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PREFACE

Under a collaborative agreement with the Institute for Meteorology and
Water Management, Warsaw (Poland), Jerzy Bartnicki works with IIASA's
Acid Rain Project on modeling atmospheric transport and deposition of pol-
lutants. This paper reports on a new method for solution of the advection
equation of an air pollution transport model. This new method turned out to
be a useful tool in the uncertainty analysis of the RAINS (Regional Acidifi-
cation INformation and Simulation) model carried out in the project.

Leen Hordijk
Leader, Acid Rain Project
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ABSTRACT

A numerical Positive Definite Pseudo-Spectral (PDPS) method for the
solution of the advection equation is presented. The method consists of two
parts. For each time step first a solution using a pseudospectral method is
computed. Then the solution is corrected by a filtering procedure which
eliminates negative values. The numerical test with the rotational velocity
field and different initial conditions shows that the present method has the
accuracy of the pseudospectral one without producing negative values. An
additional advantage of the PDPS method is the elimination of spurious
artificial shortwaves typical for the pseudospectral solution.
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AN EFFICIENT POSITIVE DEFINITE METHOD
FOR THE NUMERICAL SOLUTION OF THE
ADVECTION EQUATION

Jerzy Bartnicki

1. INTRODUCTION

The partial differential advection-diffusion equation is most frequently
used for the mathematical description of the long range transport of air
pollutants. This equation is also a basic one for the atmospheric part of the
ITASA RAINS (Regional Acidification INformation and Simulation) model
described by Alcamo et. al. (18985) and Hordijk (1985). The atmospheric
module of RAINS consists of the source-receptor matrices computed by
MSC-W (Meteorological Synthesizing Centre-West) in Oslo, using the Long
Range Transport (LRT) model developed by Eliassen and Saltbones (1983).
This LRT trajectory model is used by the Co-operative Programme for Moni-
toring and Evaluation of the Long Range Transmission of Air Pollutants in
Europe (EMEP) for routine calculations. In order to use this or any other

LRT model within RAINS, it is important to evaluate the uncertainty and
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credibility of the results. Among different types of sources of uncertainty
in LRT models the error introduced by the numerical method used to solve
the advection-diffusion equation can be an important one, especially for

models with nonlinear chemical reactions.

The main goal of this paper is to present a numerical method which can
be used for the solution of the advection-diffusion equation without produc-
ing negative values. Therefore the method could be applied to nonlinear
problems as well with high accuracy typical for the pseudospectral
approach and without losing stability (which occurs when negative values
appear). When solving the advection-diffusion equation, the diffusive part is
relatively less important than the advective part concerning numerical
problems. Also from the physical point of view, in the synoptic scale of
motions, the diffusion term is small compared to the advective one and is
even neglected in some models (e.g. in the MSC-W model). Therefore only an
application of the method to the advection equation is presented in this

paper, however, it can be used for the advection-diffusion equation as well.

2. NUMERICAL METHOD

Among many different methods used for the numerical solution of the
advection equation, the spectral (Orszag, 1971a) and pseudospectral
(Gottlieb and Orszag, 1977) approach are relatively efficient and accurate.
The accuracy of these methods is better compared with finite difference
methods (Orszag, 1971b), and also to other methods (Long and Pepper, 1981;
Chock, 1985). Another advantage of the spectral methods is the simple
mathematical formulation which makes them convenient for practical appli-

cations, especially when using numerical Fast Fourier Transform (FFT) (Coo-
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ley and Tukey, 1965). Spectral and pseudospectral methods have been suc-
cessfully applied to the air pollution transport models by Christensen and
Prahm (1976) and Wangle et al. (1978). Unfortunately, the accurate pseu-
dospectral and spectral methods can produce negative values during the
numerical solution of the advection equation. For many practical problems,
like air pollutant transport involving nonlinear chemistry, this phenomenon
makes the pseudospectral method unstable. There are other methods, like
the flux-corrected transport (FCT) method (Boris and Book, 1976; Zalesiak,
1979) and a positive definite algorithm developed by Smolarkiewicz (1984)
that can be applied in this case. However, these methods either require a
long computational time or are significantly less accurate than the pseudos-
pectral solution. This paper presents a combined numerical method: The
Positive Definite Pseudo-Spectral (PDPS) method, which eliminates com-
pletely negative values on one hand, and is of the same order of accuracy as

a pseudospectral approach, on the other hand.

2.1. Problem Formulation

The multidimensional advection equation to be solved has the following

form:

dc N ac
—+ ) u =0 1)
at §=1 ) azj

where ¢ = c(x,t) is the concentration (could be arbitrarily scalar),
assumed to be non-negative.
Uy = uy (z,t) is the j-th velocity component

(z.t) =(z4,....xzy.t) are the space and time coordinates
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The numerical method presented in this paper involves two basic steps

at each time step when solving equation (1):

(1) The pseudospectral method is applied to equation (1) at time £ and
a solution which contains also negative values of the concentra-

tion is achieved.

(2) The filtering procedure, which removes all negative values of the

concentration, is used to get the solution at time ¢ +Af.

Let ¢™ = c(x.m At) be the concentration field with periodic boundary
conditions at time wmAf. We are looking for the concentration
c™*l =¢c(xz,(m+1)At) at time (m+1)At in the uniform mesh of size

M, xXM,,..., XMy where the location of the mesh points is given by:

:L'J. = Mj Az ' mj = 0’1120“'1 Mj -1 (2)
where
2n
Az, = “ @)

forany j =1,2,....A.

The pseudospectral method can be represented by an operator P
which, applied to the discrete concentration field c™ at time m At, produces

the concentration 8™ *1 at time (m +1)At:

g™l = B(c™) (4)

+1

The concentration ¢™ can still include negative values. The filtering

procedure can be represented by the operator F which transforms ™ *1 to

cm+l containing non-negative values only:

cmH=FE™ Y 5)
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Thus, the positively defined pseudospectral method can be defined as:
cmHl = f.p(c™) (6)
In principle the operator P can represent also other methods, not only
the pseudospectral method. However, because of its simplicity and accu-

racy, the pseudospectral approximation is a rather efficient one for the

numerical solution of equation (1).

2.2. Pseudospectral Solution

The pseudospectral approach developed by Gazdag (1973) has been
chosen as the operator 16 The principle of Gazdag's method is to approxi-
mate the time derivatives by a truncated Taylor series, and then replace
the time derivatives by the space derivative terms, which are computed
using the spectral method. Mathematically the method can be described as
follows. Assuming that we know the concentration ¢™ at time m At, the con-

m+1

centration ¢ at the next time step (m +1)A¢ can be approximated by the

truncated Taylor series

oc™ 8% c™ A2
m+1 m
- . + .
c c™ + —— - At Y TR g
3 ,.m 3 m P
G0 At T AP
at3 3! at? p!

Following Gazdag (1973), the time derivatives of ¢ can be expressed in

terms of the space derivatives of ¢ and Uy by making use of equation (1):

8c N dc

“Z=_3Y u (8)
2 N | du

8 c - j  _8c 8 éc 9)




1+1 N 1 () 0 u -
attlc _ _ [l] 4y 8 |8 Te (10)
att+1 j=1'r=0r atT azj att—T

The superscript m has been omitted in the above equations for con-
venience. Equations (8-10) show how to compute any order time derivative
of ¢ from the lower order time derivatives of Uy and c. The first order time
derivative of ¢ can be computed directly from the basic advection equation.
It remains only to compute space derivatives of ¢ which is done with the
spectral method. Denoting the set of all grid points (Equations 2-3) by R,

the finite Fourier transform C of ¢ can be written as

1 -
Ml.MZ.... MN

C(k,t) = Y, c(z.t)exp (—i k-z) (11)

xeR

where i = V=1 and k is the wave vector

ko= (kq..ky,..ky) (12)

whose components assume integer values within the limits
M
- . =1
K; <ky =Ky, K; = > (13)
From C(k,t) the partial derivatives of ¢c(z,l) can be computed as

%’t—) = i'kj C(k,t) exp(ik-z) (14)
s lky| <Ky
The numerical computation of the space derivatives described by Equa-
tions (11-14) can be carried out sufficiently fast by the use of the numerical
Fast Fourier Transform (FFT, Cooley and Tukey, 1965). According to Gazdag

(1973) it gives very accurate results and therefore he called it Accurate

Space Derivative (ASD) method.



2.3. Filtering Procedure

The pseudospectral method described in the previous paragraph pro-
vide the concentration in the grid system at time (m +1)Af, assuming that
the concentration at time m Af is known (also the velocity and its time
derivatives). Unfortunately, the new concentration field may contain nega-
tive values. The presence of negative concentrations is a common
phenomenon for different numerical methods used for the solution of the
advection equation. According to Adam (1985), this is mainly due to the
wrong numerical propagation speed of the shortest waves in the spectrum.
He suggests, that the situation can be improved by applying digital filters.
However, the most common linear filters do not completely remove the nega-
tive values. The main features of a perfect filtering procedure are: (1) To
remove negative values. (2) To conserve total mass. (3) To preserve the
shape of the function. (4) To preserve the maxima. (5) To be free of
shortwave noise. Unfortunately, none of the existing numerical filters

satisfy all above requirements.

2.3.1. Method

The multidimensional nonlinear filtering proc;edure developed in this
paper fulfills at least some of the conditions mentioned above. It completely
removes negative values and conserves the total mass with an accuracy of
0.001%. Filtered maxima and the shape of the function are relatively close
to the original ones. The procedure can be explained as follows. Let cy be
the concentration in the 7-th point of the one-dimensional grid system con-
sisting of N points (7 = 1,...,N). If all cy values are non-negative the filter

does not change them. Let us assume now t.hat. the concentration field has A,



-8 -
positive values (cj >0), N, zero values (cj = 0) and N5 negative values (cj <

0). Obviously

Ny +Np+Ng=N (15)

As assumed under Equation (1) we have:

My >Mq 16)
where
N
M= Y ¢ (17a)
j=1
Cj)O

is the "positive' mass and

N
=1
Cj<0

is the "negative” mass. With the above assumptions the filtering procedure

is defined by the following algorithm:
1. Compute the negative mass M5 and check if it is greater than zero.

If not, stop.
2. Compute the number of positive concentrations N,.
3. Check the sign of the concentration Cy for 7 =1,....N

(@) If ¢y > 0, subtract the negative mass divided by the number of

Mg
positive concentrations: ¢; :=¢; — N
1

(b) If it is zero, do nothing.

(¢) If it is negative, set it to zero: Cy = 0.

4, Gotol.
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2.3.2. A One-Dimensional Example

The filtering procedure lined out in the previous paragraph is illus-
trated by a simple one-dimensional example with a grid system consisting of
11 points. The initial distribution shown in Figure la is typical for the
Intermediate solution of the advection equation with "delta" function (con-
centrations at all points except one are equal to ze;‘o) as initial condition.
Two negative values of the concentration are present in the distribution: -4
at point number 4 and -5 at point number B. After the first iteration (Figure
1b) only one negative value remains: -0.8 at point number 11. The second
and final iteration (Figure 1c) gives a distribution without negative values.
The maximum is slightly lower: 13 instead of 15 but the shape of the final
distribution is quite close to the initial one (Figure i1d). From Figure 14 it
can be also seen that the short waves present in the initial distribution have

been removed from the final one.

The basic feature of the algorithm presented above is the conservation

of mass, which can be expressed as

My — M3 = const. (18)
The algorithm is convergent and stable (this will be proved in the next sec-
tion), and also simple in its numerical realization. Numerical experiments
with different initial distributions indicate that the typical number of itera-
tions necessary to achieve a non-negative distribution is not greater than
two. Also the additional computer-time spent for filtering is small (< 10%)

compared to the computer-time required by the pseudospectral method.
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INITIAL CONCENTRATION
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Figure la. One dimensional test for the filtering procedure: Initial dis-

tribution of the concentration.



-11 -

CONCENTRATION AFTER FIRST ITERATION

CONCENTRATION

-2
-4
-6
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Figure 1b. One dimensional test for the filtering procedure: Distribu-

tion after first iteration.
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CONCENTRATION AFTER SECOND ITERATION
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Figure lc. One dimensional test for the filtering procedure: Distribu-

tion after second and final iteration.
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CONCENTRATION AFTER SECOND ITERATION
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Figure lc. One dimensional test for the filtering procedure: Distribu-

tion after second and final iteration.
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INITIAL AND FINAL CONCENTRATION
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Figure 1d. One dimensional test for the filtering procedure: Comparis-
on of initial and final distribution of the concentration.
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2.4_. Stability and Convergence

The PDPS method described by equation (6) is a superposition of the
operator P - the pseudospectral method -- and F — the filtering pro-
cedure. The stability of the pseudospectral method is discussed in detail by
Gazdag (1973). He proved that the stability condition is satisfied for trun-
cated Taylor series of order 3,4,7 and 8.

For the filtering procedure there are three possibilities: (1) The ini-
tial value of the concentration is negative (E'j < 0) and becomes zero after
filtering (cj =0). (2) The initial concentration is equal to zero (E:"j =0) and
remains zero (cj =0). (3) The initial concentration is positive (c'"j > 0) and
finally remains non-negative, because the part of the negative mass sub-
tracted from it cannot be larger than the original value (0 < ¢y < Ej).

Therefore, the following condition is fulfilled by the filtering procedure:

0s¢ s | 7=1,..N (19)
where
E'j - concentration at point § before filtering
Cy - concentration at point 7 after filtering

A simple implication of relation (19) is that the amplification factors
are less than one. This means that the filtering procedure is stable and also
that the PDPS method, as a superposition of two stable operators, satisfies
the stability condition.

The filtering procedure is also convergent. This is obvious when only
non-negative values are present in the initial distribution. Let us assume
now an initial distribution with N, positive values, N, zero values and N,

negative values of the concentration in the initial distribution. Due to
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Equation (16) the negative mass Mg is smaller than positive mass M.
According to the filtering procedure all negative values become equal to
zero and zero values are not changed. From each positive value of the con-
centration the negative mass averaged over the number of positive values is
subtracted. If each positive value is greater than the average negative
mass, the filtering procedure is completed after the first iteration. If not,
there are positive values lower than the average negative mass, and they
become equal to zero during the second iteration. It means that after each
iteration the number of zeros increases at least by the number of negative
values. Assuming that the filtering procedure is not convergent, there will
be zeros only after less than N —N, iterations, which is impossible because
of the conservation of mass (Eq. 18). Thus the filtering procedure is con-

vergent.

3. ADVECTIVE TEST

In order to check the accuracy of the method described in the previ-
ous paragraph, a numerical advective test has been performed. A standard
artificial velocity field has been used with the "frozen' initial shape moving
around the axis of rotation. Three different initial conditions have been
chosen: cone, rectangular block and smooth shape. The test was performed
both for the Positive Definite Pseudo-Spectral (PDPS) method, and Pseudo-

Spectral (PS) approach (Gazdag, 1973).

3.1. Basic Equation

The equation describing the rotation of the "frozen” initial condition
has been frequently used for testing numerical methods (Orszag, 1971a; Gaz-

dag, 1973; Long and Pepper, 1981; Christensen and Prahm, 1976). It has the
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following form:

8c dc 8c
- - — + — =0
3 WY Bz oz 2y (20)

where @ is angular velocity

w=— (21)

and T is the period of rotation. Equation (1) was solved numerically on a
grid consisting of 32 X 32 points. The time step was equal 4—(7;0 which means

that one full revolution required 400 time steps. The analytical and numeri-
cal solutions were compared after 10 rotations. In addition, several param-

eters were computed during each run. Namely:
(1) Mass conservation (in 2) - M

32 32
Y Y e(i.g)
i=17=1
32 32
2 X (i)

i=14=1

M= x 100 (22)

where c, (7,7 ) is the initial concentration

() Conservation of the square of the mass (in %) - SM

32 32
Y O3 e¥(i,5)
i=1 4=1
32 32
Y Y cfi.g)

1=1f=1

SM = x 100 (23)

(3) Minimum of ¢(2,7) - MIN
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(4) Maximum of ¢ (i,7) - MAX
(6) Maximum absolute error - MER

MER-’-"}[E}K(|C(73-.7')"CO(13..7')|) (24)
() Average absolute error - AER

1 32 32

32 %32 ¢Z=:1 jZ=:1 e (8.7) = co(2.7)| (25)

AER =

All above parameters are functions of time and are different for each initial
condition. The maximum of each tested initial condition was kept constant

and equal 100.

3.2. Cone Shape Initial Condition

The "cone'' shape initial condition (Figure 2a) is a standard one and was
applied as a test case to almost all numerical methods used for solving an

advection equation. In the grid system the "cone” shape is defined as:

o 100-(1 —r/4) ifr=4
c(t.j)=]p if r>4

(26)

r=V(@4 —-8)2+ (j —16)%, i,7=1,..,32

In Figures (2b) and (2c¢) the numerical solutions after ten rotations are
shown for the PDPS and PS methods, respectively. The difference in shapes
is small and both numerical solutions are quite close to the analytical one.

However, negative values appear in the PS solution.
The mass conservation M, defined by Equation (22), is equal to 100%

during the entire run for both PDPS and PS with accuracy better than

0.0017. The square mass conservation SM, defined by Equation (23), is
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shown in Figure 3. The square mass is well conserved by the PS method
(99.77 after 10 rotations) and slightly worse by the PDPS method (92.67
after 10 rotations). In the latter case the square mass decreases rapidly

during the first rotation and then stays almost at the same level.

The minimum values M/N are shown in Figure 4 for both methods. In
case of PDPS negative values are not created and the numerical minimum is
equal to the analytical one, which is zero. In case of PS negative values are

created, reaching -1.81 after ten rotations.

The analytical maximum MAX is equal to 100 and is slightly above the
numerical ones (Figure 5). After ten rotations the maximum for the PDPS
method is equal to 91.75 whereas it is 94.02 for the PS method. For both
methods the maximum decreases mainly during the first rotation and then

stays at the same level.

For both PDPS and PS the maximum absolute error MER, defined by
Equation (24), occurs at the top of the cone. It is slightly higher for PDPS

than for PS (Figure 6), and is less than 10 after ten rotations.

For the PS method the average absolute error AER, defined by Equa-
tion (25), increases rapidly during the first rotation and then, with some
fluctuations, remains at the same level of 0.14 (Figure 7). In case of the

PDPS method, AER increases slowly, reaching 0.172 after ten rotations.

3.3. Rectangular Block Initial Condition

The '"Rectangular Block™ initial condition is shown in Figure Ba. It is

defined on the grid as:

100 if 5=i=11 and 13s7=<19

c(t.j) = 0] otherwise t,j =1,....32 ®7)
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CONE - SQUARE OF MASS CONSERVATION
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Figure 3. Square of mass conservation, with the cone shape as initial
condition.



_23 .

CONE - MINIMUM
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Figure 4. Minimum values for the PDPS and PS methods with the cone

shape initial condition.
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CONE - MAXIMUM
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Figure 5. Maximum values for the PDPS and PS methods with the cone

shape initial condition.
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CONE - MAXIMUM ABSOLUTE ERROR
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Figure 6. Maximum ahsolute error for the PDPS and PS methods with

the cone shape initial condition.
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CONE - AVERAGE ABSOLUTE ERROR
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Figure 7. Average absolute error for the PDPS and PS methods with

the cone shape initial condition.
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The numerical solution after ten rotations is shown in Figure 8b for the
PDPS method, and in Figure 8c for the PS method. The difference between
the analytical and the numerical solutions is greater than for the cone
shape initial condition discussed earlier, but the initial shape is kept quite
well. An important advantage of the PDPS method is the absence of

shortwave noise, present in the solution given by the PS method.

The square mass is better conserved by the PS method (95% after ten
rotations) than by the PDPS method (69.36% after ten rotations). Again, like
in the case of the cone shape, the square mass decreases mainly during the
first rotation (71.42%) for PDPS, and then remains at the same level 70%
(Figure 9).

The minimum for the PDPS method equals to zero during the entire run.
For PS i£ varies from -8.28 after the third rotation to -13.07 after ten rota-
tions (Figure 10). The minimum value produced by the PS method is higher
(in absolute value) in case of the rectangular block initial condition than in

case of the cone shape initial condition.

The maximum for the PDPS method (Figure 11) increases to 105.6 after
the first rotation and then continuously decreases to 101.0 after ten rota-
tions. The maximum for the PS method (Figure 11) is relatively high,

reaches 120.16 after the fourth rotation and remains lower afterwards.

The maximum absolute error is much higher compared to the cone
shape initial condition, both for PDPS and PS (Figure 12, cf. Figure 6). 1n
case of PDPS the maximum absolute error increases rapidly to 38.91 after
the first rotation and then slowly goes to 47.08 after ten rotations. The

maximum absolute error increases also in case of the PS method (Figure 12)



-29 -

—1¢0.08
T 8.0
-— b0Q.08
40.0
20.0

%]
~-20.0

“....“..
T
(X0
.. O
XXX ....
:. 0 .: QRN
.. :.:.... X
AR
QORI
BB RN O
SIS
..... BN
A0 .. RN
: x.“. ...‘ eo....“....:“ .“.
.: KN : (ORXXNN
«. .. K
< ‘00:‘ ...:.
——— =Ry
—_—— j..«....."...".“..
I"
O
. 00N
:.
oo

.::.
AR
:.... X000 XXX
S5
e
5 S0
ooty
..:.:... RN i
:. o0 .. 4 :.. .:...
55 (R
ANl
4 AN
G % % .:. o
X0
~= 50 ... .
\\u\n\r;‘\l“: 000 ..
N0
g
. .
....¢%
R
..

Shape of the rectangular block after 10 rotations: PDPS

method.

Figure 8b.



’

\’ N "
‘\ f"m"‘ ‘\ ‘\‘ l~\
v ‘IA,

X l
"’00.‘&\‘ \\ >

Qv \4A
Voo ‘(“‘\"‘

‘\“\“3‘?\“’

-30 -

’ﬁ' le\’/‘\\'/‘/
_‘¢\"“ \‘ Y
RS Q"\"

KISy
: c.v.}?p)\vn‘%‘;\ ;\"

Y Y7 ; ‘

Figure 8c.
method.

8@.

62.

40.

[
&

Shape of the rectangular block after 10 rotations: PS



-321 -

RECT. BLOCK - SQUARE OF MASS CONSERVATION

100 'vn—';fyﬁ 5 ™ + T - Y T ]
. , : S 4
90 \
80 \
70 1 ¢
60
S 50
40 **= ppPS
30 = pg
20
10
0
o] 1 2 3 4 5 6 7 8 9 10
ROTATION
Figure 9. Square of mass conservation, with the rectangular block in-

itial condition.
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to 38.8 after seven rotations.

The average absolute error (Figure 13) is about 1.5 times smaller for

the PDPS (0.161-0.181) than for the PS method (0.232-0.314).

Compared to the cone initial condition, the rectangular block initial
condition is a more critical test for the numerical methods. Differences
between numerical and analytical solution are higher and negative numbers
are bigger. In the PS solution, there are also short range waves present,
which did not occur before. In this case the PDPS method passed the test
quite well, and especially, it preserved the numerical maximum close to
analytical one and did not produce the shortwave noise, present in PS solu-

tion.

3.4. Smooth Initial Condition

Contrary to the two previous cases the last numerical test was per-

formed with the following smooth initial condition:

o 100’0032(1\'1'/ 12) 0<r <6

r=vY@ —-8)%+( —16)% 1,5 =1,...,32

The shape of the distribution defined by Equation (28) is shown in Fig-

ure l4a.

The numerical solution after ten rotations is shown in Figure 14b for
the PDPS method, and in Figure 14c for the PS method. In both cases the
differences between the analytical and the numerical solutions are small. In
case of the PS method negative values appeared again but shortwaves can
not be seen on the grid. The shortwaves are also not present in the PDPS

solution.
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The square mass, shown in Figure 15, is well conserved by both the
PDPS method (98.91% after ten rotations) and the PS method (99.76% after
ten rotations). Again, like in both previous cases, the square mass

decreases mainly during the first rotations for the PDPS method.

The minimum is zero for the PDPS method during entire run (Figure
16). For PS, it slowly decreases from -0.19 after the first rotation to -0.43
after ten rotations. However, the absolute values of the minimum are rather

low compared to the cone shape and rectangular block initial conditions.

The maximum, shown in Figure 16, is very close to the analytical value
100 for both methods. After ten rotations the maximum is equal to 99.32 for

the PDPS method and 99.70 for the PS method.

The maximum absolute error (Figure 17) is 0.70 for the PDPS method
and 0.69 for the PS, after ten rotations. It increases faster for the PS
method (0.27 after the first rotation) than for PDPS (0.53 after the first

rotaton).

The average absolute error is practically the same for both methods
and it slowly increases from 0.04 after the first rotation to 0.05 after ten

rotations.

3.5. Comparison of Different Initial Conditions

The results of the advective test depend both on the numerical method
applied to the advection equation and on the shape of the initial condition.
For each of the three different initial conditions the PDPS and PS methods
conserve initial mass with an accuracy better than 0.001%. Also, for all of
them, the PDPS method does not produce negative values and this is the

most important feature of the method. However, the values of the other
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measures (SM, MIN for the PS method, MAX, MER and AER), defined in Sec-

tion 3.1, depend on the shape of initial condition.

The square mass is better conserved (Figure 15) for the smooth shape
than for the cone shape (Figure 3) and the rectangular block (Figure 9).
After ten rotations, only 0.46%Z of the square mass is lost in the PS solution
and 1.097 in the PDPS solution. For the rectangular block the square mass
decrease after ten rotations is: 4.28%Z for PS and 30.64%Z for PDPS. The
corresponding numbers for the cone initial conditions are: 0.93% for PS and

7.33% for PDPS.

The minimum values generated by the PS method are smaller (Figure
16), -- in absolute units -- for the smooth shape (-0.43 after seven rotations)
than for the rectangular block (-13.07 after ten rotations), and for the cone

(-0.181 after ten rotations).

Similarly, the maximum for both methods is closer to the analytical
solution in case of the smooth shape (99.32 for PDPS, 99.70 for PS; Figure
17) than in case of the rectangular block (101.00 for PDPS, 114.04 for PS),

and the cone shape (91.45 for PDPS, 94.02 for PS).

The maximum absolute error after ten rotations (Figure 18) is also
smaller for the smooth shape (0.70 for PDPS, 0.69 for PS) than for the rec-
tangular block (47.08 for PDPS, 35.08 for PS) and the cone (8.55 for PDPS,

5.98 for PS).

Finally, the average absolute error (Figure 19) is slightly higher for
the smooth shape (0.05 for PDPS and PS, after ten rotations) than for the
cone shape (0.172 for PDPS, 0.146 for PS) and the rectangular block (0.181

for PDPS, 0.301 for PS).
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Comparing different intial conditions, it seems that the rectangular
block shape is the most critical test for the numerical methods. It is also
confirmed by the generation of the artificial shortwave noise, with the high
amplitude for the rectangular block initial condition (Figure 8b-c), smaller
for the cone initial condition (Figure 2b-c) and practically invisible for the

smooth initial condition (Figure 14b-c).

4. CONCLUSIONS

The PDPS method presented in this paper is simple and comprehensive
both in mathematical formulation and in practical application. It does not
produce negative values and conserves initial mass with 1007 accuracy. The
method consists of two basic parts: (1) The pseudospectral solution, and (2)
the filtering procedure. Compared to the pseudospectral approach the
additional computer-time for the PDPS method is only about 10% higher. The
multidimensional filtering procedure is general enough to be combined with
methods other than PS, and especially with explicit time integration algo-
rithms. The PDPS method can also be applied to the advection-diffusion

equation in the same way as to the advection equation.

From the numerical tests, performed with the PDPS and PS methods in
the rotational velocity field, it seems that - for both methods -- results
depend on the initial condition. The most commonly used cone shape gives
relatively good results concerning accuracy and shortwave noise. From the
three different conditions tested, the most critical one is the rectangular
block shape with very steep gradients. In this case, the magnitude of the
negative values generated by the PS method is larger (Figure 10) than for

the other initial conditions (Figures 8c and 14c). Also the amplitude of the
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shortwaves on the entire grid system is larger (Figure 8c). Both, negative
values and shortwaves noise (except some small disturbances close to the

rectangular block) are not present in the PDPS solution.

Also the average absolute error is smaller for the PDPS method,
except in the cone case, when it is slightly higher compared to the PS solu-

tion.

Summarizing, the accuracy of the PDPS method is very close to the PS
one. The advantage of PDPS is a complete elimination of negative values
from the solution and therefore its possible application to non-linear prob-
lems (e.g. chemical reactions during the transport). An additional advan-
tage of PDPS is the absence of shortwaves, typical for the PS solution, in

case of steep gradients in the concentration field.
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