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FOREWORD 

Optimization theory has always played an important role in IIASA's 
methodological research program. In this paper, John Casti shows how 
concepts and techniques from the modern theory of singularities of smooth 
mappings can be employed to address a number of questions of interest in 
nonlinear optimization theory . The results show promise for significantly 
improving our ability to reduce the dimensionality of large-scale problems, 
as well as enhancing our understanding of the sensitivity analysis of such 
problems. 

A. KURZHANSKI 
Program Leader 

System and Decision Sciences 





Singularity Theory for Nonlinear Optimization Problems 

J. Casti 

International Institute for Applied Systems Analysis 
236I Laxenburg, Austria 

ABSTRACT 

Techniques from the theory of singularities of smooth mappings are employed to 
study the reduction of nonlinear optimization problems to simpler forms. It is shown 
how singularity theory ideas can be used to: (1) reduce the decision-space dimen­
sionality; (2) transform the constraint space to simpler form for primal algorithms; (3) 
provide sensitivity analysis. 

I. BACKGROUND 

Consider a smooth (C00
) function f: Rn--+ Rm, and assume that f has a 

critical point at the origin, i.e. df(O) = 0. The theory of singularities as 
developed by Thom, Mather, Amol'd, and others [1-3] addresses the follow­
ing basic questions: 

A. What is the local character of f in a neighborhood of the critical 
point? Basically, this question amounts to asking "at what point is it safe to 
truncate the Taylor series for f?" This is the determinacy problem. 

B. What are the "essential" perturbations of f? That is, what perturba­
tions of f can occur which change the qualitative nature of f and which 
cannot be transformed away by a change of coordinates? This is the unfold­
ing problem. 

C. Can we classify the types of singularities which f can have up to 
diffeomorphism? This is the classification problem. 

Elementary catastrophe theory largely solves these three problems (when 
m = l); its generalization to singularity theory solves the first two, and gives 
fairly complete information on the third for m, n small. Here we outline a 
program for the utilization of these results in an applied setting to deal with 
certain types of nonlinear optimization problems. In the following section we 
give a brief summary of the main results of singularity theory for problems 
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138 J. CASTI 

A-C for functions ( m = 1) and then proceed to a discussion of how these 
results may be employed for nonlinear optimization. 

II. DETERMINACY, UNFOLDINGS, AND CLASSIFICATIONS 

Equivalence of Germs 
In its local version, elementary catastrophe theory deals with functions 

f: U-+ R where U is a neighborhood of 0 in R". The cleanest way to handle 
such functions is to pass to germs, a germ being a class of functions which 
agree on suitable neighborhoods of 0. All operations on germs are defined by 
performing similar operations on representatives of their classes. In the 
sequel, we shall usually make no distinction between a germ and a repre­
sentative function. 

We let En be the set of all smooth germs R"-+ R, and let Enm be the set 
of all smooth germs R"-+ Rm. Of course En 1 =En. These sets are vector 
spaces over R, of infinite dimension. We abbr~viate (x1, ... , xn) E Rn to x . If 
f E Enm then 

f ( X) = ( f1 ( X), · · · , fm ( X)) 

and the f; are the components of f. 
A diffeonwrphism germ cp: Rn-+ R" satisfies cp(O) = 0, and has an inverse 

cp' such that <p ( cp' )( x) = x = cp' ( cp ( x)) for x near 0. It represents a smooth, 
invertible local coordinate change. By the Inverse Function Theorem, cp is a 
diffeomorphism germ if and only if it has a nonzero Jacobian, that is, 

[ 
JcpJO) l 

det -a- *O. 
xi 

Two germs f, g : Rn -+ R are right equivalent if there is a diffeomorphism 
germ <p and a constant y E R such that 

g ( x) = f ( <p ( x)) + '(. 

This is the natural equivalence for studying topological properties of the 
gradient Y'f (Poston and Stewart [4]). If f, rather than Y'f is important, the 
term y is omitted. 

A type of germ is a right equivalence class, and the classification of germs 
up to right equivalence amounts to a classification of types. Each type forms 
a subset of En, and the central object of study is the way these types fit 
together. 
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A precise description is complicated by the fact that most types have 
infinite dimension; but there is a measure of the complexity of a type, the 
codimension , which is generally finite . Heuristically, it is the difference 
between the dimension of the type and that of En (even though both are 
infinite). A precise definition is given below. 

The largest types have codimension 0 and form open sets in En. Their 
boundaries contain types of codimension l; the boundaries of these in turn 
contain types of codimension 2, and so on, with higher codimensions reveal­
ing progressively more complex types. Types of infinite codimension exist, 
but form a very small set in a reasonable sense. 

Codimension and the Jacobian Ideal 
Let En be the set of germs Rn--+ R , and let F be the set of formal power 

series in x 1, .. ., x n . There is a map j : E --+ F defined by 

where the right-hand side is the Taylor series, or jet , off. Note that it exists 
as a formal power series for all smooth f: convergence is not required in 
what follows. The map j is onto, is linear over R, and preserves products 
[i.e., j(f·g) = j(fg) = (jf- jg)). 

Let mn be the set of f E En such that f(O) = 0. This is an ideal of En 
(meaning that if f E mn and g E En then fg E mn, which we write briefly as 
mnEn <;:;; mn). Its kth power m~ consists of all f E En such that 0 = f(O) = 
df(O) = d 2f(O) = · · · = dk- 1f(O). In particular, f is a singularity if and only 
if f E mn. Tne ideals m~ form a decreasing sequence. 

There is a similar chain in Fn. Let Mn= t(mn ): this is the set of formal power 
series with zero constant term. Then Mn = j( m~) is the set of formal power 
series without terms of degree ~ k - 1. The intersection of all M ~ is O; the 
intersection of all m~ is the set m~ of flat germs, having zero Taylor series. 

The Jacobian ideal of a singularity f is the set of all germs expressible in 
the form 

Bf Bf 
g-+ .. · +g-

1ax1 naxn 
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for arbitrary germs g; . We note it by !::..(f), or merely !::.. when f is 
understood. Its image j!::..( f) <;;:; Fn has an analogous definition, where the 
partial derivatives are defined formal1v. Since f is a singularity, fl.(f) <;;:;mm. 
The codimension of f is defined to be 

Similarly, at the formal-power-series level, we define 

The codimension of an orbit is the same as that of its tangent space T. This is 
the same as the dimension of the quotient vector space E/ T. In En, the 
analog of this tangent space is the Jacobian ideal, so the codimension should 
be dim En / t:..(f). This measures the number of independent directions in En 
" missing" from !::..( f), or equivalently missing from the orbit of f. 

The computation of cod(f) is effected by means of the following result: if 
either cod(f) or cod(jf) is finite, then so is the other, and they are equal. 
Thus, the computation may be carried out on the formal-power-series level, 
where it is a combinatorial calculation. For examples in classical notation, see 
Poston and Stewart [4] . 

Determinacy 
Let f E En, and define the k-jet jk(f) to be the Taylor series off up to 

and including terms of order k. For example, 

x3 xs 
j 6{sin x) = x - - + - . 

3! 5! 

We say that f is k-determinate (or k-determined) if for any g E En such that 
j kg = j k f, it follows that g is right equivalent to f. 

A germ is I-determined if its linear part is nonzero, that is, its derivative 
does not vanish. So the non-I-determined germs are the singularities. If f is a 
singularity and f(O) = 0 (as we can assume), then the second derivative gives 
the 2-jet of f in the form 
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where the Hessian matrix 

is symmetric. It can be shown that f is 2-determined if and only if 
det( H) * O; in this case f is right equivalent to 

± x~ ± · .. ± x~. 

This is a reformulation in determinacy terms of the Morse lemma (Milnor 
[5]). A germ equivalent to ( •) is said to be Morse. Morse germs are precisely 
those of codimension 0. The number l of negative signs in ( • ) is the index of 
f, and f is an [-saddle. Morse theory (Milnor [5]) describes the global 
properties of a function f: X-+ R, where X is a smooth manifold and f has 
only Morse singularities. (See Casti [9] for more details.) 

There exist rules for computing the determinacy of a given germ: an easy 
necessary condition, an easy (different) sufficient condition, and a harder 
necessary and sufficient condition. 

Let A be the Jacobian ideal of f. Then: 

(i) If m~ ~ mnil, then f is k-determined. 
(ii) If f is k-determined, then m~+ 1 ~ mnA. 

(iii) f is k-determined if and only if m~ + 1 ~ mn A( f + g) for all g E m~ + 1. 

There is a slightly stronger form of (i), namely 

( i') If m~ + 1 ~ m~ A, then f is k-determined. 

Numerous examples in Poston and Stewart [4] and Gibson [3] show how to 
compute the determinacy of a given f. For example, suppose f is in Morse 
form ( * ). Then ii= ( + 2x 1, .. ., - 2xn) = mn and m~ = mnil. By (i), f is 
2-determined as asserted above. 

A germ is finitely determined if it is k-determined for some finite k. The 
following are equivalent: 

(iv) f has finite codimension. 
(v) f is finitely determined. 

(vi) m~ ~A for some t. 

The solution to the determinacy problem is thus that it is safe (up to right 
equivalence) to truncate a k-determined germ at degree k of its Taylor series. 
For a germ such as x2 y E E2, which is not finitely determined, it is not safe 
to truncate higher-order perturbing terms (and indeed, x 2 y + y 1 has a type 
that depends on t ). Germs that are not finitely determined either arise in a 
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context where some symmetry is acting (and should be analyzed by methods 
similar to those above but which take symmetry into account-which can be 
done) or must be viewed with suspicion. By (iv), we may summarize: "nice" 
germs have finite codimension. 

Suppose that f is not 2-determinate, so that det( H) = 0. Let the rank of 
the matrix H be r, and call n - r its corank. A useful result, called the 
Splitting Lemma , says that f is right equivalent to a germ of the form 

For many purposes, the quadratic terms may be ignored. So the Splitting 
Lemma reduces the effective number of variables to n - r . A simple proof of 
finite dimensions is in Poston and Stewart (4] . 

The determinacy calculations and the application of the Splitting Lemma 
may be carried out equally well on jkf in Fn, provided the codirnension of f 
is finite. The formal-power-series setting is better for computations. 

Unfoldings 
An unfolding of a singularity is a " parametrized family of perturbations." 

The notion is useful mainly because, for finite-codimension singularities, there 
exists a "universal unfolding" which in a sense captures all possible unfold­
ings. 

More rigorously, let f E En. Then an I-parameter unfolding of f is a germ 
F E Fn + 1, that is, a real-valued germ of a function F( x 1, .. ., x n, e1,. .. , e1) = 

F(x , e), such that F(x,0) = f(x). 
An unfolding F is induced from F if 

F(x, o) = F(pix ), 1/;( o)) + y( o), 

where 

p,: R"--+ Rn, 

y : R1-+R. 

Two unfoldings are equivalent if each can be induced from the other. An 
I-parameter unfolding is versal if all other unfoldings can be induced from it; 
universal if, in addition, l is as small as possible. 
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Suppose that f has finite codimension c. Let u 1, ... , uc be a basis for 
mn/t:.(f). Then it is a theorem that a universal unfo/,ding is given by the 
germ 

While different choices of the ui can be made, a universal unfolding is unique 
up to equivalence. The existence of universal unfoldings in finite codimen -
sion, and the method for computing them, is probably the most significant 
and useful result in elementary catastrophe theory. [Note that ( • •) is linear 
in the unfolding variables E. This is a theorem, and is not built into the 
definition of an unfolding.] 

For example, if f(x, y) = x 3 + y 4
, then a basis for mdt:.(f) is 

{ x , y, xy, y 2
, xy 2 

}. So a universal unfolding is given by 

The codimension of a germ f has several interpretations: 

(i) the codimension of the Jacobian ideal in mn, 
(ii) the number of independent directions "missing" from the orbit of f, 

(iii) the number of parameters in any universal unfolding of f. 

In addition, if the codimension of f is c, it can be shown that any small 
perturbation of f has at most c + 1 critical points. 

Classification 
We sketch how these ideas may be used to classify germs of codimension 

at most 4. 
Let f E En. If f is not a singularity, then f( x) is right equivalent to x 1. If 

f is a singularity, and its Hessian has nonzero determinant, then f is right 
equivalent to ± x~ ± · · · ± x~. Otherwise, det(H) = 0. Let k = n - r be the 
corank of H, and split fas 

It can be proved that the classification of possibilities for f depends only on 
the similar classification for g. 

The Taylor series of g begins with cubic or higher terms. First suppose 
that k = 1, and let the first nonzero jet of g be aix'. This is t-determined, and 
scales to ± x 1 (t even), x' (t odd). The codimension is t - 2, so t = 3, 4, 5, 
or 6. 
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Next, let k = 2, and let 

j 3g(x,.y) = ax 3 + bx 2 y + cxy2 + dy 3
• 

By a linear change of variable, this cubic may be brought to the form 
x3 + xy 2 (one real root), x3 - xy 2 (three distinct real roots), x2 y (three real 
roots, one repeated), x 3 (three real roots, all repeated), or 0. 

The forms x3 ± xy 2 are 3-<letermined and of codimension 3. 
The form x 2 y is not 3-<letermined, so we consider higher terms. A series of 

changes of variable bring any higher-order expansion to the form x 2 y + y 1, 

which is t-determined and of codimension t. Only t = 4 is relevant to our 
problem here. 

No higher term added to x 3 produces a codimension-4 result, and no 
higher term added to 0 does. 

Finally, let k ~ 3. Then the codimension can be proved to be at least 7, so 
this case does not arise. 

Thus, we have classified the germs of codimension ~ 4 into the canonical 
forms 

±xr±···±x~, 

xr + (M), 

xf + (M), 

xf+(M), 

x~+(M), 

xf+x:+(N), 

where 

(M)=±x~+ ··· ±x~, (N)=±x~± ··· ±x~. 



TABLE 1 
THE ELEMENTARY CATASTROPHES OF CODIMENSION .,,;;; 5a 

Symbol Name Germ Universal unfolding Co-rank Codimension 

A z Fold x 3 x 3 +ax 1 1 

±A3 Cusp ± x4 ± x 4 + ax2 +bx 1 2 

A4 Swallowtail x s x 5 + ax3 + bx2 + ex 1 3 

±As Butterfly ± x6 ± x6 + ax4 + bx3 + ex 2 + dx 1 4 

~ Wigwam x1 x7 + ax5 + bx4 + ex3 + dx 2 +ex 1 5 
v -4 Elliptic umbilic x3 - xy z x3 - xy 2 + ax2 + bx + ey 2 3 
v + 4 Hyperbolic umbilic x3 + xy 2 x 3 + xy 2 + ax 2 +bx + ey 2 3 

±Ds Parabolic umbilic ± x2y + y4 ±(x2y + y4)+ ax 2 + by2 + ex+ dy 2 4 

Dfj Second elliptic umbilic xs - xy2 x 5 - xy 2 + ay 3 + bx2 + ey 2 + dx + ey 2 5 
v + 

6 Second hyperbolic umbilic XS+ xy 2 x 5 + xy 2 + ay 3 + bx2 + ey 2 + dx + ey 2 5 

± E6 Symbolic umbilic ±(x3 +y4) ±(x3 + y4)+ axy 2 + by 2 + exy + dx + ey 2 5 

•When the ± sign occurs, germs with sign + are called standard, - are called dual . 

The above sketch shows how the classification problem reduces to the determinacy and unfolding problems (and is 
relatively easy once these are solved). In applications, the main influence of the classification is an organizing one: the 
determinacy and unfolding theorems play a more direct role. 

"' ;;· 
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The celebrated elementary catastrophes of Thom are the universal unfold­
ings of the singularities on this list, or its extension to higher codimensions. 
The universal unfolding arises when we try to classify not germs, but 
[-parameter families of germs. For l ~ 4, "almost all" such are given by 
universal unfoldings of germs of codimension ~ 4. 

Table 1 summarizes the list of germs and their unfoldings up to codimen­
sion 5, together with their customary name and symbol in the systematic 
notation of Amol'd [l]. The terms (M) and (N) are omitted for clarity, x and 
y replace x1 and x 2 , and unfolding parameters are listed as (a, b,c,d,e) 
rather than ( e1, e2 , e3 , e4 , e5 ) . 

The above sketch shows how the classification problem reduces to the 
determinacy and unfolding problems (and is relatively easy once these are 
solved). In applications, the main influence of the classification is an organiz­
ing one: the determinacy and unfolding theorems play a more direct role. 

III. SINGULARITY THEORY AND NONLINEAR PROGRAMMING 

We consider the problem 

maxf(x) (1) 

over all x E R" such that 

g(x)~o, (2) 

where f , g Em". There are at least three different aspects of this standard 
nonlinear optimization problem which singularity theory can shed some light 
upon: ( 1) reduction of dimensionality in the decision space for dual, penalty, 
and barrier algorithms [7]; (2) transformation of the constraint space into 
simpler form for primal-type algorithms [7]; and (3) sensitivity analysis. Let 
us examine each of these areas in tum. 

Dimensionality Reduction and the Splitting Lemma 
If the optimization problem (1)-(2) is to be approached using one of the 

dual, penalty, or barrier algorithms [7], the Splitting Lemma can be used to 
reduce the dimension of the decision vector in the surrogate objective 
function. For example, consider the augmented Lagrangian method, for 
which the surrogate objective function is 

p 
G(x, a)= a'g + f + -llgll 2

, 
2 
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where a is a vector of multipliers and p is some positive constant. The 
parameters a are updated according to, say, the augmented Lagrangian 
scheme of Hestenes. 

Assume that the critical point of G is located at x = x', a= a', and that 
the corank of G(x, a) is r. Then the Splitting Lemma insures that there exist 
coordinate transformations x--> :£, a--> a such that G--> G, where 

where c = codimG, while G1( ·) is a function O(lxl 3 ), which is linear in 
a1, •.. , ac. The function M( ·)is a pure quadratic. The important point here is 
that usually r « n, which implies that most of the computational work is 
involved in minimizing the quadratic M, which can be done very efficiently 
by any of a number of quasi-Newton schemes. The essentially nonlinear part 
of the problem involves the minimization of G, which however, involves only 
r variables. Often r = 1 or 2 even if n is very large (say, hundreds), so the 
computational savings can be significant. 

The potential drawback to the above scheme is that in order to compute r, 
the corank of G, we need to know the Hessian 

H = [ a2c] 
ax 2 

at the critical point ( x ', a'). Since it is precisely x' which we seek, it appears 
at first glance that the situation is not promising. However, this problem can 
be circumvented in at least two different ways: 

(i) Often it can be seen that the Hessian will be of constant rank in some 
neighborhood D of x', even if we don't know x' exactly. This situation comes 
about because we usually have at least some idea of the region D containing 
x'. Thus, if we have an estimate of D and know that rank H(x, a)= constant 
for all x E D, then we can use this information in a successive­
approximation scheme generating a sequence xn--> x'. The idea is to apply 
the Splitting Lemma to each approximate problem at the point xn. 

(ii) If there is no information about the rank H, then we can appeal to the 
inequality 

r( r + 1) 
--- :o.:;; codim G, 

2 
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which always holds. We can take a pessimistic estimate of r which, at worst, 
means only that we include a few more variables in our nonlinear optimiza­
tion of G 1( ·) than might have been needed. If codim G ~ 2, then we can see 
from the inequality that r = 1 and there is only a single essential, nonlinear 
variable, regardless of whether x ' is located. Otherwise there may be several 
nonlinear variables, but the number will still be severely limited by the above 
inequality. 

An essential ingredient in making the above scheme work in practice is the 
ease of determining the coordinate transformations x-+ i, a-+ a. As noted in 
Section II, the theory guarantees such transformations exist and, moreover, 
that they are themselves diffeomorphisms. Thus, the coordinate changes 

have convergent power-series expansions. Consequently, since we know the 
original form of G and its normal form G, in principle we can substitute the 
above expansions and match coefficients in order to determine the explicit 
form of the transformations. The operational implementation of this idea, 
however, may require a substantial amount of algebra, depending upon the 
exact nature of G. 

Simplifying the Constraint Space 
For nonlinear constrained optimization problems having nonlinear con­

straint sets, the coordinate changes discussed above can be employed to 
" straighten out" the binding constraints in a neighborhood of regular points, 
so that primal methods for solving constrained optimization problems can be 
used, dealing only with linear side constraints. The essence of the primal 
methods is to start with a feasible direction along which the objective 
function is improving. A one-dimensional line search (interval bisection, 
Newton's method, etc.) is then used to solve the one-dimensional optimiza­
tion problem along the improving feasible direction, constrained so that the 
resulting solution remains feasible [7]. 

A specific example of such a primal method is the gradient projection 
technique due to Rosen. This method generates an improving feasible direc­
tion by projecting the negative of the gradient vector of f onto the affine 
subspace determined by the intersection of the binding constraints, assuming 
the constraints are linear. A projection matrix P is formed from a suitable 
linear combination of the normal vectors of the constraint subspaces (i.e. the 
gradients of the binding constraints). The resulting one-dimensional optimiza-
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FIG. 1. Projected gradient method of Rosen for nonlinear constraints (from (7, Figure 10.5, 
p. 398]). 

tion is then guaranteed to remain feasible as long as a suitable upper bound is 
observed on the line search (7). 

In the event the constraints are nonlinear, the gradient of f is projected 
onto the intersection of the tangent spaces to the binding constraints, so that 
movement along the improving feasible direction will, in general, take the 
solution outside the feasible region (see Figure 1). This necessitates a correc­
tion move to bring the solutions back into the feasible regions after the 
one-dimensional search has been completed. Singularity theory appears to 
offer the possibility of materially improving the above procedure, as we now 
indicate. 

Consider the following nonlinear programming problem: 

minimize f(x) 

subject to i=l,2,. . .,m, 

x ~o. 

For any x such that x ~ 0, if I= { i: g;(x) = O}, then 

x = {x: g;(x) =0} = n [g i{x)n(w- 1 hyperplane)] 
i El 

will be the intersection of a finite number of manifolds in Rn and thus, with 
the possible exclusion of a set of points of codimension n (comers), will 
inherit the manifold structure locally. Locally, then, a coordinate change can 
be effected in X which will cause X to take the form 

X - Y = { y:O = a'y + c, a, c constant vectors } 
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as long as the gradients of the binding constraints don't vanish. A transversal­
ity argument can be used to rule out the latter possibility. 

Assuming that only the constraints g ;( x) = 0 is binding, let 

S; = Txgi( x) n ( w- 1 hyperplane), 

where 

Txgi(x) =tangent space tog; at x. 

Since codim Txg ;(x ) = 1 and codim{ R" - 1 hyperplane} = 1, if the intersec­
tion is transverse, 

codim Txgi(x) +codim{ w-1 hyperplane}= codim S; = 2. 

Results from differential topology assert that the set of critical points R i for 
gi will be isolated; thus dim R; = 0 and codim R; = n. Therefore, 

codim R; +codimS; = n +2 > n. 

So, for 'Vg;(x) to be zero at exactly the same points where g;(x) = 0 
constitutes a nontransverse intersection and is therefore nongeneric. If any 
such points should occur, they will be isolated and thus not form a constraint 
boundary. 

In practice, finding X and the coordinate transformation necessary to 
make it look like Y usually requires some effort. However, if projection onto 
only one binding constraint is necessary, the calculation becomes simpler, as 
the following example shows: 

(the geometry in x-space is shown in Figure 2) subject to 

- Xz ~ 0. 
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We have 

FIG. 2. Configuration in x-space. 

Y'f(x) = (x 1 -1, x2 -1), 

V'g 1(x) = (2x 1,2x2 ), 

V'gix) = ( -1,0), 

V'g 3(x)=(O, -1), 

151 

., 
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and at (1,0) 

Vf(l,O) = (0, -1), 

Vgi(l,O) = (2,0) 

Vg 2(1,0) = ( -1,0), 

Vg 3(1,0) = (0, -1) 

J. CASTI 

(binding), 

(binding). 

As can be seen, we want to project onto gi(x). To straighten out gi, let 
Yi= x~, y2 = x~. In the new coordinates, Vfuew will be 

Vfnew(Y) = (y}12 -1, YV2
- l), Vfuew(l,O) = (0, - 1). 

(Note: This is not the gradient of the transformed objective function, but 
rather the transformed gradient of the old objective function.) 

The new problem is 

(the geometry in y-space is shown in Figure 3) subject to 

Yi+ Y2- l ~ 0, 

Now the constraint is linear, and we project Vfuew onto gi by forming the 
projection matrix: 

MMt=(l l)[U =2, 

P~I-M'(MM')-'M~[~ ~]-[i]m(l I)~[_; -ti 1 , 
2 

d~ -Pvfo~~ -l-i -~JuH-n 



Singularity Theory for Optimization 15.3 

v, 

FIG. 3. Configuration in y-space. 
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The objective function is optimized along the constraint by letting 

[l] [-th] y = 0 + th , 

f( h) = t ( 1 - th) + ~ h - ( 1 - th) 112 - (th) 112, 

df =1(1-1h) - 3;2_1(1h)-3/2=0 
dh 4 2 4 2 = h = 1. 

So the minimum is taken on at 

or x = [~~~]. 
That this is the optimum can be seen by trying to form an improving feasible 
direction in x-space. The result will be the zero vector, indicating that the 
optimum has been reached: 

g]-[~](l)(/2,/2)~ [ _; -t l l , 

2 

1 [ l 
d = Pvf(x) = l2 ~ 

2 --
-t][/2-1]= I in O, 

2 v2 -1 2 

as claimed. 
A summary of the algorithm is as follows: 

Initialization step: Choose a feasible point xu, and find Ii= { i: g1(x) = 
O}. Let u = 1 and go to (1). 

(1) If Ii= 0, then let P =I, form du= P\lf(xu), and go to (3). Other­
wise, form the projection matrix in x-space as follows. Let M = Dg(xu) be the 
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matrix of gradients of the binding constraints at x u. If P = I -
M

1
(MM

1
)-

1M = 0, let W = - (MM 1
) -

1M'\1f(xu). If W ~ 0, then xu will be 
a Kuhn-Tucker point; otherwise, delete a row corresponding to W; ~ 0 and 
repeat step (1). This has the effect of eliminating binding constraints from 
consideration which won't generate an improving feasible direction. Let 
I = { i : g ;( x) = 0} after a nonzero P has been found. 

(2) If~ X=n;E 1[g;(x)n(R" - 1 hyperplane)] is already linear, use the 
matrix P in the following calculations. Otherwise, find a coordinate change 
such that X becomes 

Y= {y:a1y+c=O}. 

Find 'V.fnew(y(x))ly(xu), and convert the problem into y-coordinates. Form 
the projection matrix P = I - a 1( aa 1 

) -
1a, and go to (3) after forming du = 

P'V .fnew( y(x ))ly(x u) 
(3) Let hu be a solution to 

where 

minf(zu + hdJ 

if in x-coordinates, 

if in y-coordinates, 

where hmax is determined so that the problem remains feasible. Let z u + 1 = 

zu + hdu, convert to x-coordinates, if necessary, and return to (1). 

For more complex problems involving more than one binding constraint, 
the coordinate changes must be automated and checks made on the neigh­
borhood of validity of the transformations. Application to other primal 
methods can also be made using the same types of arguments. 

Sensitivity Analysis and Unfoldings 
In Section II, we noted that a universal unfolding of a smooth function 

f( x) represents the most general type of smooth perturbation to which f can 
be subjected and that the number of terms needed to characterize all such 
perturbations equals codim f. Furthermore, if u 1( x ),. . ., ucC x) represent a 
basis for the Jacobian ideal mn/'\i'(f), then the { U;} also represent a basis 
for the space of all such perturbations. Since perturbations in the objective 
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function and/or constraints lie at the heart of sensitivity analysis for nonlin­
ear optimization, it seems reasonable to conjecture that the concepts of 
unfolding and transversality should be of use in characterizing various issues 
arising in the sensitivity analysis of nonlinear programs. Here we shall 
indicate two different directions to be pursued: (1) constraint qualification 
conditions; (2) objective-function stabilization and examination of the stabil­
ity of the dual algorithms discussed above. 

Transversality and the Kuhn-Tucker Cmulitions 
As an indication of how singularity-theory arguments can be employed to 

study constraint perturbations, let us examine the classical Kuhn-Tucker 
conditions using transversality arguments. 

The Kuhn-Tucker necessary conditions play an important role in the 
theoretical development of mathematical programming. These conditions 
were derived from a more general set of conditions, called the Fritz John 
conditions, by assuming that a constraint qualification is in effect. Both the 
Fritz John and the Kuhn-Tucker conditions are necessary for x * to be an 
optimal solution of the constrained optimization problem. One of the most 
widely used constraint qualifications is that the gradients of the binding 
constraints at the point x * be linearly independent. 

In singularity theory, the concept of a transverse intersection between two 
manifolds is a cornerstone for structural-stability arguments. One definition of 
a transverse intersection at a point is that no vector is perpendicular to the 
tangent spaces of both manifolds simultaneously [4). Since the gradient 
vector of a manifold at a point will also be the normal vector to the tangent 
hyperplane at that point, it follows that the gradient vectors of two intersect­
ing manifolds will both be collinear if and only if the intersection is 
transverse. Furthermore, and more importantly, the Thom isotropy theorem 
[4) states that transverse crossings are structurally stable. This means that 
small perturbations of the constraints around a Kuhn-Tucker point won't 
change the geometry of the intersection much. In fact, the original constraint 
configuration can be recovered by a smooth coordinate change around the 
point of interest. 

Let us consider an example demonstrating the structural instability of a 
nontransverse crossing. In the example, the following definition of a trans­
verse crossing will be used: 

DEFINITION 1. Two manifolds, R and S, embedded in R" intersect 
transversally if 

(1) Rn S =0 or 
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(2) we have 

and 

where Tx is the tangent space at x. 

EXAMPLE (from ~7]; see Figure 4 for geometry). 

Minimize 

subject to 

f(x,, X2) = - X1 

x 2 -(l-x 1 ) 3 ~0, 

- X2 ~ 0. 

'J f(x) f 
'7g, (x) 

g(x) = 0 

f 
Frc. 4. Example of a nontraverse constraint crossing (from [7, Figure 4.5, p. 136]). 
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We have 

"Vf = ( -1,0), 

"Vg 1 = ( - 3(1- xr},l), 

vg 2 =(0, -1) ; 

at (1,0) 

"Vf(l ,O) = ( -1,0), 

"Vg 1(1,0) = (0,1) (binding), 

"Vg 2(1,0) = (0, -1) (binding). 

The gradients of the binding constraints are not linearly independent. 
Checking the Kuhn-Tucker conditions, we have 

[ -6] + U1 [ ~] + Uz [ _ ~] = 0, 

U l [ ~ ] + Uz [ _ ~ ] = [ 6 ] 
= 0= 1, U 1 = Uz (inconsistency), 

showing that the Kuhn-Tucker conditions don't hold. 

Transversality 
Both g 1 and g 2 will be embedded in R3, so 
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at (1,0), 

Txg 1(x)= {x1,x2 ,x3 ):x 2 =0} , 

Txg2(x)= {(x 1,X 2 ,x 3 ):x 2 =0}, 

Thus, 

codim Txg 1(x) = 1, 

codimTxg 2(x) = 1, 

codim[ Txg 1(x) n Txg 2(x)] = 1. 

so the intersection is nontransverse. 
If the cubic constraint is perturbed slightly: 

159 

then Txg 1(x)n Txg 2(x) at (1,0) will be the empty set, so the intersection is, 
by definition, transverse. At their point of intersection, x = ( 1 + e, 0), so 

codim(Txg(x)) = 1, 

codim(Txg(x)) = 1, 

codim(Txg 1( x) n Txg 2(x)) = 2, 

so codim 1~g 1(x) + codim Txg 2(x) = codim(Txg 1(x)) n Txg 1(x )], and the inter­
section is transverse. 

The unfolding concept can also be of use in sensitivity analyses in the 
following manner. As an unparametrized function, the objective function 
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f( x) may be unstable with regard to small perturbations (i.e. the qualitative 
character of the critical points of .f may change as a result of small changes in 
f). This is clearly a bad situation as far as the credibility of the results 
obtained from such an optimization is concerned. However, if codim f = c, 
an unfolding of f involving at least c parameters will be stable relative to all 
structural perturbations in the sense that if f( x) + p( x) is a perturbation of f, 
then the behavior of f( x) + p( x) near its critical points can be captured by 
varying the parameters in a universal unfolding of f. As already noted, the 
elements u 1(x ),. .. , uc(x) forming a basis for mn/'V(f) constitute a basis for 
exactly the type of perturbations we need to stabilize f. 

U nfoldings can also be of use for studying the stability of the dual 
optimization algorithms, which require the formation of a surrogate objective 
function using a computational parameter. For example, the augmented 
Lagrangian method mentioned above requires the use of a parameter p. 
These parametrized functions can be studied to learn what types of objective 
functions and constraints may lead to surrogate objective functions which are 
structurally unstable, and which may behave badly as the computational 
parameter is varied. 

These ideas can be illustrated by considering the standard linear-program­
ming problem. In a sense, a linear objective function is the linearization of a 
general nonlinear f( x ), since no real-world process even generates a com -
pletely linear potential. 

DEFINITION 2. f is structurally stable if, for sufficiently small smooth 
perturbation functions p, the critical points off and f + p remain within the 
same neighborhood and have the same type (max,min,saddle, etc.). 

Consider the following linear program: 

maximize 

subject to Ax~O, 

x~O. 

Note that the Hessian matrix of f will be identically zero for all x, so that a 
linear program has a maximum only by virtue of the constraints. 

Suppose a small linear perturbation is added to the objective function: 

maximize f(x) = ( c1 + e1 )x, 

subject to 

E;<<l, i=l,2, ... ,n, 

Ax~O, 
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Then the isoclines of the objective function on the x-hyperplane might shift 
so that the set of isoclines leaves the feasible region at a completely different 
extreme point of the convex hull of constraints. Thus the linear-programming 
problem is not even stable with respect to linear perturbations. 

In contrast, it is known that Morse (i.e. quadratic) extrema are the only 
stmcturally stable types for nonparametrized functions, although for parame­
trized functions the situation is different. Similarly, since adding a small 
perturbation to a Morse function does not drastically change the location of 
the unconstrained extremum, the location of the constrained extremum also 
shouldn't change too much, since the constrained extremum usually occurs 
where the constraints are tangent to the isoclines of f( x ). 

As a final note, the computational implications of the above discussion are 
not by any means as dire as might seem. While the general nonlinear 
programming problem is computationally difficult, numerical methods for 
quadratic programs, both constrained and unconstrained, are well developed. 
In fact, since Morse functions are the only structurally stable types of smooth 
unparametrized functions, a case could be made for transforming even 
nonquadratic nonlinear programs into quadratic form using the diffeomor­
phic coordinate changes guaranteed by singularity theory. Thus, a quadratic 
program represents, in a certain sense, the canonical problem for mathemati­
cal programming. 

Much of the work presented here arose during the course of numerous 
conversations with /. Kempf, who, in particular, is responsible for the 
example of the use of the gradient projection method. 
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