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Foreword

In this paper the authors continue to study the process of growth modeled by
urn schemes containing balls of different colors. The rate of convergence for
proportions of balls to the limit state is investigated. It is shown that Gaussian as
well as non-Gaussian Markov random processes may describe the asymptotic

behavior.
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1. Introduction

This paper is actually the second part of the paper [14] and for the sake of
abridgment we adopt here all notations from [14]. We consider only the situation
when the vector X, ,n + e of balls proportions converge with probability 1 to a
non-random variable. This will be the case, in particular, when the set of fixed-
points of urn functions is a singleton. The general case is studied in a forthcoming
paper.

We investigate asymptotic normality as well as the law of iterated logarithm
and the invariance principles. These results generalize results of the article [8].
The main idea of our approach originates in paper [3] and consists in an interpre-
tation of related to the generalized urn scheme processes as a stochastic approxi-

mation type procedure.

2. Auxiliary Results

In subsequent theorems are important local properties of the process X,, in a
neighborhood of attracting point 9. The following lemma establishes the necessary
relations.

Lemma 1. If forany ¢ >0 andall z € UN'i(ﬁ,a) NLy 4

1) Thereis r 23 such that sup; 4 2 li[Tq,(i.z) s C4, then uniformly with
iEZf

respect to z,y
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a)  EXge, ol > RillEe K7 I, =29, =) = CoRE ™

where £, is the N-dimensional vector whose first N -1 coordinates coin-
cide with corresponding coordinates of vector 7, and the last coordinate
is 18, (X)) ~7; (% ). Letalso

2) there exist ¢ 23 and variables g(i,z),x € UN'i('ﬂ,z) NLy 4.1 € Z}Y

such that Y e@i.z) =1, Y i[9 ¢(i.z) =C3,
1ez¥ 1ez¥

lg(i.z) —q;(i,z)]< g, » 0 with ¢ » = Then

b)  r(x) =p) +r(t,2) B¢ X706 X707,

z,7, =y)=0o(x)+F(z) +M(t,z,7) +R(t,z),
where

p(z) = 3 JilgG.z),|rt.z)| s Coaf/ Vo i =
ier

= min(r.g)~1. M*(t,z,7) = Coy 71 IR*(t.z)| =

< C.«ﬁt%-i.k =1.2,..N;0%(z) = 2,,(# -
1eZy

—z11i) (¥ —z*1iDe G.x), F(z) = rl(z)r¥(z)k =1,2,...N—1,0"(z) =

= ¥ 1[G -2?1iDeG.z). FN (=) = i (z)p(z). i =1,2,..N-1,0"(z) =
ieZiV

= 2 ]i[ZQ(i.Z).FN‘N(z) ="P(Z)2 ,

1ez¥
and if, in addition,

3) functions g(i,z), 1 € ZIX are continuous on UN 71(49,£) n Ly _4; then

c) o.f and p are continuous on this set of functions. Furthermore, if

conditions 2), 3) are satisfied and
4) partial derivatives q(")(i,z) =_Q95(7'k-_zl' k=1.2,....N-1 exist and are
z

continuous for all 1',€Z}+I. zEUN_i(ﬂ,e)ﬂLN_i, and series

2 ijq (k )(i,z).j,k =1,2,....N ~1 converge uniformly; then
1ez¥
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d) f and p are continuously differentiable on UN'l(ﬂ,e) NLy_, and

Naoriz) _ _wN-1_4\8p(E) . _ _
/5 ok =p(z) + (1 - E/5'z7) pr: k=12, ,N-1.

If conditions 1) - 3) are satisfied and

5) X; - V¥ with probability 1 fort - o, then

e) with probability 1 ¥t 1, p(¥) fort - .

Proof. Furtheron we assume that z € UN'1(19,£) NLy_4 and 7 is a natural
number. Using estimate (7) from [1], condition 1) and Holder inequality we obtain

forX, =z,7, =7

e G 7N = llmg ey OIF + (38 X)L -

—r (XD 2418 IR + EE IS Ky llXe

7132 + 18 (X2 + 7y (X)) = 2{AN {18, (X)[2 +

+ E[18; (XD B2 + 18, X2 + rp (X)) =

= 2(4N +1) (18, (X[ + 7, (X, )2] < 2(41v+1)[]pt e+ c¥r
If R >2C}/ (N + 1)1 2 then

flg: X 7 I > RE) € 2N +1)(18, (X2 +

+C¥TI> R ¢ 118, X2 > —2’—(4N+1)‘1ﬁ’2]

and, taking into account inequality (12) from [1] with £ =7, p =2 and p =0 we ob-

tain
Elx e, v 1€ Ko 7 X 71 <

< 2(4N+1 )E[x 18, (X)) +

(8L XDL > (AN +1)71/ 2R}
+ cf/']p(, | 271N +1)T/ 20, [1+4(AN+1)CE/ TR RS T <

<3 2" YaN+1)T/2C RETT = CR?TT

Thus, the assertion 2) is proved.
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If the condition 2) is satisfied, then on the basis of estimate (B8) from [1] and

Holder inequality

Ir/(z) =<2 Y Jilg(i.x) =2p(x)<2C3/9, j =12, . N-1 (1)
1ez¥

Therefore due to assertions a), b) of Lemma 1 from [1]

e[¢/X 70X = 2.7 = YIELSEXK 70X =

=z,7; =71 =07 @) ) + M{Ft.x.9) + RIE(L.2) ©
Mtz 7)< CEVy LR, (t.x)| s C§V al/ N+ | @)
where 7,k =1,2,...,N —1. It is easy to see that
E[¢{0 7Otk G 7 OB =27, =
= 7] = o (z) + M (L.z,9) + RE (L), (4)

19 .
M¥E(t,z,y) = -1 @+ ViDL .5 _
Fitz,y)=—> “Z;y PPty (i

—-zIi )ik —=*1iDe, (G.x)

R¥.z)= Y (7=l —=*1i)) e (i.2) — ¢ (i.x)]
12y

247 < 2 with T 2 0 then from condition 1), estimate (B) from [1] and the
T

Since

Holder inequality

mk(t .z, 7) s8y? ZNJi["’qt(i.z)58Cf”7‘1 : (5)
1ez”

As in proving assertion b) of Lemma 1 in [1], taking into account (8) and (12)
with & = min(r,g),p =2 from [1] and conditions 1), 2)

R, z) <4 Y 1i[¥q,(i.x) - gq(iz) =<

1ezh

<40, T 12+ 3 ]i[z[qt(i,z)+q(i.z)]s

1e2¥ tezi\z¥w)

<afo, L +)V 4 L +1)1‘”[C{“‘"(1"1/’) +Cg“"(1"/'7)]} :



Assume that L =L(¢) = at'l/NHq, then

H-1
R (t,z) s P alTH . (6)

Since

rt,r)y= Y lillg, (2, z) +q(i,z)] .

iez¥

then by reasoning in the same manner as when proving assertion of Lemma 1 from

(1] we obtain
|7 (t.z)| s Cqofl/NH )
Based on conditions 1), 2)

E18. ), = 2| = M (2) + RVt

. (8)
RW(tz) = T JilffaGe) -eia)]
1ez¥
therefore, due to (6)
H-1
Waz)scPeltH ©)

Taking into account conditions 1), 2), assertions a), b) of Lemma 1 from [1] and (1),

(7)

E{18, )/ 70K, =7, =7 =

(10)

=cM@)+rNM@) + .z + &M@ .z) |
MYtz =cVy (11)
BV (t,z)sciPaf/NHH 12)

where ;7 =1,2,....N=1. From definition §;, relations (2) - (12) and the fact that by

o 7

H/N+H 2 g

virtue of condition 2) o, -» 0, and therefore, o for t -+ = the

assertion b) follows.
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From 2), estimates (B8) and (12) with wu=¢,p =2 or p =1 from [1], series
which define functions o,f and p converge uniformly on UN'1(19,£) NLy_ 4 Then
its sum is a continuos function [9, p. 431], and under condition 3) the assertion c) is

valid. By differentiating formally the expression for fj we obtain

o’ f‘ ==b,pz)+ ¥ (i7-z7)iDe® G z) (13)
oz iez¥

where 6_# is a Kronecker symbol. On the basis of assertion c¢) the first term here

is a continuous function, and with account for condition 4) the series consists of

ari(z)
oaz* '

continuous functions and convergences uniformly. Therefore [9, p. 431]

7.k, =12,. ,N-1 exist and are continuous on uW _1(19,8) NLy_4 and f is continu-

ously differentiable on this set. From equality (13) it follows that

N or9 (2) N-1
)3 aa v =P(’)+(1“211)2¢;A?.j.k =1,2,...N-1
j=t 0% i=1 T

i.e., with account for the foregoing, p is continuously differentiable on

¥ '1(19,5) N Ly _4 and the assertion d) is valid.
N-1

Based on relations (17), (18) from [1] to prove the assertion e) it suffices to
show that with probability 1
n-—-1
n-1 Z ri(Xy) ——» p(¥) for n » o
1=1
This relation is valid by (7) and the continuity of the function p (according to c¢))
on U¥ “19,6) N Ly_4. Therefore, taking into account condition §) p(X;) » p(%) with

probability 1 for ¢ » «. The lemma is proved.

Remark 1. If N =2, functions ¢ (i,z),1 ezf are continuous on the set

(¥ —¢,9+¢&) R(0,1); series Z @+ iz)q(i,z) converges uniformly; on the set
1e28

(¥ —¢&,9) N R(0,1) or (9,9 +&) NRK(0,1) functions gl(i,z) exist, are continuous and

series E ijq 1(11.:1:),.7' = 1,2 converge uniformly, then similar to proof of asser-
iez2

tion d) it can be shown that the function f is continuous on (9 —¢,¥9+¢) N R(0,1)
and is continuously differentiable on (¥—¢,9) "k (©0,1) or (¥, ¥+¢&) nR(0,1)

respectively.
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The following facts are useful to study the asymptotic of the urn processes.

Let M dimensional vectors zg,s 2 1 form a Markov process,
Elzg|" < ,s 21 , (14)
zg - V¥ with probability 1 for s » » (15)

where r >0, € RY. Assume that there is >0 such that for
z, =zx,x € U"(ﬂ,e). sa1

E(zg pqlzg) = s g(z) + we ()] . (16)

Tss1 ~E(zglzs) =s7l2(s.2)

Exge s,oyprilz (s.2)F s CoR 71, @av)
limID(s,z) ~Dflp =0 , (18)
max (s Lz -¥) ~0 .,

where g and wg are M-dimensional vector-functions; D(s,z) = Ez(s,z)z(s.x )T, D -
is a symmetric non-negative definite matrix, |||l is a norm of M X M matrices. In all
subsequent lemmas relations (14) - (18) are assumed to be satisfied.

Let D"[O,T] be a space of M-dimensional vector functions on [0,7],T >0

without second order discontinuities with Skorokhod metric {10] (for M = 1 simply

D[0,T]. In DH [0,T7] and D[0,T] for n =2 we consider random processes

n+s n+s +1

Xp(t) = (n+s) %z, ,c—)for i l=<t< Y i1,
1=n i=n
and
172
n+1 n+s -1 n+s+1 -
Yo(t) = [— (T es—B) for Y (ilni) st < ) (ilni)
n In(n +s) n = =

Lemma 2. [5]. Assume that

1) in equality (16) function g is differentiable at point ¥, i.e., for
z - V,g(x) =G(z—V) +o(z—J|;

2) matrix ¢ + %JH is stable (i.e., real parts of its eigen-values are negative)

where Jy is a unit matrix in R¥;



3)

lims1/?2  sup g (z)|| =0
s+ reUM(d,e)

Then with n - ¢ random processes X,, weakly converge in DH [0,T] to a stationary
gaussian Markov process X, which satisfies a stochastic differential equation of

the following form
dX = (G + TIpXdt + DV 2wy

where D172 s a non-negative square root of the symmetric metrix D, wy is a stan-

dard M-dimensional Wiener process (with M = 1, simply w).
Lemma 3. Let M =1 and

1) withzx -2

g(z) = --;-@ ~B) + o (jz ~3)),

2)

lim (sins)Y? sup lw.(z) =0
( ) h—ﬂﬂcl s(@)]

S <+

Then with n - random processes Y, weakly converge in D[0,T] to a stationary
gaussian Markov process Y, satisfying the following stochastic differential equa-

tion

dy = —%Ydt + D1/ 2qy)

The proof of this lemma is based on limit theorems for random processes gen-

erated by series of weakly dependent random vector [11] and is similar to that in
paper [5].
Lemma 4. [4]. Let M =1,

1) forz - ¥
gE)=CGE-Y9) +o(x -9)), G <-1/2;

2)

1/2

hs_zjﬂclws (z)]=0

lim

S -+ oo

Inins




Then with probability 1

1/2 172
— [ n 72 g2V = —9) =1
n +w Inlnn D n '
n 1/2 1-28 1/2
1i - = -
nl_“. ininn ‘ D (zn =) 1

Lemma 5 [6]. Suppose that M =2,

1) withz - ¢
g(z) =Gl (z—B) +o (x| |,
where G(zl) =G, for zl > vtand G(zl) = G, for zl <1,
2) matrices G; + %Jz- i = 1,2 are stable; and condition 3) of Lemma 2 is satis-

fied.

Then with n - « random processes X,, weakly converges in D?[0,T] to a sta-
tionary Markov process X which satisfies a stochastic differential equation of the

following form
dX = [G(X) + %Jz]th + DY 2qw,

Now we can prove some results on asymptotic behavior of balls proportions in the

generalized urn scheme.

3. Limit Theorems

In DN[O,T], T > 0, we consider random processes
n+s +1

- n+s
2, (1) = vVn+s5'(y, 45 —V) for E i1t < E i1 ,

i=n i=n

where n 21, yn,5 are N-dimensional vectors whose N —1 coordinates are equal
corresponding coordinates of the vectors X, ,¥, and the last coordinates are
Mg P(O), poy =7 /12

Theorem 1. Let

1) sup sup 2 lilgp,(1.2) =Cyq;
nzlzeLL-liﬁz,l

2) X, - 1 with probability for n - « and for some £ >0 the following conditions
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hold on UY 1(8,&) N1y _,

3) there exists » = £ for which sup E Ji[Tg(i.xz) = Cp;
nEl g ez¥

4) there exists continuously differentiable functions ¢(i,z),1 €Z!f such that
Y g(ix)=1 for some g =3, Y Ji%¢(i.z) s C,,

1ez¥ 1ez¥

lg(i,z) —gqu(i.x)|s0,,n 21, series E ifﬁqj%z,j,k =1,2,...N-1, con-

t1ezk oz

verge uniformly;
N +H

n
5) i = 0;
) limo, =

1
6) matrix 4 + %JN is stable, where 47 = p(ﬂ)‘iﬁ-l;—%ﬂ,AfN =0,7 =1.2,...N-1,
T

ANE = aa (f), k=12, . N-1,4MW =1,
r

Then random processes z, weakly converge in DN[O,T] to a stationary gaus-
sian Markov process z which satisfies the following stochastic differential equa-

tion
dz = (4 + ZIy)zdt + Z3)Y Tdwy

where
T (¥) = p(¥) 2oV (¥),i =1,2,...N-1,

M () = p(9) 1M (), 7 =1.,2,...N-1, 2 () = M) + FWN (9)

Proof. On the basis of equality (5) from [1] we have

1
Kne1 = Hp + 7 []ﬁn(Xn)[—un nz1 (19)
My =71 (20)
therefore under condition 1)
Elin vl < |1+ = [Elpnl + — {18, 0600 |} <
n+1 n +1 n n +1 n
(21)

1 1
=1+ n+1}£|"'ﬂ|+ — Cin21
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Since X! € (0,1),1 =1,2,...,N-1,n = 1, then due to (20), (21)
Elypll € o.n =21 (22)
On the basis of assertion e) of Lemma 1 and conditions 2), 9) are satisfied we have
g * p(¥) with probability 1 ,n -» o,
and, therefore

¥, - 3 with probability 1 ,n - =, (23)

Let &, = min(¢,p(¥)/2). Denote by Y, (5,80) a set of points y € UN(-T9,£O)
whose first N -1 coordinates z (v ) belong to UN_1(19,£) NLy_4 and the last yN is
such that nyN is a natural number greater or equal y4;. Using equalities (6) from
[1], (19), assertions a), b) of Lemma 1 from [1], and assertion b) of Lemma 1 with

conditions 3), 4) we have for y,, = v,y €Y, (;’,80), n1

E@Wnalvn) =y + —R@W) +w, )] (24)

Yn+1t —EWp4lvn) = —Jn—Z(n,y) : (25)

lwn W)l < Co|loH/NtH 4 0 1|, (26)

REy) =@M @k =12, . N-1,RN@) =p@@w)n -v¥ . @7

where
wk(y) = W) Uok(z(y)) + & (z(v), ny™)],
zk(n,y) = nfl(z(y).nyN), k = 1,2,...,N—1,w.,’¥(y) =

n
n +1

= (n+1)yY + nr(n.z(¥)) —plz@@N]. 2V (n,y) = 1By —rplz(y))

Due to condition 4), assertion d) of Lemma 1 and equalities (27) the function & is

differentiable at point ¥. Since f(¥) = 0, then
R(Tp) =4, - ) +0(lF, -3 . (28)

for ¥y, = 5,§n €Y, (5,80). From estimate (1), conditions 3), 4) and assertions a),

b) of Lemma 1 we have

~ 2 2
EXihz (n gnsor 12 (7 9IS CsRZTLR >0,
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(29)
H-1
Ez%(n,5,)27 (n,Tn) = 9 @ (yp)) s Celo V7 +n ™t + f(z (G )]

Since for ¥y, - 3 we have z(Yy,) » ¥ and the functions o,f,p are continuous on
u¥N “1(9,6) N Ly _4 from condition 4) and assertion ¢) of Lemma 1, then due to condi-

tion 5) we obtain

IimIEzk(n,in)zj(n.gn) -zH@) =0 ,

~ ~ (30)
max (n "1,||yn -3 -0

where

In EYn(B,e0). k.7 =1,2,...N

Relations (22)-(26), (28)-(30) and conditions 5), 6) make it possible to use lem-
ma 2 which gives the required result. The theorem is proved.
Calculating directly the limit distribution of z () with £ » o we obtain the fol-

lowing assertion.
Corollary 1. Under conditions of Theorem 1

X, -8

Vn Tn/n —p(0)

- NOB), n » =

in probability, where N(0,B) is a normal random vector of N dimensionality with

zero mean and variance matrix

o« 1 T+ 1
A+t ATt
B = fe 2" Z(V)e 2
0

Remark 2. Let the number of balls added to the urn at each step be constant
and equal to V 21 (as, e.g., in [3], [7], [B]). i.e.
Y eniz) =1,z €L,

1ez¥
Ki=v

Then conditions 1), 3) of Theorem 1 are satisfied, 7, =74 + (n—-1)v,n 21, i.e.,
this is not a random variable and instead of z, it is sufficient to consider the

corresponding N —1-dimensional random process generated by X,, — ¥, n = 1.
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From relations (22)-(26), (28)-(30), Lemma 3.4 and Remark 1.2 of the paper [1]

we obtain the following.

Theorem 2. Let N =2 and the number of balls added to the urn at each step
is equal to v constant v = 1. Suppose also that the following conditions are satis-

fied:
1) with probability 1 X,, » ¥, n - o

2) for some € >0,z € (¥W—¢&,Y + &) NKR(0,1) there exist continuously differenti-
able functions q((i,v—i)T,z:),O sisv, such that

lg (G v=i)T,z) - qn((i,u—i)T,z)l so,.nx1;
3)
M) =-1/2, lim (n lnn) %5, =0 .
n S0

Then random processes

172

| n+s A -1
v, (t) = In(n+5) (Xp +s — V) for té}n(zlnz) <
n+s +1
st < ) Gni)ylLn=z2,
i=n

converge in D[0,T] for n - o to a stationary gaussian Markov process v of the

following form

av = —%vdt + o1/ 2qy ,
where

v
o= Y (i-v9)lq((i,v-i)T,0) .
1=0
Corollary 2. If conditions of Theorem 2 are satisfied, then

n
\/E(Xn -9) »N(@©.,0) ,

in probability for n - oo,
Theorem 3. Let all conditions of Theorem 2 be satisfied except the 3) which

is replaced by the following
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3.1)
1/2
(V) < — i = .
S 172, shln.. inins s =0
Then
— n ey _\/ g .
nl_x.rtnnf ininn Xn =) = —1—2f )

= n o
I X, —9) = —\/—
n ~inf Ininn &n ™) —1-2f(9)

In Theorems 1,2 the limit random processes are gaussian, and the limit distri-
bution of variables X, —¥ is normal. It appears that if we discard the requirement
of differentiability of functions g¢(i,"),7 € ij, at point ¥ then the limit random
processes may not be gaussian, as well as the limit distribution of variables X, __ 1
not be unfinite divisible. The theorem given below stipulates the appropriate
result. The proof of this resul is based on relations (22)-(26), (28)-(30), Remark 1
and Lemma 5.

Theorem 4. Let N =2,1 € (0,1), conditions 1-3, 5 of Theorem 1 be satisfied

as well as the following

4) there are continuously differentiable on (¥-¢,¥) N £(0,1), (¥, ¥9+&) N k(0,1)

functions g(i.,’). i€ Zf such that Y q(i.z) =1, for some
1e2%
g =3, Y i[9 (i.x)sCy lgi.x)—q,(i.x)s0,,n 21,
1e2?
5) matrices .4¢+-12--J2 are stable, where 1 =1,2,Al11 =p(19)’1f’(19+0),
A =p(»)r-0),  aff =4} =0, AP =p'(84+0),  4f =p(w-0),
AP =42 =,

Then random processes z,, weakly converge in DZ[O,T] to a stationary Markov

process z, satisfying the following stochastic differentiable equation
dz = [A(z!) + %Jz]z dt + £(9)Y 2dw, |,

whereA(zl) =4, for zl20,4z) =4, for zl <o.



-15 -

Corollary 3. Let N =2, € (0,1) and the number of balls added to the urn at

each step be constant and equal to v 2 1.
Suppose that
1) z,, - ¥ with probability 1, n -» o;
2) for some & > 0 there exist continuously differentiable on (¥9—&,8) and (¥,%+¢)

functions ¢ ((i,v—1 )T,z),O < i £ v such that

lg (G.v=i)T,z) - qn((i,u—i)T,z)ls g, n=1;

3)

max (f “($+40), £ (¥9-0)) < -1/2, limnal/%q, =0

n +=

Then the limit distribution of random variables vn (X, —¥) has the density of the

following form

27 (940)+1
r(x)=C 2
exp{

2
exp{#—], z =20,

azx

2f (3-0)+1 ] - = <0

where C is a constant such that fp(x Yz =1.

Corollary 3 follows from Theorem 4, Remark 2 and the fact that the limit dis-
tribution z(¢),t » = has the density p. The distribution with density p is not un-

finite divisible.
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