 3.7 only proves epi-convergence, without introducing ex-
plicitly the epi-topology for the space of lower semicontinuous functions. The fact
that epi-convergence induces a topology on the space of l.sc. functions is well-
established, see for example Dolecki, Salinetti and Wets (1983) and Attouch (1984),
and thus with this proviso, Theorem 3.7 proves the epi-continuity of the map PV
epi EYf.

THEOREM 3.9 Consistency. Under Assumptions 3.4 and 3.5 we have that u-

almost surely

lim sup (inf EYf) < inf Ef (3.14)

Vo

Moreover, there exists Z, € F with u(Z\7Z,) =0, such that

(i) for all ¢ € Z, any cluster point X of any sequence {x", v =1,... ] with x¥ €

argmin EYfY(:, ¢) belongs to argmin Ef (i.e. is an optimal estimate),
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(ii) forv=1,...
¢ argmin EVf(-, ¢):Z9 3 R"

is a closed-valued FY-measurable multifunction.

In particular, if there is a compact set D C R" such that for v =1,...
(argmin EYf) N\ D is nonempty u-a.s. ,
and
fx.} = argmin Ef D ,

then there exist {x":Z, — R"|>_, F"-measurable selections of fargmin Ef]>_,

such that

x

x = lim xY(¢) for p-almost all ¢

YV — o
and also

inf Ef = |’lilnw (inf EYf) ju-a.s.

PROOF The inequality (3.14) immediately follows from (3.9) and the epi-
convergence p-almost surely of the expectation functionals EYf to Ef (Theorem
3.7) as does the assertion (i) about cluster points of optimal solutions (Proposition
3.2). The fact that (argmin EYf) is a closed-valued FY-measurable multifunction fol-
lows from Theorem 3.8 and Proposition 3.2.

Now suppose Z,CZ be such that wu(Z,) =1, for all (€Z, Ef =
epi—lim, _, ,E"f, and for all v =1,..., (argmin E*f) N D is nonempty. For all v, the

multifunction
¢ (argmin EYf(-, ¢) M D):Z, 3 R

is nonempty compact-valued, and FY-measurable; it is the intersection of two
closed-valued measurable multifunctions, see Rockafellar (1976). Now for any

€ Z,, let X¥¥Y]”_, be any sequence in R" such that for all v,
0 v=l
xY(¢) € argmin EYf(-,¢) 1D .

Then, any cluster point of the sequence is in D, since it is compact, and in

v

argmin Ef as follows from Proposition 3.2. Actually, x = lim, ,.x . To see this
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note that, if x* is not the limit point of the sequence there exists a subsequence

{vi =1 such that for some § >0, andallk =1, ...,

k

¢ ¢ argmin EY D, and ||x* —%¥||> 4 ,

but this is contradicted by the fact that this subsequence included in D contains a

further subsequence that is convergent.

Now, for v =1,..., let xV:Z — R" be an FY-measurable selection of the FV-
measurable multifunction ¢ (argmin EYf(-, ¢) M D), cf. Proposition 3.1. By the
preceding argument for all ¢ € Z,,, where u(Z,) =1,

x* = lim xY(¢)

V>

and from Proposition 3.3, it then also follows that

lim (inf EVf(-, ¢)) =inf Ef = Ef(x")

V—>

forall ¢ € Zy,.0

It should be noted that contrary to earlier work — see Wald (1940), Huber
(1967) — we do not assume the uniqueness of the optimal solutions, at least in the
case of the stochastic programming model, introduced in section 2, this would not
be a natural assumption. Also, let us observe that we have not given here the most
general possible version of the Consistency Theorem that could be obtained by re-
lying on the tools introduced here. There are conditions that are necessary and
sufficient for the convergence of infima — see Salinetti and Wets (1986), Robinson
(1985) — that could be used here in conjunction with convergence results for
measurable selections (Salinetti and Wets (1981)) to yield a slightly sharper
theorem, but the conditions would be much harder to verify, and would be of very
limited interest in this context. Also, since epi-convergence is of local character,

we could reward our statements to obtain "local" consistency by restricting our at-
tention to a neighborhood of some x"r in argmin Ef.

We conclude by an existence result. A function h:R" —» R is inf-compact if for

alla e R
lev,h: = [x € R"|h(x) = a} is compact .

If h is proper (h > — «, dom h # 0) and inf-compact, then (inf h) is finite and at-

tained for some x € R". For example, if h =g + ¥s, where g is continuous and ¥g is
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the indicator function of the nonempty compact set S(¥5(x) =0 if x € S, and o oth-
erwise), then h is inf-compact. Another sufficient condition is to have g coercive.
Inf-compactness is the most general condition that is verifiable under which ex-
istence can be established. The next proposilion generalizes results of Wets (1973)
and Hiriart-Unruty (1976). Essentially, we assume that f(-, £) is inf-compact with
positive probability.

PROPOSITION 3.10 Under Assumptions 3.4 and 3.5, the condition: there ex-
ists A € A with P(A) >0 (resp. P,(A) > 0) such that for all a €R, the set

lev,f M (R" x A) is bounded

Then Ef is inf-compact (resp. EYf is u-a.s. inf-compact).
PROOF It clearly suffices to prove the proposition for P, the same argument

applies for all PY u-a.s.. Let

¥(£): =inf§0, inf f(x, £)] .
X ERD

The function is measurable (Proposition 3.2) and P-summable, see (3.12). The func-

tion f’, defined by
f'(x, £):=1(x, §) —7(§€)

is then nonnegative. Moreover f’ & f and thus
lev " N (R" x A) Clev, f N (R" x A) .

Set a,: = a/P(A) and let A; be the projection on RP of levalf’ M (R" x A). Then if

X€ Ajand é €A
f'(x, §) >
and since f’ is nonnegative, with 7 = Efy(§)],
Ef(x) =Ef'(x) + 7 = fAf'(x, HP@E +7
>'a1-P(A)+7=a+-7

Hence lev Ef € A,, a bounded set. To complete the proof it suffices to observe

at+y
that from Lemma 3.6 we know that lev,Ef is closed since Ef is lower semicontinu-

ous, and this with the above implies that leva +;Ef is compact for all a € R.0O
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