NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

DECISION SUPPORT SYSTEM MINE
PROBLEM SOLVER FOR NONLINEAR

MULTI-CRITERIA ANALYSIS

S. Kaden
T. Kreglewski

January 1986
CpP-86-5

Collaborative Papers report work which has not been performed
solely at the International Institute for Applied Systems Analysis
and which has received only limited review. Views or opinions
expressed herein do not necessarily represent those of the Insti-
tute, its National Member Organizations, or other organizations

supporting the work.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

PREFACE

The Regional Wailer Policies project of IIASA was focused on inten-
sively developed regions where the water resources are integrating ele-
ments of the environment. The research was directed towards the develop-
ment of methods and models Lo support the resolution of conflicts within
such socio-economic environmental systems. One of our case studies deals
with open-pit lignite mining areas. The developed Decision Support System
MINE has been implemented for a test region in the Lusatian Lignite District
of the GDR.

The complex problems of such regional policy analysis are not tract-
able in one model using any of existing computational methods. That is why a
heuristic two-level model approach has been applied. Simplified first-level
models together with interactive procedures for multi-criteria analysis are
used in the Flanning Model for screening analysis of rational long-term
policies. Second-level models serve for the verification and specification of
the results of screening analysis.

In developing the system our major goal was to make it user-friendly,
highly interactive and robust. For the planning model these features are
determined above all by the effectivity of the problem solver for multi-
criteria analysis. The given paper describes such a problem solver being
developed for the DSS MINE. This research has been done within the frame-
work of a collaborative agreement between IIASA and the Technical Univer-
sity of Warsaw, Institute of Automatic Control.

Sergei Orlovski

Project Leader
Regional Water Policies Project

- iii -

ABSTRACT

The Decision Support System MINE has been developed for the analysis
of regional water policies in open-pit lignite mining areas. It is based on a
two-level model approach. The first-level planning model is used for the
estimation of rational strategies of long-term development applying dynamic
multi-criteria analysis. The second-level management model considers
managerial/ operational aspects for shorter time steps (monthly and
yearly).

The paper describes the problem solver for multi-criteria analysis in
the planning model. This analysis is based on the reference point approach.
For the solution of the resulting nonlinear programming problem the MSPN-
algorithm, developed at the Institute of Automatic Control of the Technical
University has been adopted. The solver considers the special characteris-
tics of the mathematical model of the DSS MINE, as its non-linearity and the
sparse character of the resulting Jacobian matrix.

Starting with the description of the general mathematical structure of
the planning model within the DSS MINE the problem formulation for multi-
criteria analysis based on the Reference Point Approach is given. Next, the
non-linear problem solver MSPN is presented, including a program descrip-
tion. Finally the results of some computational tests are shown.

CONTENTS

1. Introduction
2. Multi-Criteria Analysis

2.1 Structure of the planning model of the DSS MINE
2.2 Problem formulation for multi-criteria analysis
2.3 Scalarizing method - the Reference Point Approach

3. Non-linear Problem Solver MSPN
3.1 Theoretical background

3.1.1 General description of the algorithm
3.1.2 Reduced gradient algorithm

3.1.3 Penalty shift algorithm

3.1.4 Verification of gradients

3.2 Program description
3.2.1 Program structure
3.2.2 Storage method for Jacobian matrix
3.2.3 Optimization control parameters
3.2.4 Error handling
4. Computational Tests
4.1 Robustness of MSPN-solver
4.2 Influences of starting point values
4.3 Conclusions
References

Appendices

A COMMON blocks
B Subroutines and functions

[¢)]

[B)]

11
12
14
15

15
15
18
21

22

23
26

DECISION SUPPCORT SYSTEM MINE
PROBLEM SOLVER FOR NONLINEAR MULTI-CRITERIA ANALYSIS

S. Kaden! and T. I(r'eglewski2

1. Introduction

Regions with open-pit lignite mining are characterized by complex and strong
interactions in the socio-economic environmental system with special regard to
water resources. Caused by lignite mining, above all the necessary mine drainage,
originate significant conflicts between different interest groups. For a detailed
description of those problems see Kaden et al., 1985a.

Due to the complexity of the socio-economic environmental processes in min-
ing areas, the design of regional water policies and water use technologies as well
as mine drainage can only be done properly based on appropriate mathematical
models. From a critical analysis of the state-of-the-art of modeling in lignite mining
areas it has been concluded, that above all methods and models are required to
support the analysis and implementation of rational long-term regional water
policies in open-pit lignite mining areas, to achieve a proper balance between
economic welfare and the state of the environment, Kaden et al. 1985h.

Towards that goal the research of the Regional Water Policies project of
IIASA, in collaboration with research institutes in the GDR, and in Poland, in the
period 1984-1985 was directed. One of its major products is the Decision Support
System MINE, see Kaden et al. 1985a, Kaden 1986. The DSS MINE has been imple-
mented for a test region in the Lusatian Lignite District in the GDR.

The analysis of regional water policies in mining regions is a problem of
dynamic multi-criteria choice. An advanced system of decision aids is needed
which allows, Kaden et al. 1986:

1)Int.er'nat.ionﬂl Institute for Applied Systems Analysis Laxenburg, Austria
Institute of Automatic Control, Technical University of Warsaw, Poland

-2 -

- to consider the controversy among different water users and interest groups,
- to include multiple criteria some of which can not be evaluated quantitatively,

- to take into the account the uncertainty and the stochastic character of the
system inputs as well as the limited possibilities to analyze all the decisive
natural and socio-economic processes and impacts,

- to offer a set of decision alternatives, demonstrating the necessary trade-offs
between different water users and interest groups.

At present no mathematical methods are available or practical applicable consid-
ering all these problems in one single model. Only time-discrete hierarchical
model systems can satisfy all requirements. Frequently already a two-level model
hierarchy satisfies most requirements. For the DSS MINE such a two-level system
has been realized.

The first-level model is a Planning Model for the dynamic multi-criteria
analysis for a relatively small number of planning periods , 7=1,...,J as the time
step for principal management/technological decisions. Variable time steps are
used starting with one year and increasing with time up to 15 years.

The planning model serves for the estimation of rational strategies of long-
term systems development. These strategies are selected by multi-criteria
- analysis.

The second-level Management Model is applied for the simulation of systems
behavior for a larger number of smaller management periods (monthly and yearly
time steps). It is used to analyze managerial decisions by the help of stochastic
simulation and to verify results obtained with the planning model.

The DSS MINE is intended to be highly interactively, user-friendly and robust.
The realization of these goals depends above all on the effectivity of the basic
mathematical methods and models. One of the fundamental algorithms is the algo-
rithm for non-linear multi-criteria analysis in the planning model.

The given paper describes the solver for non-linear multi-criteria analysis of
the DSS MINE. It has been developed in collaboration between IIASA and the Insti-
tute of Automatic Control of the Technical University Warsaw, Poland.

2. Multi-Criteria Analysis

2.1. Structure of the planning model of the DSS MINE

The planning model covers a planning horizon of 50 years divided into max-
imum 10 planning periods, see Figure 1.
The figure illustrates that the highest accuracy is achieved for the first planning
periods. The later planning periods give rough estimates of future systems
development. Their consideration ensures a rational systems development in the
long-term run.

The planning model of the DSS MINE serves for the estimation of rational stra-
tegies of long-term systems development. These strategies are selected by multi-
criteria analysis considering a number of criferia. The criteria have to be chosen
from a given set of indicators, e.g. cost of water supply, cost of mine drainage,
satisfaction of water demand and environmental requirements. These indicators are
assumed to be integral values over the whole planning horizon. In Figure 2 a block
scheme of the planning model is given.

With the purpose of a unified model being independent on the chosen criteria
it is assumed that for all indicators bounds are given and all indicators are treated
as constraints. Based on that the following multi-criteria problem for a subset
O, L € Ly of the indicators 0(Q; , {=1,...,L) is defined:

PLANNING HORIZON #!

2 "~ PLANNING PERIODS 10

Figure 1: Time discretization for the planning model

Hydrological/socio-
economic input

1)
v

State of the system

-Descriptive values
$,() =15,(j,1.D,5)

v t
j+1

i-1 State variables
P sl =1s,(1.5,li- 1).D,S,) >

4 s
Constraints Decisions
Ci.8,. 5,1 <0 > D(i):D,,
¥y ¥

Indicators of systems development
ol..., 1{j), D(i),sv(i), Sd(]),...) <max 0

Figure 2: Block schema of the planning model

-4 -

O = Minimum ' [€L, (R.1)
subject to inequality constraints
0 < max0 (R.2)
Cin(J) =0, 7=1,....J
equality constraints)
Ceo(G)=0,7=1,....J (2.3)
S, G)—-15,{)=0,7=1,....J
bounds
minX7) = IXJ) smaxIXj), 7=1,....J (R.4)
minD, = Dy, < maxDg
This model describes a non-linear dynamic multi-criteria problem. For the given
problem in mining areas it can be assumed that the systems dynamic is determined
above all by the externally fixed mine drainage. The internal systems dynamic is
relatively slight, that means the influence of the state variables on the resuilt
(indicators) is less important. Consequently the problem Eq.(2.1)-(2.4) may be
divided into subproblems for a few subhorizons m, m=1,...,M, see Figure 1.
o’'(m) => Minimum'! , m=1,... .M (2.5)
subject to Eq.(R.2)-(2.4) for subhorizon m . This approach reduces the computa-
tional effort due to the smaller dimension of the non-linear programming problem.

In Figure 3 the structure of the Jacobian matrix is depicted for a subhorizon

with two planning periods. The numbers give the actual size of the problem for the
GDR test area.
The Figure illustrates the sparse character of the matrix. With the increasing
number of planning periods per subhorizon the matrix is getting more sparse. The
algorithm for non-linear programming has to consider this property in order to
reduce storage consumption and computational effort.

2.2. Problem formulation for multi-criteria analysis

Instead of the problem oriented model formulation above for simplicity and
convenience in the following a more compact mathematical formulation of the
multi-criteria problem Eq.(2.1)-(2.5) is used. '

We consider a nonlinear optimization problems of the form:

minimize set of functions
f‘(Z), 1:€Io (26)

subject to:
nonlinear inequality constraints

ey s, i=1,... s My (R.7)
nonlinear equality constraints
f‘(3)=bi , 1'.=n,+1,...,nh (28)

and bounds for all variables

ljysz;<u;, j=1,..n (2.9)

ctj) Cli+ 1) fs,() [fs i+

D()

s, (i)

g g
000000000000
AP oo d

DS (i+1 po(j+1)

5152 85 86 90 92 95

Figure 3: Structure of the Jacobian matrix

The nonlinear functions f(x), i=1,...,n3 are assumed to be differentiable and
their gradients must be known in the analytical form. These functions, together
with the right hand sides &, i =1,...,n, , the lower bounds I;, j=1,...,n , and the
upper bounds u; , j=1,...,n , constitute the model of systems behavior.

As explained above some of the values fi(x), i=1,...,n;, calculated in the
model are defined as indicators of systems development. The set of indices I3 con-
tains the numbers of functions f;(x) selected as objectives, being of interest for
the decision maker applying the DSS MINE. This set can be changed at any time.

Most frequently the set /4 has more than one element and in such a case prob-
lem (2.8) - (2.9) is the problem of multiobjective optimizalion. To solve such a
problem, one must scalarize it, i.e. reduce it to single criteria equivalent using a

scalarizing function.

2.3. Scalarizing method - the Reference Point Approach

For the DSS MINE the Reference Point Approach (Wierzbicki, 1983) is applied.
In this method the reduction of the multiobjective optimization problem to a single
objective one must be interactively defined by the decision maker (the model
user). The preferences among several criteria are unknown a priori and are
determined during the interactive procedure. For this purpose, the decision maker
defines a reference value r; for each selected objective function f,(z) . These
values should reflect in some sense desired values of the objectives.

If all functions of the mathematical model are linear, then the scalarizing
function using reference values can be given as follows:

s(w) =max wy +¢&)} wy (2.10)
tely tely

with .
wy=fi(®)—r; - distance between current values f;(z) and
desired (reference) values ry;
£ - small positive number.

The second term of the scalarizing function is added to guarantee Pareto optimal-
ity of the solution. (If £ =0 only weak Pareto optimality is guaranteed).

If fi(x)=r, for all objectives, then the first term of (2.10) is simply a Che-
byshev norm of the distance between solution f (z) and reference point r; in a
more general case, this scalarizing function is not necessarily equivalent to a
norm, but is strictly monotonous and thus guarantees Pareto optimality of its mini-
mas. Unfortunately, this function is non-differentiable and cannot be used in the
case when the mathematical model is non-linear, because non-linear non-
differentiable optimization methods are neither robust nor efficient enough for
use in interactive systems. In the non-linear case only a smooth approximation of
function (2.10) can be used.

The approximation used in this package has the form:

1 p) /P
s(w) = [—)] [siwi 1 (2.11)
0iel,
with
Nng - number of objectives;
Sy __ - scaling factor for i-th objective;
Li@)—ry .
i =——JT— - measure of distance between f;(z) and r; ;

— T —J4

£y - lower bound for fi(z) and r; ;

p - positive (even) integer.

For the lower bound f_¢ the utopia (ideal) value may be used minimizing objective
1 separately.

If p is very large, then the approximation of the function (2.10) by (2.11) is
good. Unfortunately, the problem of minimizing (2.11) becomes badly conditioned in
such a case. Therefore, p=4 or 6 is used in this package.

3. Non-Linear Problem Solver MSPN
3.1. Theoretical background

3.1.1. Gemeral description of the algorithm

For a given fixed set of indices I, , fixed reference point values r; and scal-
ing factors s , the resulting optimization problem takes the form:

]

g\y}l(llsw(z) ==sw(x)) | (3.1)

The feasible set X is determined as a intersection of two other sets:
X=XyNX, (3.2)

Xy is the set described by nonlinear inequalities (2.7) and equalities (2.8).
Xy = {z eR™ :fi(x)=<b,,1 =1,...,n, . f1@)=bi,i=ny+1,...,n4 } (3.3)
X, isthe set described by lower and upper bounds (linear inequalities) (2.9).

Xy ={:z: eR":l,s::,su,,j:l,...,n} (3.4)

-7 -

Thus, the problem (3.1) is a standard nonlinear constrained optimization problem.
In this package a double ilerative penaliy algorithm is used for the problem
solver.

The lower level algorithm solves the problem:

min[F'(:c)=sw(z)+p(x,v,lc)] (3.5)
zEXLI. J

The objective function used here, called penalty function, consists of the sum of
the original objective function and a penalty term p(z,v,k) (the precise form of
this term is given later, see (3.6)). Linear constraints are satisfied at each step of
the algorithm because a special method of reduced gradient is used for this pur-
pose. Nonlinear constraints, however, are violated and the penalty term in (3.5) is
related to this violation.

The upper level algorithm adjusts parameters v and k& in the penalty func-
tion to satisfy nonlinear constraints. At each step of this algorithm, the lower level
problem (3.5) is solved. However, the required accuracy of its solution depends on
the violation of nonlinear constraints. Nonlinear constraints are strongly violated
in very first iterations of the upper level algorithm and, therefore, the lower level
problem can be solved very roughly.

3.1.2. Reduced gradient algorithm

The algorithm described here and applied in the software package uses gra-
dient reduction, that is, an elimination of some gradient components. If, at some
point, the value of a particular variable z; is between its bounds [; and u; , then
this variable can be either increased or decreased. However, if this value is equal
to one of the bounds, say, to the upper bound u; , then this variable can be only
decreased. In such a case, negative values of the objective gradient component can
not be accepted and are set to zero; this variable will remain unchanged in the
next direction of search. This modified gradient is called reduced because some of
its components are set to zero and it acts only in some subspace of the space of all
variables.

The algorithm begins by calculating the gradient of the penalty function (3.5)
at some starting point z% . This gradient is then reduced in such a way that a
nonzero step in the direction of search can be performed inside the set X; . The
step-size in this direction is calculated using quadratic approximations in the line
search method. In the resulting point, the gradient is calculated and reduced
again. First direction is just opposite to the reduced gradient (minus gradient),
the next directions are conjugate directions constructed on reduced gradients.
After some number of iterations the algorithm resets itself and uses minus gradient
direction again.

Following notation and symbols will be used in the detailed description of the
algorithm :

& - accuracy parameter given from the upper level algorithm;
k - iteration number;
m - number of conjugate direction.

The algorithm can be characterized by the following steps:
1° Initialize: Set e =0and m =0
2° Calculate gradient: g* =VF(z*

-8 -

3° Gradient reduction for each i =1, ... ,n :
if gf>0and zf =1, or gf <0 and z¥ =u, then set gf=0.
If the resulting subspace is different than this obtained in last preceding
iteration, set m =0 .
4° Stop test: if || g® || = & then stop .

5° Calculation of new direction: if m =0 or m is greater than the number of
nonzero elements in g" then get a simple direction

dk = _gk
otherwise calculate conjugate direction using Polak-Ribiere algorithm:
dk = —g* + ﬂhdk—l
with

6k - <9k:(gk —gk—1)>
<gk—1’gk—1>

6° Direction check: if <d* ,g* > = 0 then set m =0 and go back to step 5°
7° Step-size limit:
u —zf zf -l

t=1,..n df —-df

8° Line search: find step-size T such that

k42 0ky = i k E
f&®* +7d)—[g};r;rf(z +T17d%)

If it fails ,i.e. T =0 then set m =0 and go back to step 5°
9° Step:

zbktl=zk + 2d*f Ek=k+1 , m=m +1

go to step 2°.

The actual algorithm implemented in FORTRAN is much more complicated. It
includes many safeguards and it takes into account round off errors and finite
accuracy of computations.

3.1.3. Penaity shift algorithm
The penalty term in (3.5) has the following form:

n

pl(x,v,k) = ‘2 kq [,ﬁ(z) —-b; + v,]* max [0, [,ﬁ(z) -4 +v ” (3.6)
i=1
ﬂh 2
t=ng+1
with
ky - positive penalty coefficients,
vy - penalty shifts,

v, non-negative for i=1,...,n,,
v; unconstrained for i=n, +1,...,n;.

-0 -

Standard penalty algorithms use any method of unconstrained optimization to soive
(3.5). The penalty coefficients are then increased according to the violation of
constraints obtained and (3.5) is solved again. This procedure is repeated until the
solution of (3.5) is forced by the penalty term to be sufficiently close to the feasi-
ble set. Most frequently, the penalty coefficients become very large which makes
problem (3.5) ill conditioned.

In the shifted penally function algoriihm there is no need to increase
penalty coefficients as strongly as in standard penalty algorithms; penalty shifts
are used instead to increase the penalty effect. The penalty function is shifted in
the direction opposite to the constraint violation. In the case of inequality con-
straints, this leads to a shift "inside" the admissible set Xy ; to shift a constraint
Ji(z) =b; inside, one must decrease the right hand side b; or, equivalently, set a
positive value of the shift parameter v; in (3.6). The penalty term becomes then
active in a band measured by v, along the corresponding boundary of the set Xy .
In the case of equality constraints, penalty shifts can be either positive or nega-
tive; the adequate shift is just in the direction opposite to the current violation of
constraints when solving (3.5). In both cases, penalty shifts increase the related
penalty term in (3.6). Additional safeguards are employed to avoid stopping the
algorithm inside the feasible set with respect to the active constraint.

The algorithm is characterized by the following steps:
1° Set initial k; =k and v =0, i =1,...,n4

2° Solve problem (3.5) using the reduced conjugate gradient algorithm; calculate
maximal violation of constraints at the solution point.:

g = max(gv ,gf hv),

with
gv - norm of violation of inequality constraints:

gv = max max (0, (f(z) —b;))
i=1,..., Ny

gf - norm of inequality constraints forced inside the feasible set:

gf = Jax (b — fy(z))

hv - is the norm of violation of equality constraints:

hv = max | fi(z) —b |
ny

3° Stop test: if g is less than a given accuracy coefficient 7 then stop.
4° If it is a first iteration then set ¢ =¢ and go to step 6° .
5° If ¢ >d thenset p =d and go to step 9° .
6° Penaity shifts:
ve =max (0, v + fi(z) —by),1i=1,...,n

v = v+ fi(T) by, i=ng L, Ly

7° If ¢ >c then set p =c¢ and go to step 9°

-10 -

8° Set. d =¢q,c =0.4* ¢ and go back to step 2°

9° For each constraint violated more than p, increase the penalty coefficients
k, =2 * k; and decrease the penalty shifts v; =0.5* v; . Go to step 8° .

In most cases changes of penalty shifts in step 6° are sufficient to get conver-
gence. However, if the rate of convergence in not satisfactory, penalty coeffi-
cients are also changed in step 9° .

3.1.4. Verification of gradients

Depending on the number of time periods taken into account in the model, com-
pare Section 2.1, the number of functions f;(z) in the general form (2.6) - (2.9) of
the model changes from about thirty to several hundreds. The number of nonzero
gradient elements changes from several hundreds to several thousands. The model
of the system itself is rather complicated: it is not a single FORTRAN subroutine,
but rather large set of interconnected subroutines and data blocks, see Kaden
1986. Thus it is very easy to make a mistake calculating analytical forms of the
derivatives of complex expressions in the model.

Unfortunately, optimization algorithms are very sensitive to such mistakes
and become inefficient or even fail if the changes of objective values and con-
straints are inconsistent with their gradients.

Therefore it is necessary to check the consistency of all gradients after each
modification of the model. For this purpose, a special numerical algorithm was
included in the optimization package. In this algorithm gradients are checked
numerically by applying a finite difference method.

According to the Lagrange theorem in a single dimensional case the term:
F(x2) —f(xy)

Za — X

is equal to the derivative of the function f (z) at some point between z,and z,.
Typical algorithms of gradient estimation assume that this term is the best approx-
imation of the gradient in the center of this interval. However, such approach
requires 2* n points to estimate a gradient in the n dimensional case .

A regular simplex method can be applied to minimize the number of points
where the functions f;(z) have to be calculated. At a neighborhood of such a point
zy a regular simplex of n +1 vertices z; Za,...,Zny1 is constructed with z, in the
center:

n+l
Ty = z
n+1 i=1 I
In a regular simplex all distances r =||zy—2z; || , j=1,...,n+1 are equal and

value r is called the radius of the simplex. The problem is to find the directions
d; =z; —z, that span the regular simplex.

The algorithm of gradient verification consist of two parts: construction of a
simplex (steps 1° — 4°) and calculation of gradient estimate (steps 5° — 7°).

1° Calculate scalars:

n +
2n

—
J*(j+1)’

61=—T' ’ 6j=6j—l j=2,...,n

-11 -

2° Calculate first direction:

but for each d; additionally changing only component number j -1
dj ™t =—(j-1)df!
4° Calculate vertices of the simplex as:
; =zg +dy, Jj=1,...,n+l
5° At each point z;, j =1,....,n +1, calculate values
f{ = ft(zj)

6° For each functions f;(z) calculate an estimate of its gradient component:

arzy) _ ritt-ri
61, - _2* 6j ’

Fj=1,...,n

7° Compare these numerical estimates with the gradients calculated analytically at
point z,.

3.2. Program description

3.2.1. Program structure

The problem solver MSPN for non-linear multi-criteria analysis is embedded in
the complex DSS MINE as it is illustrated in Figure 4. A detailed description of the
model system is given in Kaden, 1986.

The MSPN package is a set of 21 interlinked FORTRAN subroutines and functions.
In Figure 5 the structure of the MSPN package is depicted.

A detailed description of the used COMMON blocks and of all subroutine and func-
tions is given in the Appendices A and B.

The MSPN package contains only the algorithms for multiobjective optimiza-
tion. All input data and the mathematical model (Eq.(2.6)-(2.9)) are prepared out-
side ouf MSPN in the DSS MINE. The same holds true for the storage, processing
and output of optimization results. A detailed description is given in Kaden, 1986.

The only link between model users and the MSPN package takes place in the
case of modification of optimization control parameters (default values are
defined), and in case of numerical problems. In Section 3.2.3 and 3.2.4 some infor-
mations are given.

-12 -

DATA BASE
| NI
INTACT MINWAT GRAPH | |
Interactive Main program of the Display
data j—9 Decision Support of colour
display Model System graphics
editing
SYSTEM SIMULA ‘ OPTIM EXTREM ¢
Second level Simulation Estimation of Estimation of
submodels of efficient sol. utopia sol.
systems state Monte Carlo for selected for selected
development simulation mult.-criteria criteria
3 I
BALANC REGIST MSPN
~pd Monthly systems Registration i i
balance of stachastic Non-linear programming
r _results
STATEM MODEL PSTAVA
Monthly systems Preparation of Preparation of
parameters objective functions system descriptive/
and constraints state functions
i] I H i)
INFLOW »l OBJECT CONSTR STATE TRANS
Stochastic inflow| Indicator Constraints System State
—$ generatar functions : descriptive transition
functions functions

Figure 4: Structure of the Decision Support System MINE

3.2.2. Storage method for Jacobian matrix

Since the Jacobian matrix is sparse (compare Section 2.1) its columns (gra-
dients of constraints) are stored in a special way using an indirect indexing
method. The gradients of constraints are not stored as n-dimensional vectors
(sequences of n elements) but rather as sequences of elements known to be 'active’
i.e. such elements which can have nonzero values. The remaining elements ('non
active’) must be known to be equal to zero during the entire optimization process.

The active elements are assumed to be listed as sequences of elements
ordered according to their place in the original n dimensional vector. This method
of listing is not obligatory but the package is more efficient if active elements are
ordered in such a way.

The beginning indices and the lengths of these sequences are stored in the
matrix of indices icon(). The nonzero gradient elements themselves are stored in
the Jacobian area of a general purpose storage matrix r() (see descriptions of
COMMON blocks /opte/ and /opti/ in Appendix A).

The array icon() is used for addressing the array icon() itself and the storage
array r(). It has two logical parts: the first part has ng + nh elements and contains
first level indices for addressing the second part of icon(), the second part con-
tains the descriptions of gradients of constraints. The length of the second part of
icon() is equal to ng + nh plus twice the number of separate sequences of elements
used for storing all the elements of the constraint gradients.

-13 -

JACDIM + PUTJAC
Setup of Jacobian
storage method
GO OPTDM
Allocation of =) Arithmetic
storage areas identification
GOOPT VERGRA
initialization \ Gradiant verification
PENSFT ADDGR
Penaity shift Access to Jacobian
algorithm storage method
REDGR CALPEN
Reduced conjugate Calcuiation of
gradient algorithm penaity function
LSRCH sus
. Scalarization
Line ssarch interfacs to model
CRICON
MODEL -

Figure 5: Structure of the MSPN package

For a given constraint number i :

icon(i)

icon(ki)

contains the index of an element in the second part of
icon(), where the gradient description of this particular
constraint begins, define ki = icon (1);

contains the minus index of the array r() where the first
active element of this gradient is stored. All others active
elements of this constraint are stored in the next con-
secutive elements of the array r();

-14 -

contains the number of the first active element of the
gradient in the whole n dimensional vector; if it is non-
positive, then this constraint has no active elements at all
(in case of dummy constraint) and it is the end of the
description of this constraint;

icon(ki+1)

icon(ki+2) - contains the length of the sequence of active elements (it
can be equal to one);

icon(ki+3) contains the number of the beginning of the next sequence

of active elements of the gradient; if it is positive then
element icon(ki+4) performs the same role as icon(ki+2
), otherwise it is the end of the description of this con-
straint.

Pairs number/length are repeated as many times as required to describe all
separate nonzero sequences of elements of the gradient.

3.2.3. Optimization control parameters

According to the optimization algorithm described in Section 3.1 the following
control parameters are needed:
Range (rk): '

Roughly estimated range of changes of variables during the optimization pro-
cess, scaling of variables is useful.

default: rk =1.
Norm (eps):

The stop test in the reduced conjugate gradient algorithm checks whether the
norm of gradients of the penalty function is less then the value of eps
(denoted as & in the step 4° of the algorithm in the Section 3.1.2), if eps is to
small stop with ip=4.

default: eps =0.1

Viclation (eta):

The stop test in the penalty shift algorithm checks whether all constraints are
violated less then 77 (denoted as 77 in the step 3° of the algorithm in the Sec-
tion 3.1.3)

default: eta =103

Penalty (penco):

The initial value of penalty coefficients in the penalty shift algorithm (denoted
as k in the step 1° of the penalty shift algorithm - Section 3.1.3). As an esti-
mate the ratio of gradients of the objective function to gradients of con-
straints should be used.

default: penco =1.
Iterations (Ism):
Maximal number of iterations (calculations of model values)

default: lsm =1000

rho:

-15 -

Parameter for scalarizing function of the reference point method, see p in
Section 2.3, Eq.(2.11)

default: rho=4

In Section 4.1 the influence of control parameters on the optimization procedure is
analyzed.

3.2.4. Error handling

The basic presumption for a successful optimization is the correct model for-
mulation, above all the analytical gradients. The latter can be checked using the
verification algorithm, see Section 3.1.4.

From the MSPN package the following interrupts are realized in case of possi-
ble errors:

- Optimal solution not found because of the limit of iteration number (ip=3).

- Optimal solution not found because of numerical errors - required accuracy
not attainable. In this case the control parameter eps might be increased. But,
usually this interrupt indicates that analytical formulas for functions or their
gradients are wrong (ip=4).

- Optimization algorithms can not start because of too small storage area
reserved in the array r() in the COMMON block /opte/ (ip=5). For storage
allocation see Kaden, 1986.

- Optimization fails because of the empty feasible set (ip=6). This might be
caused by to strong constraints and bounds or by model formulation errors.

In case of the interrupts (ip=3,4,6) the model output can be used to localize possi-
ble errors. This output includes:

deps and eta - values compared on the stop test with eps and eta parame-
ters, respectively; deps is the current norm of the
penalty function, deta is the current violation of con-

straints ‘

ip - error condition parameter; ip=2 means ''optimal solution
found”

iter - total number of model calculations (calls for subroutine
cricon).

Lines with numbers at the beginning describe active constraints with:

**x - their number (column in the Jacobian matrix),

w - the current value of constraint,

v - the current penalty shift,

penal- the current coefficient.

The value l=(v+w)*penal is an approximation of a Lagrange multiplier with

respect to the scalarized objective function. It may be used for a post-optimal
analysis.

4. Computational Tests

4.1. Robustness of MSPN solver

In order to analyze the robustness of the MSPN algorithm with respect to the
optimization control parameters, see Section 3.2.3, a series of numerical tests with
the DSS MINE have been performed.

-16 -

The tests have been done for a planning horizon of 7 planning periods. As cri-
teria the following had been selected:

dev-m -~ Deviation municipal water demand/supply,
dev-i - Deviation industrial water demand/supply,
cost-mt - Total mine drainage cost,

cost-m - Cost for municipal water supply,

cost-i - Cost for industrial water supply.

For each criteria the utopia point was selected as reference point. As the starting
point one with significant deviation to the expected solution was used in order to
realize a large number of iterations.

In Figure 6 some results are depicted illustrating the influence of control parame-
ters on the results. Only those criteria are shown which are strongly affected by
the parameters. For the criteria dev-m, dev-i, cost-m the influence is almost negli-
gible.

From these tests the following conclusions can be drawn:

range (rk):

The influence of this parameter on the numerical results is negligible. The varia-
tions are less then 1Z. But a to small value affects the number of iterations signifi-
cantly. According to Figure 6a values between 0.1 and 5 are reasonable.

violation {eta):

The influence of this parameter is again small, less then 1Z. Smaller numbers of eia
increase the number of iterations. As a compromise eta=10 ~3 should be chosen.

norm (eps):

As expected this parameter stronger effects numerical results and number of
iterations. Only values greater/equal 0.05 could be chosen. For the value eps =0.01
the required accuracy has not been attainable. The results deviate in a range
between maximum 5 and 107 - quite acceptable from the practical point of view.
Furthermore in each case Pareto-optimality (at least locally) was achieved, com-
pare results for cost-mi and cost-i in Figure 6¢. As a good compromise between
accuracy and number of iterations eps =0.1 should be chosen.

penalty (penco):

The initial penalty coefficient has been varied between 0.5 and 10. It does practi-
cally not effect the numerical results. The influence on the number of iterations is
small for values between 0.5 and 5. Only in the case of penco =10 the number of
iterations increased. As a good compromise penco =1. is proposed.

Above the influence of optimization parameters on the criteria as integral parame-
ters has been analyzed. Another interesting question is their influence on the
variables (decisions).

The same parameter combinations as depicted in Figure 6 have been analyzed
with respect to their impact on the variables. Analogously to the criteria the
MSPN-algorithm is also very robust with respect to the variables. The influence of
varying range and violation is almost negligible. The deviations are less then 5%,
in most cases even less then 17 (related to the value of the variable). Only in one
case the deviations are stronger. This is depicted in Figure 7 for the variables q, ,
and q, ,, as decisions on water allocation (water quantity). For details on the
meaning of the variables see Kaden et al., 1985a.

The solution for period 1 divers significantly in the case of range £ =0.1 from the

-17 -

Cost —mi Cost —i,

1370 '-" e 562 .
1360 - @ 560 -
Range Range
T T —> =T T —>
0.1 05 1.0 5.0 0.1 05 1.0 5.0

Norm = 0.1; violation = 103
a) e Norm =0.5; violation = 102 O Number of iterations

Cost —mi , Cost — i 4

1 380 “Pmoam. -—

1370 .-.-'-' 562 - .

1360 - 5607

1340 556 """ o
Violation Violation
T T > T T >
1074 1073 10~2 1074 10~3 1072
—— Range=1.0;norm =0.1 O Number of iterations
b) —ememeewn Range=1.0;norm=05 -
*|terations has been stopped
Cost — mi Cost—i ,

1380 - |
1360 - 568 -

1340 - 564-J
1320 - 560 -
1300 -+ .{E“:) 556 —
Norm Norm
| 1 " T T >
0.01* 0.05 0.1 05 0.01* 005 0.1 0.5

) Range = 1.0; violation = 10~3
c
*Required accuracy not attainable

Figure 6: Influence of optimization control parameters

-18 -

qlm3/sec.] alm3/sec.]
3.0 j Period 1 3.0 j‘ Period 4
qb,s
2.0 - o.5 00 -
) qb,ex qb,ex
1.0 ~ 1.0
Range Range
T T > T T
0.1 05 1.0 5.0 0.1 05 1.0 5.0

Norm = 0.5; violation = 102

Figure 7: Influence of optimization parameters on variables

other solutions. For that two reasons are seen:

- the optimization is performed with respect to criteria as integral values over
the whole planning horizon. Due to the increasing time steps of planning
periods later planning periods represents a larger part of the criteria, get a
higher weight.

- the parameter combination of a small norm esp=0.1 with a rough vieclation
n=0.01 is not very reasonable.

Nevertheless the water balance is satisfied. The increased q, ,-value is compen-
sated by a reduced q, ,, -

The effect of the norm is more significant as it should be expected from the
results for criteria, see Figure 6¢. In Figure 8 the results for four variables are
depicted. These are the variables with the strongest deviations. For all other
variables the deviations are less then 5Z%.

The deviations are hardly to be explained. Probably they are above all caused by
flat objective functions with respect to the given variables. Small numerical devia-
tions due to different accuracy could lead to different solutions.

4.2. Influence of starting point values

The optimization problem to be solved is non-linear in most of its parts. For
such a complicated mathematical model as it is given for the DSS MINE it is practi-
cally impossible to analyze analytically the properties of the objective function
with respect to convexity and extremal values. The existence of local optima has
to be expected. Or, with other words, the estimated solution is not necessarily an
global optimal solution.

Two principle possibilities are available to check the solution behavior with
respect to local/global optima:

- Application of an optimization procedure resulting per definition in a solution
being a global optimum. Such property posses some random search methods,
e.g. ASTOP, Born 1985. The numerical effort of such methods is extremely
high, their applicability for the given problem is still under study.

-19-

q[m3/sec.]

—» Year

T T T T T T

1122 344658610 7 Period
q{m3/sec.] 4
2.0 -
104

—p Year

Period

Range = 1.0; violation = 1073, norm =0.05 —
0.1 aea
05 ...

Figure 8: Influence of the norm on variables

- Experimental analysis varying the starting points for optimization.

In the following a few results for an experimental analysis are given.

The most logical way to analyze the influence of starting point values is the
random selection of the starting points between upper and lower bound. This has
been done using a random generator for uniform distributed random numbers. For
the tests the same criteria as described in Section 4.1 have been considered.
Results for selected criteria are listed in Table 1.

The Table illustrates that only the criteria cost —mi and cost —i significantly
depend on starting point values. The maximal deviation is in the range of 10%Z.

An interesting question is, whether the different starting points result in dif-
ferent local optima, or the results are simply different Pareto-optimal solutions. In
Figure 9 the results for two criteria are graphically illustrated.

It is out of question that only 11 tests are statistically not sufficiently for general-
ization. Nevertheless from the Figure 9 could be concluded that some of the solu-
tions (connected by the dashed line) are global Pareto-optimal, a few others only
local. But even for the ''worst solution' the distance to the next hypothetic global

-20 -

Table 1: Solutions for randomly selected starting point values

criteriairef.-lutopia- nadlr'—-] solutions

point{ point | point
dev —m 0 0 31 7 8 8 8 8 8 8 8 8 8 8
[l / sec.]
dev —1 0 0 106 | 3 2 4 4 1 2 1 1 1 1 1
[l / sec.]
cost —mi (1151 1151 | 1476 12611261 14661315141514111359144313811446145
[Mill.M]
cost—m | 12 12 38 |13 13 13 13 13 14 13 13 13 13 13
[Mill.M]

cost—i |509 | 509 | 581 561 562 534 553 551 550 545 532 540 538 551
[Mill.M]

1400 —

1300 —

530 540 550 560 Cost — i

Figure 9: Solutions for different starting point values

Pareto-optimal point is less then 7 - 107 of its value.

Another series of numerical tests has been done chosing lower and upper
bounds of variables as starting point values. For these tests only one planning
period has been analyzed. For each variable one run was made with lower and
upper bound, the results were compared with an arbitrary "nominal” solution.
Fourteen variables have been varied (28 runs). In Table 2 some results are dep-
icted.

The results illustrate the small influence of variations of single starting points for
one period. The effect is accumulating if more planning periods are under

-21 -

Table 2: Statistical analysis of the influence of starting point on criteria
(first period)

criteria nominal value | mean value | standard deviation
dev —m : 4 4 0.2
L/ sec.]

dev —i 2 2 0.8
L/ sec.]

cost —mti 63.6 64.2 1.2
(Mill.Mark]

cost —m 1.1 1.1 0.0
[(Mill. Mark] |

cost i 35.6 -35.5 0.7
[(Mill.Mark]

consideration. In all cases for reasonable starting values the deviations are in the
range of practical acceptance.

4.3. Conclusions

A series of numerical tests has been performed in order to analyze the
robustness of the MSPN-algorithm with respect to optimization parameters and to
check the influence of starting point values. From the results can be concluded
that the MSPN-algorithm is well suited for the given problem. Variations in optimi-
zation parameters do not effect the solutions significantly.

The mathematical model of the DSS-MINE behaves robust with respect to the
selection of starting points. It can not be excluded that local optima are estimated,
but the local optima are expected close to global optima.

For all tests deviations in criteria values have been found less then about 107%.
Taking into the account the accuracy of input data, the simplified mathematical
models of environmental and socio-economic processes this deviation is fully
acceptable.

Some of the tests are from the practical point of view not realistically, espe-
cially the random generation of starting point values. For the practical problem
the starting point values are in most cases known quite well and a consistency of
variables in time has to be considered. (It does not make much sense to change .
variables as water allocation drastically between planning periods). Consequently
the problem of starting point selection and local/global optima is from the practi-
cal point of view less significant. Furthermore the results of the multi-criteria
analysis within the planning model serves only as a guideline for a more detailed
analysis with the second level management model.

-22 .

5. References

Born,J. 1985. Adaptively controlled random search - a variance function approach.
Systems analysis, Modelling, Simulation, Vol. 2, No. 2, pp.109-112, Akademie-
Verlag Berlin.

Kaden,S., Hummel,J., Luckner,L.., Peukert,D., Tiemer,K. 1985a. Water Policies:
regions with open-pit lignite mining (Introduction to the IIASA study), IIASA,
wWP-85-4, p.67.

Kaden,S., Luckner,L., Peukert,D., Tiemer,K. 1985b. Decision support model system
for regional water policies in open-pit lignite mining areas. International
Journal of Mine Water, Vol. 4, No.1, pp.1-16.

Kaden,S, Michels,I., Tiemer,K. 1986. Decision Support System MINE; the Manage-
ment Model, IIASA, CP-86, forthcoming.

Kaden,S. 1986. Decision Support System MINE; Description of the Model System,
IIASA, WP-86, forthcoming.

Wierzbicki,A.P. 1983. A Mathematical Basis for Satisficing Decision Making.
Mathematical Modeling USA 3:391-405 (Report I[TASA RR-83-7).

-23 -

APPENDIX A: COMMON blocks

All COMMON blocks used in the solver part of the program are described
here in lexicographical order. For each block, the full list of elements includ-
ing a short description is given after its name. The types of elements are
described using FORTRAN keywords preceding each element name.

/consti/

integer lbgh
integer kbgh

integer icon()

/opta/

integer ki1

integer k2
integer k3
integer kS

integer k6

/opte/

real*s r()

/optd/
real*8 db

real*8 dw

/optf/

the number of Jacobian matrix elements known to be
nonzero and stored;

the index of the beginning of an area in the array r(.)
where the Jacobian matrix is stored;

the array of indices organizing storage of Jacobian
matrix in the array r(.) (see the description in Section
3.2.2); the total size of this array is defined outside
the package (see the description of subroutine go);

the index of the beginning of an area in the array r()
where current values of the scalarized objective func-
tion and constraints are stored;

the index of the beginning of an area in the array r()
where the penalty shifts are stored;

the index of the beginning of an area in the array r()
where the penalty coefficients are stored;

the index of the beginning of an area in the array r()
where the best feasible point x is stored;

the index of the beginning of an area in the array r()
where the values of scalarized objective function and
constraints at the best feasible point x are stored;

a general purpose array used for storage of several
kinds of data in most subroutines; areas of any size in
this array are allocated using indices in the COMMON
block /opti/ (see below); the total size of this array is
defined outside the package (see the description of
subroutine go);

the absolute accuracy of real*8 computations, related
to the smallest real*8 positive number distinguishable
from real*8 zero;

the relative accuracy of real*8 computations, related
to the smallest real*8 positive number which added to
real*8 one is distinguishable from real*8 one;

logical ws

logical tp

/optg/
integer kb

/opti/

integer il

integer i2

/optk/
integer kf

integer kgh

integer kbf

integer kbgh

integer krhs

/optkl/
integer kx

integer kxl

integer kxu

-24 -

a logical variable which is true if for some reasons the
value and/or gradient of penalty function are recalcu-
lated using previous data (the values and/or gradients
of objectives and constraints); otherwise it is false;

a logical variable which is false if during current line
search at least one step with improvement was per-
formed, otherwise it is true;

the index of the beginning of an area in the array r()
where the gradient of the penalty function is stored;

the index of the first element of the array r() free for
use, elements r(1) - r(il-1) being already allocated. In
order to use a data area of the size M subroutine uses
il as the beginning index of this area and sets i1=i1+M
to inform all other subroutines that this area is
already allocated;

the index of the last element of the array r() increased
by one; il must always be less than i2. This condition is
checked in all subroutines which allocate areas in
array r(). If this condition is violated, then the value
of IP is set to IP=5 and this value is returned from the
package;

the index of the place in the array r() where the value
of the scalarized objective function is stored;

the index of the beginning of an area in the array r()
where values of constraints are stored;

the index of the beginning of an area in the array r()
where the gradient of the scalarized objective function
is stored;

the index of the beginning of an area in the array r()
where the Jacobian matrix is stored (this is the same
value as kbgh in COMMON block /consti/ - it is repeated
here for convenience);

the index of the beginning of an area in the array r()
where the right hand sides of constraints are stored;

the index of the beginning of an area in the array r()
where the current point is stored;

the index of the beginning of an area in the array r()
where lower bounds are stored;

the index of the beginning of an area in the array r()
where upper bounds are stored;

/optn/

integer n
integer ng
integer nh

/opto/

real*8 eta

logical logn

/opts/

integer ls

real*g anl

real*8 an2

- 25 -

the number of independent variables x;
the number of nonlinear inequality constraints;

the number of nonlinear equality constraints;

an accuracy parameter set by the user (see an2
below);

a logical variable which is true if at least one feasible
point was found, otherwise it is false;

the number of calls to subroutine ericon calculating
the model (see Kaden 1986) that remains to the end of
computations if the iteration number limit will become
active. At the beginning, this number is set to the maxi-
mal number of iterations defined by the user, and then
subsequently decreased;

the value of the norm of penalty function minimized in
the reduced gradient algorithm. The stop test checks
whether this value is less than the given accuracy
parameter eps;

the value of current maximal violation of constraints.
The stop test of the shifted penalty algorithm checks
whether this value is less than the given accuracy
parameter sta;

-26 -

APPENDIX B: Subroutines and functions

All subroutines and functions of the MSPN package are described here in
the alphabetical order. Each formal parameter and COMMON block element is
preceded by its function code and FORTRAN type. Possible function codes are:
i) - ' input item, not changed inside the routine;

(o) - output item, the input value does not influence the calculations
inside the routine;

) - item not used, given for alignment purposes only;

(i/0)

input and output item.

The COMMON block elements are already described in Appendix A. In the fol-
lowing only the role of formal parameters of subroutines and functions is
described.

**x subroutine addgr

Adds weighted gradient of constraint 'lk’ to the 'n’-dimensional gradient
'gl' of the penalty function, 'rho’' is the weight (approximation of a Lagrange
multiplier) of this constraint. The Jacobian matrix is sparse and so it is stored
in a special way using indirect indexing method (see jacdim function descrip-
tion and Section 3.2.2).

Parameters:
(i/0) real*8 gl - n dimensional array of gradient of penalty func-
tion
(i) real*8 rho - weight of added constraint
(i) integer lk - number of added constraint
i) integer n - number of gradient elements

COMMON blocks:
/consti/

(-) integer lbgh,kbgh

(i) integer icon()
/opte/

(i) real*8 r()

*xx function real*8 anorm

Calculates and returns square of Euclidean norm of 'n’-dimensional vec-
tor 'a'. Returns zero if 'n’' is not positive.

Parameters:
(i) real*s a() - 'n’ dimensional array
(i) integer n - dimension of array ‘a’

*xx function real*8 calpen

Calculates and returns the value of the penalty function and/or calcu-
lates the gradient of the penalty function according to the value of parameter
1b:.

b= 0 calpen calculates only value of the penalty function

-27 -

lb= -1 calpen calculates only gradient of the penalty function
lb= +1 calpen calculates both, value and gradient of the
penalty function
lb= +2 initialization of internal data
Parameters:
¢)) real*s x - the 'n’ dimensional array containing a point
where value and/or gradient have to be caicu-
lated
1) integer 1b - determines the required function (see above)

COMMON blocks:
/opta/
(i) integer k1,k2,k3,k5,k6

/opte/
(i/0) real*8 r()

/optf/

(i/0) logical ws
(o) logical tp

/optg/
(i) integer kb

/optk/
(i) integer kf ,kgh kbf kbgh,krhs

/optn/

(i) integer n,ng,nh

/opto/

) real*8 eta
(i/o) logical logn

/opts/

(o) integerls

**x subroutine go
It is the entry to the optimization system. It performs several functions:
- initialization of the whole optimization system;

- reservation of main storage areas checking whether the required space
is available;

- call for specsisubroutine for dimension informations and control param-
eters from the data base;

Jacobian matrix;

subroutine;
call the subroutine go

- 28 -

call for jacdim subroutine to initialize the storage algorithm for the

call for datiou subroutine for initial data from data base;

if the value of 'iver’' variable is non zero call for gradient verification

for starting the optimization process;

call for datiou subroutine for saving results of optimization;
output error messages if optimization fails.

The error condition is detected using the value of parameter ip returned from
optimization subroutines, possible values and their meanings are:

ip= 1
ip= 2
ip= 3
ip= 4
ip= 5
ip= 6
Parameters:
(i/o0) integer is

i) integer isi

COMMON blocks:

/opta/
)
(o)

integer k1,k2,k3
integer k5,k6

/apte/
(i/0)

real*8 r()

/apti/
(o)

integer il
/optk/
(0)
/optkl/

(o)

integer kx kxl,kxu

integer kf,kgh, kbf,

Used always as initial value when optimization subrou-
tines are called.

Optimal solution with required accuracy (& and) was
found after no more than lsm iterations.

Optimal solution not found because of the limit of itera-
tion number.

Optimal solution not found because of numerical errors
- required accuracy not attainable (May be analytical
formulas for functions or their gradients are wrong ?).
Optimization algorithms can not start because of too
small storage area reserved in the array r() in the
COMMON block / aptce/.

Optimization fails because of the empty feasible set.

declared size of the real*8 array r() in the COM~
MON block /opte/

declared size of the integer array icon() in the
COMMON block /consti/

kbgh,krhs

/optn/

(o) integer n,ng,nh

/opts/

(i) integerls
(i) real*8 anl,an2

/verify/

(i) integer iver

x subroutine goopt

-29 -

Performs some more initialization and calls the subroutine pensft which
implements the penalty shift optimization algorithm.

Parameters:
(i) integer n
6y integer ng
(i) integer nh
(i/0) real*8 x
(i) real*s8 x1
) real*8 xu
(i) real*8 rk
(i) real*8 eps
(i) real*s eta
i) real*s penco
(i) integer Ism
(i) integer is
(i/0) integer ip

COMMON blocks:
/opti/

(-) integer il
(o) integer i2

the number of variables 'x’
the number of inequality constraints
the number of equality constraints

array of variables ’'x’', starting point and
optimal point are set here

lower bounds for variables 'x’
upper bounds for variables 'x’
roughly estimated range of changes of variables

the stop test in the reduced conjugate gradient
algorithm checks whether the norm of gradient
of penalty function is less then value of eps
(denoted as & in the step 4° of the algorithm in

the Section 3.1.2) '

the stop test in the penalty shift algorithm
checks whether all constraints are violated less
the eta (denoted as mn in the step 3° of the
algorithm in the Section 3.1.3)

the initial value of penalty coefficients in the
penalty shift algorithm (denoted as lc,° in the
step 1° of the penalty shift algorithm - Section
3.1.3)

maximal number of iterations (calculations of
model values)

total size of the real*8 array r() in the COMMON
block /opte/

error code parameter (see the description of
ga subroutine)

-30 -

/opts/

(o) integerls
(o) real*B anl,an2

*xx function integer jaedim

Fills the COMMON block /consti/ according to the structure of the Jaco-
bian matrix. Calculates and returns the size of storage area in the array
icon().

Parameters:
i) integer isi - the reserved size of the array icon()
)] integer n - the number of variables
@) integer ng - the number of inequality constraints
@) integer nh - the number of equality constraints
@) integer kbghl - the index of the beginning of an area in the

array r() where the Jacobian matrix will be
stored

COMMON blocks
/consti/

(o) integer lbgh,kbgh,icon()

**x subroutine putjac

Reserves area for the next sequence of Jacobian elements and describes
it in the array icon(). See Section 3.2.2 for description of the storage method.

Parameters:
(i/0) integer k - current position in icon()
(i/0) integer 1 - reserved area in r()
() integer np - index of first variable of sequence of active ele-
ments
(i) integer Ip - length of this sequence

COMMON blocks:
/consti/

(-) integer Ibgh,kbgh
(o) integer icon()

**x gubroutine krok

Adds the 'n’ dimensional array 'b’ to the another 'n’' dimensional array 'd’
multiplied by the scalar ’'c’' and puts the resuit into the 'n’ dimensional array
'a’. It does nothing if 'n’ is not positive.

Parameters:
(o) real*8 a - n dimensional array of resuit
) real*8 b - first n dimensional array of data
(i) real*8 c - weight of the second added array

i) real*8 d - second n dimensional array of data

-31 -

i) integer n - dimension of all arrays

x subroutine krokl

Adds the 'n’ dimensional array ‘a’ to the another 'n' dimensional array 'c’
multiplied by the scalar 'b' and puts the result back into the array 'a’. It does
nothing if 'n’ is not positive.

Parameters:
(i/o0) real*s a - n dimensional array of result and first added
array
i) real*8 b - weight of the second added array
(i) real*8 c - second n dimensional array of data
¢)) integer n - dimension of all arrays

*xx subroutine Isrch

Minimizes the penalty function on the current direction (Section 3.1.2 -
step 8?2 of the algorithm).

Parameters:
i) integer n - the number of variables 'x’
(o) real*8 x - the array containing optimal point 'x’
) real*8 xo - the array containing initial values for 'x’
¢)) real*8 d - the array containing direction of changes of 'x’
(i/0) real*s8 yb - on entry - value of the minimized function in the

starting point; on return - value of the minim-
ized function in the optimal point

(i) real*8 pp - the value of the directional derivative of the
minimized function in the direction 'd’

(i/0) real*8 zb - on entry - initial step-size in the direction 'd’;
on exit - optimal step-size in the direction ’'d’

(i/o0) real*8 zm - on entry - step-size limit; on exit - if it is non
zero then optimal! solution is equal to its limit
given on entry

i) real*8 delta - relative accuracy of the directional minimiza-
tion

¢)) integer lpm - maximal number of improvement steps

() integer lcm - maximal number of all steps

(i/o0) integer ip - on entry - must be set to 1; on exit - equals 2 if

any improvement found, otherwise equals 4

COMMON blocks:
/opte/
(i) real*8 r(

/optd/
(i) real*8 db

-32 -

/optg/
(i) integer kb

*xx sybroutine mnozl

Multiplies the ’'n’ dimensional vector ’'a’ times scalar 'b’ and puts the
result back into vector 'a’. It does nothing if 'n’' is not positive.

Parameters:
(i/0) real*8 a - data and result vector
i) real*8 b - multiplier
(i) integer n - dimension of all vectors

**x subroutine move

Moves data from the 'n’ dimensional array 'b’ into the 'n’ dimensional
array 'a’. It does nothing if 'n’' is not positive.

Parameters:
(i/0) real*8 a - destination array
(i) real*8 b - source array
¢)) integer n - dimension of all arrays

*xx subroutine optdm

Determines absolute and relative accuracy of computations in the real*g
arithmetic (see the description of the COMMON block /optd/).

Parameters: none
COMMON blocks:
/optd/
(o) real*8 db,dw

**x subroutine pensft

This subroutine implements the penalty shift algorithm described in the
Section 3.1.3.

Parameters:

(i/0) integer ip - on entry - must be set to 1; on return - indi-
cates error condition according to the descrip-
tion of subroutine go

i integer n - the number of variables 'x’

(i/0) real*8 x - the array of variables ’x’; contain starting
point on entry and solution point on exit

(i) real*8 xl - the lower bounds for variables 'x’

) real*8 xu - the upper bounds for variables 'x’

)] real*8 zo - the initial step-size for reduced gradient algo-
rithm

(i) real*8 eps - the required accuracy of minimization

(i) real*8 eta - the required accuracy of satisfying constraints

(i) real*8 penco - the initial value of the penalty coefficients

-33 -

COMMON blocks:
/opta/

(o) integer k1,k2,k3
(i) integer k5,k6

/opte/
(i/0) real*8 r()

/optd/
(i) real*8 db,dw

/opti/
(o) logical ws,tp

/optn/

(-) integer ni
(i) integer ng,nh

/opto/
(0) real*B etac
(o) logical logn
(i) integer

/opts/
(i/0) integer ls
) reai*s8 anl

(o) real*s8 q

**x subroutine redgr

This subroutine implements the reduced conjugate gradient algorithm
described in the Section 3.1.2.

Parameters:
1) integer n - the number of variables 'x’
(i/0) real*B x - the array of variables 'x’, contains starting
point on entry and optimal point on exit
i) real*8 xlb - the lower bounds for variables 'x’
i) real*8 xub - the upper bounds for variables 'x’
(i) real*8 zo - the initial step-size of the algorithm
(1) real*8 eps - the accuracy of minimization
(i/0) integer ip - the same meaning as the ip parameter in the

pensiIt subroutine

COMMON blocks:

-34 -
/opte/
(i/0) real*8 r()

/optd/
(i) real*8 db,dw

/optg/
(i) integer kb

/opti/
(i/0) integer il
i) integer i2
/opts/

(i/0) integerls
(o) real*8 bn

*xx subroutine roznl

Subtracts the 'n' dimensional vector ’b’ from the another 'n’ dimensional
vector 'a’ and puts the result back into the vector ’a’. It does nothing if 'n’ is
not positive.

Parameters:
(i/0) real*8 a - data and result vector
¢)) real*8 b - subtracted vector
i) integer n - dimension of all vectors

=xx function real*8 skal

Calculates the scalar product of the two 'n’' dimensional vectors ’a’ and
'b’. Returns zero if 'n’ is not positive.

Parameters:
i) real*8 a - first vector
)] real*8 b - second vector
(i) integer n - dimension of all vectors

*xx subroutine sub

This subroutine works as an interface between optimization subroutines
and the model. It calculates value and/or gradient of the scalarized objective
function. The input parameter lb selects one of the following possible func-
tions of the subroutine:

lb= 0 calculates the value of the scalarized function

lb= -1 calculates the gradient of the scalarized function

lb= +1 calculates both the value and the gradient of the
scalarized function

Ib= +2 calls the model and calculates lower limits for indivi-

dual objectives and reference point values

-35-

only calls the model (it is the last call - after optimiza-

- the array containing the point where the model
has to be calculated

- the value of this parameter selects a function of
the subroutine (see above)

= +3
tion)
Parameters:
(i) real*8 x
(i) integer 1b
COMMON blocks:
/optk/

(i) integer kf,kgh,kbf

/aptn/

(i) integer n,ng,nh

*xx subroutine vergra

Verifies analytically calculated gradients using the algorithm described

in Section 3.1.4.

- number of inequality constraints
- number of equality constraints
- point where gradients have to be verified

- range of changes of variables x (see the
description of the subroutine goopt)

Parameters:
i) integer n - number of variables x
(i) integer ng
(i) integer nh
i) real*8 x
(i) real*8 rk
COMMON blocks:
/aptc/

(i/0) real*8 r()

/optd/
(i) real*db,dw

/opti/

(i) integer il

/optk/

(-) integer kf
(i) integer kgh,kbf

***x subroutine zero

Resets to zero value all elements of the 'n’ dimensional array 'a’. It does

nothing if 'n’ is not positive.

-136 -

Parameters:
(o) real*8 a - reseted array
¢)) integer n - dimension of the vector to be reseted

x subroutine znak

Moves data from the 'n’ dimensional array 'b’ into the another 'n' dimen-
sional array 'a' changing sign of each element. It does nothing if 'n’ is not
positive.

Parameters:
(o) real*8 a - destination array
@) real*8 b - source array

i) integer n - dimension of all arrays

