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Foreword 

By emphasizing the symmetry of certain set theoretic conditions, shown to be associ- 

ated with Arrow's Impossibility Theorem, a characterization of "kinds of axioms" is ob- 

tained. More precisely, if the defining properties of a model satisfies these conditions, 

then the model must have a conclusion much like that of Arrow's theorem. Because the 

conditions are described in set theoretic terms, the applicability of these results extends 

beyond the usual setting of complete, binary, transitive rankings to space of utility func- 

tions, probability distributions, etc. In this manner, not only can new extensions of 

Arrow's theorem be obtained, but it is shown how the same "kinds of axioms" applies to, 

say, problems about the aggregate excess demand function, the Hurwicz-Schmeidler dicta- 

torial result about Pareto optimal, Nash equilibria, the Gibbard-Satterthwaite theorem 

about manipulability, etc. 

Alexander B. Kurzhanski 

Chairman 

System and Decision Sciences Program 



Stirmlated by A r r o w ' s  seminal work [I] ,  socia l  choice has become an ac t ive  

research area. There are lists of axioms forcing impossibility statements, 

conditions admitting poss ib i l i ty  assert ions,  and the Gibbard [3] - Satterthwaite 

[ 191 theorem a b u t  rranipulation. (An excellent  survey is Sen [20]. ) What is 

missing from the l i t e r a t u r e  is a simple, unifying mthematical explanation - one 

t h a t  with a single argument can sukume several seemingly d i f ferent  conclusions, 

one t h a t  eas i ly  permits extensions of classical theorems and the derivation of new 

resu l t s ,  and one t h a t  captures the elusive f r o n t i e r  between poss ib i l i ty  and 

impossibility statements. A s t e p  toward such a description is given here. The 

idea is to s h i f t  emphasis from wh3t pwticijlar set of axions yield poss ib i l i ty  o r  

i m s s i b i l i t y  conclusions, to w1~t kin& of axiom cause these resul ts .  This 

approach is i l l u s t r a t d  by showing how A r r o w ' s  T b r e m ,  several other soc ia l  choice 

resu l t s ,  a s t a t i s t i c a l  paradox a b u t  contingency tables ,  the Hurwicz-Schidler 

study of o p t i m l  Nash equi l ibr ia ,  ce r t a in  questions a b u t  economic al location 

procedures, and conclusions from several other discipl ines are a l l  closely related.  

This assert ion may be surprising if only because the examples come from dif ferent  

discipl ines where the sets of underlying assumptions or axioms m y  have l i t t le  to 

do with each other. What unif ies these mdels is t h a t  w h i l e  the assumptions and 

axioms d i f f e r ,  they are a l l  of the s m  mmbinatoric End; consequently, these 

rrndels have related properties. For instance, by characterizing what kinds of 

axiom- give rise to an Arrowtype theorem, as I do here, r e su l t s  from d i f fe ren t  

l i t e ra tu res  can be unified and extended i n  several  direct ions.  

My presentation has a geometric f lavor where the goal is to create  an 

e a s i l y  used, versa t i le  technique. The idea is this. Often, aggregation mde ls  

from socia l  choice, economics, probability, and other areas are described i n  terms 

of the requirements we want the system to sa t i s fy ;  e. g. , the  independence 

conditions from socia l  choice. But, are these conditions self-contradictorfl To 

invest igate this issue we might examine a l l  logical ,  combinatoric p s i b i l i t i e s .  

I t  turns out t h a t ,  f o r  several  mde l s ,  the  combinatoric analysis of the  axiom 

involve related argum?nts. This suggests characterizing "MI& of axiom-" i n  terms 

of the associated combinatoric analysis.  This program is started here; I 

characterize the  kind of axioms t h a t  a m  related to Arrow's theorem. To do so, I 

introduce a geometric representation t h a t  I call the bhwy  owxlap principle. I t  

is based the geometry of ce r t a in  sets - the "level sets" of the imposed conditions. 

We now k n o w  why s o c i a l  aggregation procedures have d i f f i c u l t i e s .  An 

aggregation process mps a d m i n  onto a rmch smaller range, so the problems and 



paradoxes are created by the "squashed overflow". In an earlier paper [ 161 (also 

see [15]), I demnstrated t ha t  this explains the paradoxes f o r  several classes of 

socia l  choice, voting, and probability mdels. To prove rw assert ion,  I embedded 

"discrete d e l s "  i n b  classes of s m t h  mppings. Then, the existence and the 

creation of new paradoxes are obtained with calculus techniques. But certain 

discrete problem, such as A r r o w ' s  t b r e m ,  cannot be handled i n  this m r .  So, 

tk resul ts  given here can be viewed as extending tk discussion of [16]. Indeed, 

one can show tha t  the overlap principle corresponds b the rank conditions of [16]. 

A secondary t k m e  fo r  this paper corn  from economics. Sen [20,p.1074] 

points out tha t  "Economists did not . . take nuch notice of  this [social ch i ce ]  

l i teratum, or of t h  pmblem studied i n  them, until the "infomtional  crisis" 

sent them s m h i n g  for other m t h d s .  " One way tD study infonmtion is with the 

mchanism introduced by L. Hurwicz [6]; an approach tha t  has proved b be a 

convenient f o m l a t i o n  tD analyze incentive problem and organizational design. A 

central  issue is b understand the relationship between an allocation process and 

the associated mchanism. For s m t h  mchanism, we have answers; i n  [9,17,18] 

geomtr ic  tools are created tha t  characterize a l l  possible "message mchanism" 

associated with a given " s m t h  allocation procedures". But, because this 

characterization is based on the level sets of cer ta in  s m t h  functions, the 

techniques do not extend tD discrete allocation processes - indeed, the discrete 

problem remins open. (Some par t ia l  results  are i n  [81. ) However, as S. Reiter 

[ 13 ] recognized, social  choice d e l s  are discrete examples of Hurwicz 's "one 

shot" mechanism. So, i n  this s p i r i t ,  a secondary objective of this paper is tD 

use the analysis of social  choice mxlels tD understand w h t  kind of mathematics is 

needed fo r  the mchanism design of discrete system. I t  turns out t ha t  the "level 

set" approach still applies where the dif ferent ia l  geomtric techniques developed 

to analyze the level sets f o r  s m t h  allocation procedures are replaced with an 

algebraic group theoretic analysis. 

The emergence of these algebraic structures reinforces rw belief [I51 tha t  

t h y  explain the d i f f icu l t i es  c o m n  tD social  choice and other discrete decision 

and allocation problem. (This runs against Sen 's c o m n t  [20, p. 10781 , " . . h~t;  - 

Lww;ile - IJO 'gtni~p tJmry ' is i ~ ~ w ~ l  VW:~!" ) These algebraic synmetries - the wreath 

p d u c t  of certain permtation groups - play a c r i t i c a l  role  i n  the development of 

the overlap principle; indeed, a complete characterization of other classes of 

"kinds of axioms" re l ies  on these st.ructures. However, I decided tD suppress these 
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complicated, algebraic s y m ~ t r y  structures i n  order to focus a t tent ion  on the  

overlap principle and to rmke the  paper easier to read. (A brief introduction to 

the  wreath product is i n  [ 151. ) 

In Section 2,  the  basic concepts used i n  this paper are introduced with a 

two voter ,  three candidate formulation of A r r o w ' s  theorem. In Section 3 ,  the ideas 

are akstracted in to  the  overlap principle. The f l e x i b i l i t y  of the overlap 

principle is i l l u s t r a t e d  by obtaining simple proofs of several  known soc ia l  choice 

r e s u l t s  as w e l l  as to derive some new, and s o m  whirmica1 ones. In this m e r ,  

the  connection m n g  several w e l l  known socia l  choice r e su l t s  along with problems 

from statistics, economics, and game theory becomes imnediate. Because the  

emphasis of the  overlap principle is on h o w  the i m ~ 4 4  p ~ t p s r t i e s  o r  ax iom divide 

in fo rmt ion  i n t o  equivalence c lasses ,  ra ther  than on what par t icular  informt ion 

used (e. g. , complete, binary, t r ans i t ive  rankings) , extensions are inmdia te .  To 

i l l u s t r a t e  how impl ic i t ly  defined overlap conditions arise, a new proof of the  

Gibbard - Sattert,hwaite Theorem as well as the  Hirwicz-Schidler  theorem [ lo]  a b u t  

Pareto o p t i m l  Nash equi l ibr ia  are given. Some extensions of the  overlap principle 

as w e l l  as a descript ion of the  f r o n t i e r  between poss ib i l i ty  and impossibility 

conclusions are given in Section 4. Section 5 contains the  proofs of the m j o r  

theorems. 

The ideas of this paper can be demnstrated with a geomtr i c  proof of 

A r r o w ' s  theorem f o r  a two voter ,  three candidate process. To do this, we need a 

geometric representation f o r  the  complete, binary, t r ans i t ive  rankings of the  

candidates {cl , Q , ~3 ). Sta r t ing  with an equi la tera l  t r iangle ,  ident i fy  each 

vertex with a candidate. (See Figure 1. ) In this t r i ang le ,  define a binary 

re la t ionship  i n  terms of the  proximity of a pojnt to a vertex. Thus, a point p 

corresponds to the  ranking cl >Q i f  and only i f  p is closer  to vertex cl than to 

vertex Q .  Tllis relat ionship divides the  equi la tera l  triangle in to  the  regions 

displayed i n  Figure 1. The open regions - the smllest t r iangles  - correspond to 

strict rankings without " indifference" m n g  the  candidates , while the  l i n e  

segmnts  and the  baricentr ic  point. correspond to rankings with indifference. For 

instance, region A corresponds to the  ranking cl >c2 >% , while the  l i n e  s e m n t  

between regions C and D represents c3 >cl=c2. Let P(1,2,3)  denote the  3 ! o R n  





regions where the  rankings do not admit indifference. Let P ( i  , j ) denote the two 

equivalence classes of rankings i n  P(1,2,3)  where c i>cj  and where cj>ci.  

Consequently, P(1,2) = { {A ,  B,C) , {DIE, F)) . Geomtrical ly,  t h e  t w o  equivalence 

classes are the  two r ight  t r iangles i n  Figure 1 separated by the l ine  cl=cz.  In 

general, the t w o  sets i n  P ( i , j )  are represented by the  t w o  r ight  t r iangles  

separated by the  indifference l ine  ci=cj. I ' l l  show how Arrow's theorem is a 

consequence of the  geomtr ic  positioning of these sets of r ight  t r iangles.  

In a t w o  voter,  three candidate context without indifference, a socia l  

welfare function is a mapping 

2 . 1  F: P(1 ,2 ,3)  x P(1,2,3) -----> P(1,2 ,3) .  

The cartesian product represents the  two voters '  possible rankings. The standard 

Armwian conditions are replaced with the following requiremnts. 

1. The usual Pareto condition forces a l l  o u t c o m  to be admitted. I 

require only t h a t  F is onto. 

2. The IIA condition states t h a t  f o r  each i and j ,  the  re la t ive  ranking of 

ci and c j  depends only on the voters ' re la t ive  rankings of these candidates. This 

is equivalent to requiring for each choice of i, j ,  that 

2.2 F: P ( i ,  j )  x P ( i ,  j )  ----> P ( i ,  j). 

3. If the f i r s t  voter is a d ic ta to r  f o r  F, then F can be represented by a 

mapping depending only on the f i r s t  variable. Replace the  "no dictator" axiom with 

the condition t h a t  F cannot be represented by a function of a single variable. 

Theom 1. T k m  does not  exist a napping of the form given by h u a t i o n  2 .1  that 

s a t i s f i e s  conditions 1, 2, and 3. If a napping given by h. 2.1 satisfies 1 and 2 ,  

then it can be remerited by a function of a single variable t h a t  is generated 

either by mapping each relat ionship ci >cj to itself (a d ic ta to r ) ,  o r  by mapping 

each xelationship ci >cj to c >ci (an anti-dictator) . 

Arrow's theorem is an i d i a t e  consequence. An e a l i e r  version of t h i s  

r e s u l t  is i n  Saar i  [14], and a portion of it w a s  restated i n  a ax iomt ic  form i n  

K i m  and Rouch [12]. See Sen [20] f o r  added discussion and references. 

Outline of the pmof. Assume t h a t  the  theorem is f a l s e  because. such an F 

exis ts .  By (3) , there are si tuat ions where each voter,  by changing rankings, can 

a l t e r  thw outcome. According to (2) , i f  thz new ranking i n t e r c l s ~ x e s  the re la t ive  



ranking of ci and c j ,  then it is because t he  voter  changed her r e l a t i v e  ranking of 

these two a l t e rna t ives .  In f a c t ,  from (2 ) ,  this same P ( i ,  j) change i n  F occurs 
whenever 1) she rmkes this change i n  t h e  r e l a t i v e  rankings and 2)  the o the r  vo ter  

keeps his sam ranking of this pa i r .  

This argument reduces the  ana lys is  to how F changes the  r e l a t i v e  rankings 

of pairs of candidates.  (Thus, t he  rest of t he  proof relies on the  pos i t ion ing  of 

t he  r i g h t  t r i ang le s  in Figure 1. ) Because of (3) and symnetry, assume without l o s s  

of genera l i ty  t h a t  t he re  are s i t u a t i o n s  w h e r e  voter  1 can alter the  r e l a t i v e  

ranking of cl and q and there are s i t u a t i o n s  where voter  2 can a l t e r  the r e l a t i v e  

ranking of c2 and c3. Namly, if voter  2 has a spec i f ied  ranking of cl and c 2 ,  

then as voter  1 va r i e s  her rankings between the  r i g h t  t r i ang le s  represent ing cl>c2 

and c 2 > c l ,  s o  does the  imge of F (but  no t  necessar i ly  i n  t he  same d i r e c t i o n . )  I f  

t he  specif ied ranking f o r  voter  2 is c l > c z ,  then let him vary between regions A and 

B; otherwise, le t  him vary between D and E. In either s i t ua t ion ,  vo ter  2 has f ixed  

P(1,2)  and f ixed P(1 ,3)  rankings while re ta in ing  the  freedom to change his P(2 ,3 )  

ranking. A s imi l a r  ana lys is  holds f o r  voter  1. In order  f o r  voter  2 to change t h e  

P(2,3)  outcome, voter  1 may need to have a s p e c i f i c  ranking of this pa i r .  I f  it is 

t h e  r i g h t  t r i a n g l e  c2 > 5 ,  l e t  her vary between A and F; i f  it is c3 >c2 ,  then 

pastrict her to C and D. Again, voter  1 can chmge her P(  1 ,2)  ranking while 

keeping her P(2,3)  and P(1 ,3)  rankings f ixed.  

As t h e  voters  vary i n  t h e i r  assigned regions,  tk P(1,2)  and P(2,3)  

imges of F ( the  group o u b o m )  change independent of each other.  Thus, t he re  are 

s i t ua t ions  w h e r e  t h e  P(1 ,2)  ouborne is t h e  r i g h t  t r i a n g l e  corresponding to c l > c 2 ,  

while the  P(2,3)  ouborne is the  r i g h t  t r i a n g l e  corresponding to c2 >c3. These two 

t r i ang le s  i n t e r s e c t  i n  region A - c l > c 2 > 5  - which forces  t he  binary ranking of 

cl >c3. On the  o ther  hand, there are s i t ua t ions  w h e r e  the  two " t r iangle"  outcomes 

are +, >cl and c3 >+,. The in te rsec t ion  of these t r i ang le s  is region D, which 

requires  c3 >cl. Consequently, even tIkx.gl, b t h  voters have fix& P (1,3 rakirgs, 

t l ~  gzvc~p ralliirg of t k s e  tm alterxatives, giver] by the i m w  of F, clxinges. This 

cont rad ic t s  (2) , and the  f i r s t  part of the  theorem is proved. 

The second part of t he  theorem a l s o  follows from the geometric posi t ioning 

of t he  r i g h t  t r i ang le s .  Obviously, a d i c t a t o r  o r  an an t i -d i c t a to r  can be defined,  

s o  w e  only need to show that no o ther  rapping exists. Without loss  of gene ra l i t y ,  

assure there is a rapping g:P(1,2,3)  --> P(1 ,2 ,3)  t h a t  s a t i s f i e s  (1) and (21, t h a t  

preserves the P(1,2)  rmlki ly,  h ~ t  reverses  t . 1 ~  P (2 ,3)  ralddng. This f o r c m  t h e  



imges of c, >c2 and of c3 >c2 to be the two r igh t  t r i ang les  containing A. Indeed, 

the intersect ion of these two tr iangles is precisely A - cl>c2 >c3. Because this 

intersect ion def i= the  re la t ive  ranking c, >c3 , the  def in i t ion  of ,g over P ( 1,2 ) 

and P(2,3)  uniquely determines g:P(1,3) - ->  P(1,3).  More precisely, the g preirrage 

of cl >c3 is aw P(1,3) ranking met ing the intersect ion of the  tr iangles f o r  c, >c2 

and c3 >c2.  In Figure 1, this intersection is {B, C} . k t ,  B and C a re  in  

d i f ferent  P ( l ,  3 )  classes.  According to (2) , this forces g to be the const;u,t 

mppixg over P(1,3) t h a t  maps both c1 >5 and 5 >cl to cl >c3. This contradicts (1) 

and proves the  second part of the theorem. 

The proofs of both parts of the theorem depend upon the  symnetry properties 

of the  simplex as  captured by positioning of the  r i g h t  triangles i n  the three 

equivalence classes P ( i ,  j). Cri t i ca l  to this analysis is t h a t  the geomtry of the  

imge S ~ C E !  is restrictive; e .  g. , f o r  each t r iangle  from P(1,2)  there is one from 

P(2,3)  where t h e i r  intersect ion is i n  only one t r i ang le  from P(1,3) .  Moreover, 

t h i s  holds f o r  each triangle i n  P(1,3) .  This r e s t r i c t i v e  e f f e c t  on the inrage fixed 

the  imges of F to obtain the  contradiction. Similarly,  i n  the  second part of the  

theorem, these imge res t r i c t ions  limited the options f o r  g. The second critic21 

element is t h a t  t h e  geomtry admits flexibility of m v e m n t  in the domain. For 

each t r iangle  from P( 1 ,2 )  there is one from P(2,3)  where tkir intersection 

both t r iangles  from P ( l ,  3 ) .  This w a s  used i n  both parts of thr, t h r e m  to allow a 

voter to a l t e r  his rankings of one pai r  while retaining f ixed rankings f o r  the 

o ther  two. Added f l e x i b i l i t y  occurs i f  a t  least two voters a f f e c t  tk outcorrp,. 

The proof of the  thorem exploits  this contradictory interplay between r e s t r i c t i o m  

( i n  the  range) and the  f l e x i b i l i t y  (in the  donnin) admitted by the  overlapping 

geometry. The f a c t  t h a t  t h i s  geomtry w a s  derived from binary, t r ans i t ive ,  ordinal  

rankings is incidental.  Consequently, the  essence of A r r o w ' s  theorem extends to a 

surprisingly wide realm of s i tua t ions .  Indeed, whenever a set of axiom; can be 

described with a similar geomtr ic  representation, the  sm conclusions resul t .  In 

o ther  words, the  kinds of axiom t h a t  lead to an Arrow-like theorem can be 

characterized by emphasizing the  appropriate geometric - set t h o r e t i c  conditions 

of overlapping regions. 

3. THE OVEEUA' PRINCIPLE 
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In this s e c t i o n ,  an overlap pr inc ip le  is introduced and i l l u s t r a t e d  with 

severa l  examples. The examples are se lec ted  to s b w  why the s m  basic  argument 

proves and extends seve ra l  classical theorem and to suggest o the r  uses of t h e  main 

t h r e m .  

Notation: kt I A I  dexmte t h  cardinality of set A. If A = {AI,. . ,&I ard B = 
&, . . ,]Eb) a m  oollection of sets, let NU3 = {Aj% : 1LjCr1, & h n } .  

Let D = D1x. .a be the ca r t e s i an  product of t h e  N12 s e t s  I&, le t  R be a 

given s e t ,  and let  

3 . 1  F:D ---> R 

be given. The s e t s  Dj replace the  domin  s e t s  P (1 ,2 ,3 )  from Section 2. There is 

no r e s t r i c t i o n  on t h e  choice of Dj -- it could be a s e t  of binary,  t r a n s i t i v e  

rankings, p robabi l i ty  measures, spaces of admissible s t r a t e g i e s ,  funct ion spaces of 

u t i l i t y  funct ions,  o r  any-thing e l se .  Indeed, t he  choice of Dj could even d i f f e r  

from agent to agent where, s ay ,  Dl is a s e t  of t r a n s i t i v e  rankings, Q is a s e t  of 

probabi l i ty  measures, e t c .  The critical aspect is not  what i n f o m t i o n  is 

represented by Dj, but, how the  i l l formt ion  is divided i n t o  equivalence s e t s .  

Replacing the  d iv is ion  of P (1 ,2 ,3 )  i n t o  the  subsets P ( i  , j) is t h e  d iv i s ion  of each 

set I& into the  i~ fo~m?t io~~a l  w ~ l i ~ l e ~ ~ i ~  c?l,wses I j  (k) {IJ ( k , l )  , I j  (k ,2)} ,  

j=1 ,2 ,3 .  The superscr ip t  j indices  t he  three "independence conditions" while k 

i d e n t i f i e s  the voter  o r  agent. The cartesian prodi~ct. Ij = X, I j  (k) replaces 

(P ( i  ,s)}N i n  the  independence condition Eq. 2.2. 

Although Ij replaces t h e  "indepndence" o r  IIA conditions of A r r o w ' s  

theorem, these sets can be d i f i e d  to include d e l s  with interdependency amng 

voters '  rankings o r  agents ' act ions.  Such interdependency can be viewed as 

def in ing  E, a proper s u b e t  of D. I f  E is given, then the  sets Ij are restricted 

t~ E. More prec ise ly ,  I j ( k ) ,  k l , . . ,  N ,  is defined by 1JN.T. For instance,  

E=((cl>c2 )N, ( ~ 2  > c l ) N )  requires  a11 voters  to have the  sam r e l a t i v e  ranking of t he  

candidates cl and c 2 .  With such an E, I1 = P(1,2)NT'IE E while I2 = P(2,3N)N.T 

P(2,3)N. This E d e l s  t h e  Pareto condition i l l u s t r a t e d  i n  Corollary 2.6. 

The range, R, can be any set where the  c r i t i c a l  aspect  is its subdivision 

i n t o  o ther  equivalence s e t s .  Let this subdivision be given by R j  = 
{Rjl ,Rj2, .  . ,Rjk}, W ,  j=1,2,3.  The s e t s ,  Rj, replace t h e  earlier suMiv i s ion  of 

t h e  range P(1,2,3)  into t h e  th ree  classes of two s e t s ,  P ( i ,  j ) .  
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The g e o ~ t r i c  conditions t h a t  provide the  interplay between the  f l e x i b i l i t y  

i n  the  domin with r ig id i ty  i n  the  range are captured by the following defini t ion.  

kf inition. The triple €F, CIJ I ,  CRJ I} ,  j= 1,2,3, s a t i s f i e s  the himry ouerlap 

principle if the following four oonditiors hold. 

1. For each j a d  each k I,.. ,N ,  lh two suhsets {IJ(k , l ) ,  IJ(k,2)} are 

eitkr d is jo in t  o r  equal. For each j, t b m  is a t  least one c h i o e  of k tb 

sets am disjoint .  

2. (Dnmai_ll o m l a p )  For each choice of k a d  f o r  each permrtation (a,b,c) 

of (1,2,3), them is a pezmrtation (u,v) of (1,2) s o  tbt each of I n ( k , l ) f P  (k,u) 

a d  1s (k ,2 ) fP  (k,v) met both IC (k, 1) and IC (k,2). The restricted damin d t i m  

is whem, f o r  each pennrtation (a, b, c) , the doimin wrdi t ion  .is sa t i s f i ed  f o r  a 

unique pernutation (u, v) . (Thrs , Ia (k, 1) n P  (k, u) does not met both I C  classes f o r  

both chi- of u. ) For at  l ea s t  one k, the mst r i c t ed  ckmdn  overlap wrd i t ions  

am sat isf ied.  

3. (Range o m l a p )  kt R j  ' denote some pair of sutsets of R j  . For each 

permrtation (a,b,c) of (1,2,3) and fo r  each pair of suhiets, t h ~  a m  two s u k e t s  

i n  R a ' W '  t ha t  do not m e t  the saxre subset of Rc. 

4. (Invarianoe) a )  For j = 1,2,3, F : I J  -> R j .  

b) For a t  l eas t  two choices of j, tk hmge of F meets at least t m  of the 

RJ sets. 

5. If tbe domin indep=mkme wnditiolls an? detc 3 bu an 
intmdepsdemy wrdi t ion  E, then for a t  least two choioes of j whem the limage of 

F is nomnstan t ,  IJ (Yi = Ij . 

As in Section 2 ,  the "dictator" is replaced with tk mre general concept 

of a function of a s ingle variable. 

M i n i t i o n .  kt % : D - > 4, be the ~ t u r a l  pm jection mpping. The mpping 

F: D -> R can be ~pmsenhd ly a function af a sirgle variahle if  the^ exists a 

choice of k a d  a &:4, --> R s o  tbt I? = gk(%). 

This def in i t ion  does not  require F to be a function of a s ing le  variable. 

For instance, suppose three voters rank the three candidates c j ,  j=1,2 ,3 ,  with the  

following Mdif ica t ion of the  Borda Count. The i t h  ranked al ternat ive  f o r  the jth 
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voter is assigned (3-i) 10j p i n t s .  The t a l l y  f o r  each candidate determines the  

ordinal  ranking of the al ternatives and defines the mpping 

F: {P(1,2,3)}3 ----> P(1,2,3) .  Although F is a function of a l l  three variables,  it 

can te identif ied with the identi ty mpping (d ic ta tor)  g,:P(1,2,3) - ->  P(1 ,2 ,3 ) .  

If F ( 1,2,3 ) denotes a l l  13 rankings depicted i n  F i g u r e  1, then F can be extended 

-to a napping F: ( F ( 1 , 2 , 3 ) ) 3  ---> F ( 1 , 2 , 3 )  by assuming t h a t  when the  i t h  voter is 

indi f ferent  between two candidates, each of these two candidates receives the 

obvious average of the assigned p i n t s .  This choice of F creates sequential 

dictators; if the th i rd  voter is indifferent  between two candidates, then the 

second voter decides tk group ranking between them. If both the second and t h i r d  

voters are indifferent  between the sm two candidates, then the f i r s t  voter 

decides. (This is generalized i n  Theorem 3 ,  Section 4 .  ) 

The overlap conditions capture the essence of the  geometric proof of our 

version of Arrow's theorem. Thus, i n  l i g h t  of the proof of Theorem 1, T h r e m  2 

should be expected. T k  f o m l  proof i n  Section 5 is jus t  an a t s t r a c t  version of 

t h e  proof i n  Section 2. 

Theom 2. Assum that F: D -> R satisfies t k  binary overlap principle w i t h  

the sets {IJ) and mi).  When F is v i e d  as a napping 

3.2 F: 11nm-m -> R ~ w ~ ,  

t h m  is an index k so that F can be repxsented by a function of a single 

variable, gk. 

Suppose the image of F meets the pairs {Rj l  ,Rj2), j=1,2,3.. Tkm a~ 

pmcisely an> ways to &fine gk , and each is uniqwly determined by w k t h r  Ij (k, 1) 

or U(k,2) is mapped to R j l .  Tk index k satisfies the mstricted domain condition 

and all three Ij (k) classes have two disjoint elemmts. If m such index exists, 

then F doesn't exist. 

Theorem 2 asserts  t h a t  the  tensions between the  f l e x i b i l i t y  i n  the domin 

and r i g i d i t y  i n  the  range extend Arrow's theorem. Moreover, a new feature  emrges. 

If the  domin of each voter admits e i the r  too much f l e x i b i l i t y  o r  too m c h  

r i g i d i t y ,  as captured by the last sentence, then such an F doesn't e x i s t  even with 

only one voter. For F to e x i s t ,  even as a dictatorship,  res t r ic t ions  on the  dormin 

are required. For mt sozial  choice examples, the res t r ic ted  domin conditions 

are sat.isf ied, but th i s  need not be s o  f o r  examples from probability and economics. 
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Applications of lhmm 2 

Start ing with A r r o w ' s  theorem, I ' l l  i l l u s t r a t e  the considerable f l e x i b i l i t y  

offered by Theorem 2. To underscore which overlap fea tu re  is being discussed - the 

nature of F, the possible defini t ions fo r  the domin,  o r  the choice of the range - 
examples a re  selected to emphasize only t h a t  feature.  To s t a r t ,  we extend the 

notation i n  Section 2. For the n candidates, {cl , . . ,c,}, let P(1, .  . ,n)  denote the  

s e t  of a l l  n! corqplete, binary t rans i t ive  rankiw5 w i t b u t  ties of t h e  

candidates. If A is a subset of t h e  indices, then an e l e m n t  of P (A) cons is ts of 

the n! / ( A  1 ! rankings of P( 1 , .  . , n) tht preserves the  re la t ive  ranking of t k ~  

candidates i n  A. P(A) is the obvious extension of P ( i ,  j) where its e lemnts  a re  

the I A 1 ! dis jo in t  subsets of P(1 , .  . ,n) . The f i r s t  corollary extends Theorem 1 to 

any ( f i n i t e )  number of candidates and voters. 

Comllary 2.1.  kt 1123, N 2 ,  and F : ( P ( l , . . ,  n))N ---> P ( l , . . ,  n) be given. Suppcse 

F is onto ard tbat for each piir ( i ,  j ) ,  F satisfies the indepedeme cordition 

F: ( P ( i , j ) )  - -  P i )  F can be ~p.msentsd ty a f d o n  of a single variable 

that c o m p o r d s  to e i k  a dictator or to an anti-dictator. 

Fkuof. S b r t  with 11 (k) = R1 = P(1,2),  I 2  (k) = Rz P (2 ,3 ) ,  and I3 (k) 

W = P , 3  The overlap cqnditions are s a t i s f i e d ,  s o  F is represented by a 

function of one variable on the domin P(1,2)NT'IP(2,3)NT'IP(1,3)N. Next, let  I l ( k )  

R1 P (1 ,2 ) ,  I 2  (k) R2 = P(2,4) and 13 (k) = R3 = P(1,4) .  I t  follows from Theorem 

2 t h a t  F can be represented by a function of a s ing le  variable over 

P(1,2)NT'IP(2,4)NT'IP(1,4)N. Ebth of these dormins include P(1,2)N, s o  i n  b t h  cases 

the s m  voter is the d ic ta to r  o r  the anti-dictator .  TIE proof is completed with 

the obvious induction argument. 

The dis t inc t ion between whether a d ic ta to r  o r  an anti-dictator  reigns can 

be determined with a mntonic i ty  condition, such as a pareto condition, on s o m  

pai r  o r  even by specifying the  irrage of a s ingle  point. 

Comllary 2.2. a. Sugparje in addition to the assumptions in Comllary 2 .1 ,  it is 

known that F((cI>%>. . . > c n ) N )  is in the P(lDn)  class companding to c l > ~ .  'l'k 

function F can be mpmsentsd by a dictator. 

b. kt p be a profile in P( 1,.  . n) N . If the assumptions of Comllary 2 . 1  
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am satisfied an]. F can be mwesented by a, tben, for a ~ y  (i,j), t2e P(i,j) 

image of F(p) &~~ wkthr k is a didator or an anti-dictator. 

These corollaries extend the  standard Arrow t h r e m .  The next corollary 

permits t ie  votes to emrge.  The m i n  feature demnstrated by Corollary 2 .3  is the  

f l e x i b i l i t y  offered by Theorem 2 by allowing each R j  to have mre than two 

elements. For this statement , let F (1,.  . , n) be the  set of a l l  complete, 

t rans i t ive ,  binary rankings of the  n a l ternat ives ,  even those with t i e s .  If A is a 

subset of (1,. . , n} , then an elernent of F ( A )  consists  of a l l  of the  rankings i n  

F (1, .  . , n) with the  sm r e l a t i v e  t r ans i t ive  ranking - including possible t i e  votes 

- of the candidates i n  A. By admitting t ie  votes, the concept of a d ic ta to r  is 

weakened. So, let  g k ,  a limited d i c t a t ~ r o v e r  P ( i , j ) ,  be where gk is either 

constant valued over this pa i r ,  o r  where ci >cj is mpped either to c i > c j  o r  to ci = 

cj . A correspnding def in i t ion  defines a limited anti-dictator .  So, a l i m i t e d  

d ic ta tor  m y  not be able to g e t  outcomes bet ter  than, say,  ci >cj and ci = cj  . 

Corollary 2.3. kt ~ 3 ,  N22 , and F: (P(1,. . , n) )N --- > F (1,. . , n) be given. Suppose 

for each pair (i , j) , F satisf ies  tk irdependeme wndition 

: ( i , j ) )  - -  i , )  IE F is m ~ o n s t a n t  for eachpair, t k n  F ran be 

-presented by a function of a single variable that wrresponds tro e i t k r  a 

(limited) dictator or tro a (limited) anti-dictatror. 

Proof. This corollary is proved with the s m  kind of induction argumnt 

used i n  the  proof of Corollary 2.1. So, w e  only need to show t h a t  the new range, 

s a t i s f i e s  the  range overlap conditions. S t a r t  with R1 = F (1 ,2) ,  R2 = F ( 2 , 3 ) ,  and 

R3 = p1( 1 ,3  ) . We know tht the strict r a n k i m  given by P ( i  , j ) s a t i s f y  the  range 

overlap conditions. So, it suff ices  to consider a pa i r  withstrict ranking and 

another pa i r  with indifference. The set {cl >c2 , cl=c2 } n {q >5 , c3 >c2 } contains 

{cl >c2 >c3} and {cl=c2 >c3}. Each of these sets are i n  d i f ferent  p1 (1,3) sets. (See 

Figure 1. ) Likewise, the intersect ion {cl >c2 , cl=% } n {% >q , =q } contains 

{cl=c2 >c3 ) and {c1=c2 =c3 } ; each is in a d i f ferent  F'" (1,3) set. Thus, the  range 

overlap conditions are sa t i s f i ed .  By s y n n ~ t r y ,  the same conclusion holds f o r  any 

t r i p l e t  of indices. This completes the proof. 

Corollary 2.3 admits mny poss ib i l i t ies  ranging from a dic ta tor  tn a 



l imited d i c t a t o r  wbre ci >c  is mpped to i t s e l f  i f f  i< j ; otherwise it is rnapped to 

ci=cj. If  n=3, then t h e  image of F cons is t s  of t he  four  rankings {cl >c2 >c3, 

c1=c2 >c3 , c1 >c2=c3 , c1=c2 =c3 1. BY se l ec t ive ly   laxing t h e  nonconstancy condit ion 

on F, a l l  s o r t s  of o ther  s i t u a t i o n s  emrge  with d i f f e r e n t  f i e f d o m .  For example, 

we  could have a d i c t a t o r  over P(1 ,2 ,3)  and a limited d i c t a t o r  over P ( 3 , 4 , 5 ) .  Such 

a d iv is ion  i n t o  fiefdoms works as long as no pair of candidates are shared by 

competing f i e f  doms . 
For g o d  reasons, the independence conditions f o r  s o c i a l  choice d e l s  

usually s a t i s f y  an implicit mno ton ic i ty  property; e .  g. , t h e  group's r e l a t i v e  

ranking of ci and c are determined on1 y by the voters  ' r e l a t i v e  rankings of these 

same two candidates. But, does such a t a c i t  assumption c o n t r i b  to t h e  

impossibi l i ty  conclusions? Why not  let  the  j t h  vo ter ' s  r e l a t i v e  ranking o f ,  say ,  

cl and c2 a f f e c t  the  group's ranking o f ,  say,  and c3. (Such a condition 

captures s o m  of the f l avo r  of t h e  Hurwicz-Schidler  " kingraker" [ 101. ) . Corollary 

2.4 proves t h a t  nothing is gained from t h i s .  ALso, it shows tht t h e  re la t ionship  

between the domin  and range independence conditions need not  s a t i s f y  t h e  tacit 

mnotonic i ty  assumptions s tandard i n  the soc i a l  choice l i t e r a t u r e .  Indeed, the 

form of t h e  independence assumptions can change with the voter.  ( In  Corollary 

2.4a, if an i d e x  has a value g rea t e r  than 3 ,  then replace it with its reminde r  

{1,2,3) when d i v i d . 4  by 3. For i n s t m e ,  7 i s  replaced with 1, arid. 9 is replacw3. 

with 3. ) 

b m l l a r y  2.4. a. Let NS? ard F: (P(1,2,3))N -> P(1,2,3) be given. Let I j (k)  = 
P + + )  , j 1 2 3  1 .  N .  S~~ppase that F Is onto and sa t i s f i e s  tk 

indepmkme corditions F: IJ ->P(j, j+l). Thm is an index s (voter s )  s o  tha t  F 

can be repmsented by a function of a single variable, &. T k m  are only two 

possible ways to & f i m  g, . 
b. Let N12, -3, and F: (P(l,. .  ,n))N --> P(1,. . ,n) be given. For each 

k1,. . , N ,  let %(-) be a permrtation of tk irdices {I,. . ,N)  f o r  the lrth vobr, let 

Ij.e(k) be the set P(%(j) ,%(s)) ,  and let 1j.s = X,  U.s&) ,  j,s = l , . . , N .  If F 
satisfies tk idependeme corditions F: IJ --> P( j , s )  wkm F is ontn, tfien t h m  

is an index 0 (voter 23) so that F can be mpresserrted by a function of a single 

variable, &. There are only two pmsible ways to define go. 

Tr iv i a l ly ,  the overlap conditions are s a t i s f i e d ,  s o  t h e  coro l la ry  follows 
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imnediately from Theorem 2. The function o f  one variable need not  te a d i c t a t o r  

nor an ant i -dictator .  For instance, i n  part a ,  i f  s=2, then one of the two 

possible defini t ions has g2 taking c j  >ck to cj+ >ck+ l ;  so ,  g(c1>c2 >c3 ) = c2 >c3 >cl .  

If the  range is replaced with F ( 1, . . . , n) and the  nonconstancy condition of F is 

relaxed, a l l  so r t s  of other poss ib i l i t i e s  are admitted. 

Z b  mioe of F and &rasi-dfc&toIs 

The next application of T h r e m  2 underscoI.es t h a t  F need not be a mpping; 

e. g. , it could be a correspondence w h e r e  R is the  power set of som other set. 

Secondly, it i l l u s t r a t e s  t h a t  w h i l e  F mst be represented as a function of one 

variable over the domin IlnI2nI3, it need not have t h i s  =presentation over th 

f u l l  dormin D. 

Ehnple. Let ~ i 2  and le t  F be a correspondence with dormin P(1,2 ,3 ,4)  N 

withvalues i n  P(1 ,2 ,3 ,4) .  Let I j ( k )  = R j  = P ( j , j + l )  f o r  j=2,3,  and equal to 

P(2,4) f o r  j=3. If F s a t i s f i e s  the invariance conditions F: Ij-- > R j  , j=1,2 ,3 ,  then, 

according to Theorem 2 ,  F can be represented by a function of one variable over the 

dormin IlnI2 nI3. But, t h i s  domin imposes no I.estrictions on the re la t ive  ranking 

of cl and c2.  Thus, it is consistent to define such an F where the re la t ive  

ranking of cl and c2 is determined by, say, a m j o r i t y  vote. So, the re la t ive  

ranking of %, 5 ,  and c, rmst be' determined by a part icular  voter - F is 

represented by a function of one variable over the intersection of the equivalence 

classes IlnI2nI3 - but m j o r i t y  vote applies f o r  the ranking of (cl ,cz 3. 
Th i s  example and Theorem 2 explain why nondictatorial socia l  welfare 

functions so  often endow s o m  agent with considerable power. Altbugh the 

specified independence conditions mw not force a d ic ta to r  over a l l  of D,  they m y  

force a d ic ta tor  to emrge over the  sets i n  IlnI2nI3 - he is a quasi-dictator  over 

the wble domin D. An i l l u s t r a t i on  of this is i n  a piper by Gibbard, Hylland, and. 

Weymwk [4] w h e r e  they s b w  t h a t  a related nondictatorial function ex i s t s  i f  a l l  of 

the  feasible sets include cl . As we now how from Theorem 2 , t h i s  is the general 

s i tuation.  

Flexibility in the of thz Dnmin 

Because the domin overlap conditions are specif ied in set theoretic 

terms, there is considerable freedom i n  the modelling. With this f l ex ib i l i t y ,  w e  

could examine som natural questions about rankings, such as those pioneered by 

Weymwk, concerning what happens when w e  relax assumptions of completeness, e tc .  

As long as the geomtry defined by these new res t r i c t ions  and equivalence classes 
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of rankings s a t i s f y  the  overlap conditions, the  usual d i c t a t o r i a l  conclusions 

apply. kt, ins-d of showing how s o m  of Weymarks's nice r e su l t s  are s u b u m d  by 

T h e o r e m  2 ,  I w i l l  emphasize o ther  kinds of d e l l i n g  f l e x i b i l i t y  admitted by this 

theorem. The f e a t w x  i l l u s t r a t e d  i n  Corollary 2.5 is t h a t  the sets IJ (k, I ) ,  

I j  (k,2)  need not be d i s j o i n t  f o r  a l l  choices of k. This fea ture  admits f l e x i b i l i t y  

i n  the d e l l i n g  because I j  (k,  1) = I j  (k,2)  rmms t h a t  t h e  kttl voter has no 

influence over which R j  equivalence class is selected. (This is -use there is 

only one I j  (k) component f o r  Ij . This forces the  kt tl voter  to have a constant 

value over this equivalence set, s o  he has no influence on the outcome of F : I j  -- 

> R j .  ) Corollary 2.5 i l l u s t r a t e s  how such d e l l i n g  can be used with Theorem 2. 

Part a asserts there does not e x i s t  a soc ia l  welfare function where the  f i r s t  agent 

determines tk group ranking of cl and c2 ,  the second agent determines the  ranking 

of c2 and c3 , while the th i rd  agent determines the ranking of cl and Q . Part  b 

asserts t h a t  i f  we w a n t  each agent to be involved with only two pa i r s ,  there is a 

penalty t h a t  a sur jec t ive  F does not ex i s t .  

Corollary 2.5.  a. Let N=3 ard F:P(1,2,3)3 --> P(1,2,3) be given. Let U(k) = 
P ( C ~ , C ~ + ~ )  iff kj; otherwise let IJ (k, l)=Ij(k,2) .  Let R J = F ( C ~ , C ~ + ~ ) .  If F 

satisfies the independeme coditions F: IJ-- >RJ , j= 1,2 ,3 ,  tbzn F has a f ixced 

ranking for at least two of tk pairs. 

b. Let N12 ard let F:P(1,2,3)N-->P(1,2,3) be given. Sugpose for each k, 

one of the U(k)  equivaleme class is tk whole set P(1,2,3) while the otbx t w  

am IJ (k) = P(j. j+ l ) .  If F exists, it is corstant valued for at least t m  of t he  

pairs- 

h f .  a. The overlap conditions are s a t i s f i e d ,  s o  i f  F is nonconstant 

over two o r  mre binaries,  then F can be represented by a function of a single 

variable. By assumption, t h i s  is impossible. This completes the proof of part a .  

Par t  b follows from the  last sentence of Theorem 2. 

A standard way to obtain a poss ib i l i ty  theorem is to restrict the dormin. 

Corollary 2.5 shows t h a t  overly strict res t r i c t ions  can reintroduce d i c t a t o r i a l  

behavior. (See Theorem 4 . )  For instance i f  the  f i r s t  voter can vary between only 

c l > q , > %  and q,>cl>q,;  the second voter between cl>q,>c3 and c l > q > c 2 ,  and the 

t h i r d  voter between cl >c3 >c2 and c3 >cl >c2 , then Corollary 2.5 proves t h a t  this 
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e i t h e r  w i l l  not  avoid impossibili ty a s se r t ions ,  o r  F is constant over two pa i rs .  

Such a r e s u l t ,  where ce r t a in  voters  are concerned only a b u t  c e r t a i n  outzoms,  

contains the  s p i r i t  of Sen's tfreorem on liberalism [21]. In Sen's f o m l a t i o n ,  two 

agents have the  privileged s t a t u s  to determine t h e  r e l a t i v e  ranking of  c e r t a i n  

a l te rna t ives  - pmsumbly their own - w h i l e  tk othe r  a l te rna t ives  are represented 

only through a weak pareto condition. The following version of Sen's tfreorem 

i l l u s t r a t e 5  how the  s e t  E, introduced i n  t h e  beginning of this sec t ion ,  is used. 

Definition. kt F: P(1,. . , n)N -- > P( 1 , .  . ,n) be given. F satisfies the m d r  m.mto 
audition for {cj, if P((cj>cL)N) = cj>% F ( ( % > c ~ ) ~ )  = Ck>Cj. N ~ W ~ Y ,  

when everyone has the relative ranging of thse two alternatives, Preserve5 

this relative ranking. 

The weak pareto condition is not  an independence condition, but ,  with the  

appropriate E set and Theorem 2 ,  it does def ine  an Ij s e t .  Thus, its connection 

with the  standard A r r o w  theorem becomes apparent - b t h  r e su l t s  form t h e  s w  kind 

of axioms. 

k m l L a r y 2 . 6 .  kt ~ 3 ,  N22. Assum that Al, 4,  A, am subsets of the indioes 

{ l , .  . ,n) strch that ( A j  122 any two of these sets h v e  pmcisely one index in 

oomnon. T k m  does not  exist an F:P(l , .  . ,n)N --> P" (1, .  . ,n) smh that: 1) t h  

P" (Aj ) image of F is no~yx)nstant and it depends solely upon the jt h voter 's 

rankhgs of the Aj cardidate, J=1,2, and 2) F satisfies ~ J E  w s . k  pareti0 cordition 

for the pairs of altmmtives in 4. 

I f  Al and 4 have mre than one e l emnt ,  in c o m n ,  then, an argumnt  l i k e  

t h a t  given in Corollary 2.5, shows t h a t  such an F doesn ' t  exist. An induction 

argument, similar to t h a t  used i n  Corollary 2 .1 ,  extends t h i s  s t a t e m n t  to a la rger  

number of Aj  sets. 

h f .  Without lo s s  of genera l i ty ,  assum t h a t  cl is the commn e l e m n t  

of Al and A2, c2 is the  e l e m n t  i n  4 and 4 ,  w h i l e  5 is in 4 and A l .  Let  E = 
(c3>cl)NU(cl>c3)N. S e t  E is a proper sukse t  of P(1,3)N requir ing a l l  voters  to 

agree a b u t  the  r e l a t i v e  ranking of these two a l te rna t ives .  The following sets are 

d e f i n e d o n E .  L e t  Il(1) = P ( 1 , 2 ) ,  I2(2)  = P(2 ,3 ) ,  P ( j )  = P(1 ,3 ) ,  a n d a l l  o ther  

I k ( j )  sets equal to Dj. The interdependency given by set E a f fec ts  only the  I3 ( j )  



sets - a voter 's  ranking mt agreed with t h a t  of t h e  other voters. The overlap 

principle,  with s e t  E l  is s a t i s f i e d ,  so  it follows from Theorem 2 t h a t  i f  such an F 

e x i s t s ,  then it can be represented by a function of a single variable. N m l y ,  the  

ranking of one par t icular  voter  determines the  outcoroe of F. This contradicts  the  

f i r s t  assumption, s o  t h e  theorem is proved. 

Incidentally, this pmof i l lus t ra tes  t h a t  aruf interdependency condition 

nrodelled with an E sa t i s fy ing  Theorem 2 is not su f f i c ien t  to escape the  penaltie5 

of A r r o w ' s  theorem. By examining the  proofs of Theorem 2 and 4 i n  Section 5,  one 

can extend the  def in i t ion  of E s o  tht it is "ks t  possible". In this manner, one 

can characterize t h e  kinds of interdependency conditions t h a t  admit a poss ib i l i ty  

theorem. 

So f a r ,  a l l  of w examples are based on the georoetry of P ( l , . .  , n ) .  This is 

not necessary. To i l l u s t r a t e ,  Corollaries 2.7,  2.8 show t h a t  everything extends to 

function spaces. The function spaces are the spaces of u t i l i t y  functions, and the  

m t i v a t i n g  example is the  &el of Kalai, Mueller, and Satterthwaite [ 11 I .  L e t  Ec, 

be the  posi t ive orthant  of a c-dimnsional Euclidean space, c s ,  and let  the  swce 

of utility functions be U={u: Ec,-->E: u is a s m t h  function, and a t  each point i n  

Ec, the  gradient of u points to the in te r io r  of Ec,. 1 These u t i l i t y  functions a r e  

concave, mnotonic, and they do not admit a sa t i a t ion  point. 

A c lass ica l  object ive is to find a group u t i l i t y  function; to find an 

F: UN-- > U  t h a t  s a t i s f i e s  c e r t a i n  properties. If F ex i s t s ,  its *e, I+ , defines a 

complete, binary, t r a n s i t i v e  relat ionship over Ec, . If f o r  x E Ec, , I+ (x) is 

defined i n  tens of ( u l ( x ) , . . , ~ ( x ) ) ,  then F s a t i s f i e s  the def in i t ion  given k l o w  

f o r  pointwise binary independence where S = Ec,. Indeed, by s e t t i n g  S = Ec, i n  the  

next defini t ion,  w e  recover the  condition used by Kalai, b l l e r ,  and Satterthwaite 

to show t h a t  such an F leads to a dictator .  But, can a d ic ta torship  be eliminated 

by using other cbices of S, say, by m u i r i n g  a g r e m n t  only over s o m  smll 

subset of p i n t s  r a the r  than a l l  of Ec,? Instead of defining a ranking over a l l  of 

Ec,, how a b u t  l e t t i n g  t h e  u t i l i t y  functions define such a ranking only over a 

specified set S? 

&finition. Let  S be a subset of Ec,, a d  let P(S) be the set of all mnplete, 

binary, transitive rankings on tfie set S .  Let F,:W->P(S) be given. F, sat i s f ies  

t h  pointwise, biznzy ixr3epemkmx? condition over S if tfre following cordition 
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holds. For for  all pairs of points xl ard + fIwn S, and for  any two choioes 

uj=(ulJ ,. . ,I@), 3=1,2, fimn W, if u1(&)=l12 (G), k=1,2, then F, ( u l ( 5 ) )  = 
Fa (S 1, k=l,2- 

Soroe restrictions need to be impsed upon the s e t  S. 

Min i t ion .  A set of point, S in &+, is mmmnotanic if for  x ,  y E S, som 

oolllponent of x is Larger than the c o ~ p o ~  ammnent of y, ard socoe anannent 

of y is larger than the C O ~ ~  -t of x. A set S is f u l l  if i) t h m  

is a t  least one mnm>mtonic paFr of points in S, and ii) for  each wnm>mtonic 

pair of points, t h ~  is a third point i n  S so that the t r ip le t  is wrmpmtonic. 

I t  is natural to W s e  a mnotonicity condition on F such as requiring 

when la1 (x) = la2 (x) and ul ( y ) a 2  (y) that  the relative r a n k i w  of x and y with 

F, (la1 ) cannot rank y lower than F, ($ ) . A less res t r ic t ive way is to define the 

jt h agent's independence se t s  for  points {xi, +} as Ii k (j , 1) = {U in U: the level 

s e t  of u passing through xi passes below +.} while the definition for  Ii l k ( j  , 2 )  is 

tha t  the level s e t  passes above + . Notice that  Ii , j (k, 1) = Ij I i (k, 2 ) .  The 

independence condition is 

3 . 2  for  eachpai r  of mmnoton ic  points (2q,xj) fromS, F : I i l k  - ->  P(q, +). 

ComlLary 2.7. L e t  S be a f u l l  subset of &+ w i t h  a t  least  t h ~ ~ =  points. Suppose 

F,:W --> P(S) satisfies the p i n k b e  binary independeme condition, t l ~  

~~ cordition 3.2, ard tht F, is not oorstant over a t  least two 

mnmnotnnic z a i n  of points of S. Fs can be repns=nted b a function of a single 

variable tht cornponds to eithr a dictator or an anti-dictator. 

Can a nondictatorical F, be constmcted with different kinds of economic 

in fomt ion?  For instance, the price mchanisrn depends, i n  part, on the gradients 

of the u t i l i t y  functions. The next definition permits gradients and other 

information to be used by replacing a point from S with a subset determined by a 

point in S. In th i s  way, it describes a "general binary independence condition" 

tha t  permits F, to be defined i n  terms of any kind of differential  i n fomt ion  

coming from la as well as the behavior of la a t  neighboring points. Indeed, the 

definition of the "B sets"  even prmits the ranking of two points to be b e d  on 



i n f o m t i o n  corning from elsewhere i n  Ec+. 

Ikfinit ion.  kt S be a subset of B+. F,:W-->P(S) satisfies th gemmd hinary 

aMdi tim if for a l l  finite subset of points A= {xl , . . , x, } . q E S , 
and dl nl ard Uz f n m  UN , the f o l l o u h g  d t i o r r s  b l d :  

i) %rp: a m  nxlerqrty, pairw;se disjoint sets W ( j , k ) ) ,  j=l,-. ,N ,  k l , . .  , t ,  

in 16c+ such t h a t  i f  q and + a m  mmmmtonic, then, f o r  each j, any point f m  

I P ( j , i )  ard any point fmin IP( j ,k)  are mmmmtonic. 

ii) For each pair (xi,&) f m m  A, if ulj and G, both agme on I P ( j , i )  ard 

BA(j,k), j=l,.. ,N, t k m  F , ( u ~ )  a d  F,(L$) wind& on a d  xj. 

A pointwise binary independence condition is a special  case where BA (j , k) = 

{ I .  Another special  case would be where F, is based on the values of u and its 

derivatives at  a point. Here, (with a s l i g h t  d i f i c a t i o n  of the defini t ion) open 

sets about each point i n  S rn used to define the germ of the u t i l i t y  functions. 

The c b i c e  of EY(j,k) can vary with the point, s o  d i f ferent  types of i n f o m t i o n  

can be employed. For instance, a t  xl w e  m y  use the value of the u t i l i t y  function, 

and a t  x2 and x3,  the gradient of the  u t i l i t y  function. The independence 

conditions t h a t  replace the  usual mnotonici ty condition. are defined in the 

following mnner. For a t r i p l e t  A={xl ,x2 ,x3}, let  Ij (k,  1) be the set of a l l  

u t i l i t y  functions f o r  the kth agent t h a t  have level sets passing through BA(k, j) 

but below BA (k, j+l) , while Ij (2) are the u t i l i t y  functions with a level  set  passing 

through BA(k,j) but above BA(k,j+l). The independence condition is 

3 . 3  f o r  a l l  t r i p l e t s  of n o m m t o n i c  points F: Ij --- > P (xj , xj + ) . 

Comlliuy 2.8. L e t  S be a full suhset of B+ w i t h  at  least thme points. 

Suppxe that F, : W-->P(S) satisfies a geneml b m  i n d e p d e m x  wndition, the 

indepdeme wndition 3.3, ard t h a t  F, is not amstan t  valued o m  at least tm 

m~m~mtronic pairs. F, can be r e p ~ e n t e d  b a ftolction of a single variable that 

armsponds to either a dictator or an anti-dictator. 

Corollaries 2.7, 2.8 i l l u s t r a t e  t h a t  the problem of d ic ta to r i a l  behavior is 

not imluced by w h t  h l f o m t i o n  is used, ht by tk division of informtion.  In 

these corol lar ies ,  the d i c t a t o r i a l  conclusions are d i r e c t  consesuences of an 

attempt to create  an F, t h a t  preserves mmtonic i ty .  
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Out1i.m of tlre Proof. As with Corollary 2 . 1 ,  t h e  proof is by induction 

over triplets. L e t  A= {xl ,  +, x3) be a triplet of po in ts  t h a t  are n o m n o b n i c .  

A l l  t h a t  needs to be proved is t h a t  t h e  domain over lap  conditions are s a t i s f i e d .  

The proof is out l ined  f o r  c=2; t h e  extension to c > 2  is imnediate. The proof of t h e  

domain over lap  condit ion is indicated i n  Figure 2. Because t h e  sets Bk ( j ,  i) are 

n o m n o t o n i c ,  with some choice of t h e  indices ,  they can be arranged in a fashion 

s i m i l a r  to t h a t  given in this sketch. Now, f o r  A = {xl ,x2 ,x3) ,  it is easy to see 

why I l ( j , Z ) n I 2 ( j , l )  meets both I 3 ( j , l )  and I 3 ( j , 2 ) .  I n t h e  f i r s t s k e t c h ,  therea2-e 

three l eve l  sets f o r  t h e  sm u t i l i t y  funct ion u. The f i r s t  l eve l  set passes 

t h r o u g h B A ( j , l ) ,  above BA(j,2),  ht belowBA(j,3).  This is possible because of t h e  

norumnotonicity assumption. Such a u is i n  I1 ( j , 2  ) . To ensure u is i n  I 2  ( j , 1) , 
t h e  second l e v e l  set passes through BA (j , 2 ) .  Because c=2 and because l eve l  sets 

cannot c ross ,  this leve l  set is forced to be below both BA ( j  , 1) and BA ( j  , 3 ) .  There 

is still f l e x i b i l i t y  i n  t h e  design of u to have a t h i r d  l eve l  set passing through 

BA(j,3).  Again, geomtric cons t ra in ts  fo rce  this l e v e l  set to be above B A ( j , l ) ,  s o  

it is i n  I3 ( j  , 2 ) .  I t  only remins to show the re  is a d i f f e r e n t  u t i l i t y  funct ion 

from I l ( j , Z ) n 1 2 ( j , l )  t h a t  is i n  I 3 ( j , l ) .  This is s b w n  i n  t h e  second sketch where 

t h e  f i r s t  l e v e l  set passing through BA ( j  , 1) now passes above both BA ( j  , 2 )  and 

BA(j,3).  This forces  t h e  leve l  set passing through BA(j,2) to be below BA(j , l )  

( f o r  geomtric reasons) and BA ( j  , 3 )  (because it is i n  I 2  ( j  , 1) ) . These two 

r e s t r i c t i o n .  f o r c e  t h e  l eve l  set passing through BA ( j  , 3 )  to have t h e  proper t ies  of 

mmbership f o r  I A  ( j  , 1) . Similar  arguments apply to s b w  t h a t  t h e  domin  

independence conditions hold. The conclusion now follows from Theorem 2. 

SCUE &Lications to 6 c o d c s  

We now use t h e  independence conditions to characterize th i n f o m t i o n a l  

r equ i r emnt s  of economic prooedures. To see t h e  idea ,  suppose we wnat to know 

whether we can c o n s t m c t  a group decis ion pmcedure, based on binary compr i s ions ,  

t h a t  always is i n m u m  to a Dutch Book procedure. (See, f o r  instance,  [22]. ) Thus, 

we w a n t  to know whether t h e  ordering of t h e  p a i r s  is of any consequence. Can such 

i n f o m t i o n  be combined s o  it always y ie lds  a t r a n s i t i v e  ranking of t he  

a l t e rna t ives?  If t h e  answer is yes, t h e  procedure def ines  a s o c i a l  cbice funct ion 

t h a t  s a t i s f i e s  c e r t a i n  independence condit ions,  s o  Theorem 2 m y  apply. 

Alternat ively,  f o r  a given economic procedure, w e  m y  want to determine whether 

c e r t a i n  kinds of m i a l  i n f o r m t i o n  a m  adequate to capture aspects  of t h e  

p m e d u r e ;  i . e . ,  of what use is this partial i n f o m t i o n  with respec t  to t h e  



procedure? If the  cbice of p a r t i a l  i n f o m t i o n  defines independence conditions, 

Theorem 2 may apply. For instance, when analyzing a solut ion concept f o r  a 

standard trading o r  exchange d e l  amng three agents,  can we can reoover aspects  

of the  solut ion by knowing what would happen i n  a l l  the  possible binary t rades  

m n g  the  three pairs of agents? Suppse  externalities are introduced into a 

c la s s i ca l  a l locat ion  procedure. Is the  i n f o m t i o n  a b u t  how pin of 

externalities e f f e c t  the  classical solution of any use when considering the total 

effec t?  

To i l l u s t r a t e  this l i n e  of thought (and to demnst ra te  another f ea tu re  of 

the  overlap pr inc ip le) ,  consider the  aggregate excess d e d  function f o r  a simple 

trading society with neo-classical u t i l i t y  functions. For a given pr ice  vector ,  

can w e  obtain qual i ta t ive  information a b u t  the  aggregate excess demand function 

from the  re l a t ive  d e d  f o r  the  pairs of c o m n d i t i e s ?  To be mre spec i f i c ,  a t  a 

given price,  the  components of the  aggregate excess demand function determine an 

ordinal  ranking of the  c o d i t i e s  i n  a natural  fashion; the  larger the demand f o r  

a c o d i t y ,  the  mre favored it i s .  I t  is reasonable to expect t h a t  i n f o m t i o n  

a b u t  this ranking can be obtained by finding f o r  each pair of comoodities, 

considered a t  these sam prices, which one is the  mre desired. Such a problem can 

be analyzed in several  ways ; I '11 use Theorem 2. The outcorn is t h a t  the  

information a b u t  pairs can be unreliable - even f o r  a s ingle  agent. 

Suppose the  three c o m d i t i e s  are {cl ,  Q ,  Q} .  The qual i ta t ive  

i n f o m t i o n  w e  seek is the  d k e c t i o n  of the aggregate excess d e d  function. So, 

let the  two R i  , J c lasses ,  {Ri s J (ci >c . ) , R i  J (cj >ci ) }  be determined, respectively,  
J 

by whether there is a posi t ive  d e d  f o r  ci o r  f o r  c j .  I t  is easy to show t h a t  

the  range overlap conditions are sa t i s f i ed .  The domain f o r  each agent is the  set 

of neoclassical u t i l i t y  functions. The kth agent is given an i n i t i a l  e n d o m n t  

(Wkl, WkZ, Wk3), Wkj>2.. For a s p e c i f i e d p r i c e ,  ( p l , & , ~ ) ,  pj>O, the  I i , J ( k )  sets 

are defined i n  the  following m e r :  Ii , J (k,ci >cj ) ) is the  set of a l l  u t i l i t y  

functions s o  t h a t ,  when the  remining c o d i t y  is held f ixed,  the  excess d e m d  

function at  the  price (pi , pj ) has a net  t rade between 1 and 2 units  in favor of ci . 
If the  approach of comparing binary i n f o m t i o n  gives qual i ta t ive  information a b u t  

the  aggregate excess d e d  function, then, f o r  the  given i n i t i a l  e n d o m n t s  and 

pr ice ,  F:{U}N-->n{Ri , J }  s a t i s f i e s  the  independence condition t h a t ,  f o r  each pair 

( i ,  j) , F: I J -  R J .  Clearly, F is not determined by one agent, s o  the  f u t i l i t y  

of such a binary approach follows from Theorem 2 once w e  es tabl i sh  t h a t  the  domin 



overlap conditions are sa t i s f i ed .  

I t  is t r i v i a l  to show t h a t  the domin overlap conditions are sa t i s f i ed .  

Indeed, a n e w  fea ture  arises ; the intersection of each 11 I 2 class with each I 2  , 3  

class mts b t h  1183  class. Thus, unless r es t r i c t ions  are impxed on the  c lass  

of u t i l i t y  functions, no aget~t s a t i s f i e s  the rtstrictivo domin conditions, s o  the  

last sentence of Theorem 2 applies. To indicate the basic ideas, I w i l l  out l ine 

why I l , 2  (k , c l>+)  n I z P 3  ( k , + > % )  mets Lnth 1 1 1 3  classes. In the  plane z=Wk3 in 

E3 consider the  circle of radius 1.5. In this plane, the  line passing through the  

i n i t i a l  e n d o m n t  with n o m l  vector (pl ,pz)  mts the  circle i n  precisely two 

points. Choose t h e  one where cl A t  this point,  construct  a level  set of the 

u t i l i t y  function such t h a t  the  f i r s t  two c o m n e n t s  of its gradient is a posi t ive 

m l t i p l e  of (p, , I + ) .  Use a similar construction f o r  a level  set of the u t i l i t y  

function i n  I2,3 ( k , + > c 3 ) .  SO f a r  we've specified t w o  level  sets a t  two d i s j o i n t  

points using only p a r t i a l  i n f o m t i o n  a b u t  the gradient.  The same construction 

f o r  I l r3  (k) speci f ies  two mre min t s .  A l l  four points are dis jo in t ;  indeed, they 

do not  even l ie  i n  the same plane, and only the last two are on a line passing 

through the i n i t i a l  e n d o m n t .  So, it is t r i v i a l  to construct a u t i l i t y  function 

with a level set sa t i s fy ing the  point i n f o m t i o n  a t  the  f i r s t  two points and a t  

e i t h e r  one (but, c l ea r ly  not b t h )  of the remaining four points. This completes the 

proof. 

Because no agent s a t i s f i e s  the res t r i c t ive  domain conditions, such an F 

doesn't e x i s t  even f o r  one agent - such i n f o m t i o n  is not r e l i ab le  even to 

determine a s ingle  person's d e d  function. The s m  f a t e  holds f o r  any choice 

of F based on similar i n f o m t i o n .  This can be i l l u s t r a t e d  with the  next example 

t h a t  uses a kind of i n f o m t i o n  often considered i n  economics. Suppose F is a 

function of the  gradient of the u t i l i t y  function a t  x j  where the imge of F 

s a t i s f i e s  the  range conditions. Instead of using the  mnotonici ty condition given 

i n  Corollaries 2 .7 ,  2.8,  suppose the related domin independence conditions are 

Ij (k, 1) = (u in U: the  jth component of the  gradient of u is larger  than the other 

t w o  oomponents) where Ij (k,2)  is the set where some other component is larger than 

the j t h  conqmnent. Again, not only are the domin overlap conditions s a t i s f i e d ,  

but no agent s a t i s f i e s  the  res t r i c t ed  domin conditions. Thus, such an F cannot be 

defined even f o r  one agent. 

bnt i rgemy lbbles i n  Statistics 

Theomm 2 can be used with issues from statistics. For instance, by 
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t rea t ing each data point as a "voter", i f  follows immdia.tely from Theorem 2 tha t  

there  i s n ' t  a s t a t i s t i c a l  roethod yielding a t rans i t ive  ranking of three o r  mre 

alternatives tha t  respects binary comparisons. As another statistic question 

s u k u m d  by T b r e m  2 ,  consider the problem of c o l l a ~ i n g  of contingency tables to 

obtain the  mwginal probabil i t ies.  To describe the  problem, s u p p s e  a new vaccine 

is proposed to cure the  c o m n  cold. T h i s  vaccine is to be tested in Evanston and 

i n  Ann Arbor. A t  each s i t e ,  a test group and a control  group axe used and the 

probability of a patient  regaining health is complted. L e t  x, and xA denote, 

respectively, the  difference between t k e  values f o r  the  t w o  groups as masured at  

Evanston and a t  Ann Arbor. So, x, >O means tha t  i n  Evanston the  n e w  vaccine had a 

better success r a t e  than the standard t rea tmnt .  Finally, suppose the  test resul ts  

f r o m  both locations are sen t  to a central  location and aggregated where y is the 

d i f f e ~ n c e  between probabil i t ies of success with the vaccine and with the standard 

t rea tmnt .  We want to compare signs of the t r i p l e t  (x,  , XA , Y) . Sings011 s ycuadox 

is when the signs (+, +, -) occur; the vaccine was successful b t h  i n  Evanston and 

Ann Arbor, tut not i n  the aggregate. 

Simpson's paradox is an annoying consequence of the combinatoric rules of 

conditional probabil i t ies.  Can som other measure be invented to avoid S i m o n ' s  

paradox? Namely, can w e  f ind a mpping F = (h , pA , p) , depending on a l l  of the 

informtion,  where the outcorn assures a l l  sign combinations except (+,+,-) and 

- , - , + In this manner, the  n e w  m u r e  avoids the  p i t f a l l  of S i m o n ' s  paradox. 

(See [5] f o r  som masures. ) Now, w e  want this masure to be useful on its own a t  

each s i t e ,  s o  we want the sign of h , C I A ,  p to depend, respectively, only on the 

sign of x, . x, , and y. This defines a binary independence condition, and it is 

easy to show tha t  the range overlap conditions are sa t i s f i ed .  Using the  resul ts  

given in [ 161 concerning Simpson's paradox, it follows t h a t  the  "one voter" 

s a t i s f i e s  the domin overlap condition, but not the  restricted domain conditions. 

( A l l  signs fo r  (% , XA , y) are possible. ) Hence, according to the last sentence of 

Theorem 2 ,  such a measure does not exis t .  

l%e Rwge ibditim: Social &ice Amctians 

Theorem 2 offers  f l e x i b i l i t y  i n  choice of the  range, o r  outcome space. 

Because the range overlap conditions are i n  a set theoretic form, the  range could 

be any space - a function space, a space of probability d i s t r i h t i o n s ,  a lo t t e ry ,  

su t se t s  of al ternatives,  etc. I decided to i l l u s t r a t e  the basic ideas with a 

familiar  &el - socia l  choice mappings. L e t  the  candidates ( c l , .  . ,c,) be given, 
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le t  Aj, j = l , .  . ,p,  be a s u t s e t  of these candidates, let  FS = {Al,. . ,$) be the  set 

of feasible sets of A ,  and let R be the set of a l l  nonempty subsets  of the  

candidates. A s o c i a l  choice correspondence, F: FSx{P(l,. . , n )  IN--->R, assigns to 

each f eas ib l e  s e t  and preference p ro f i l e  a nonempty subset  of t h e  f e a s i b l e  set. 

N m l y ,  f o r  A j  in FS and x i n  P ( l , . .  ,n)N, F(Aj,x) is a nonempty subset  of A j .  F 

s a t i s f i e s  the  condition of inde-ndence of infeasible a l t emt i ves  i f  f o r  Aj  i n  FS, 

and i f  f o r  x and y i n  P ( 1 , .  . ,n)N that agree on Aj  (they a r e  i n  the  s m  P(Aj) 

c l a s s )  , then F (Aj  , x) = F ( A j  , y) . A soc ia l  choice correspondence F is stsict ly 

nomnstant over Aj  i f  t h e  imge of F(Aj ,-) has a t  least two d i s j o i n t ,  nonempty 

s u t s e t s .  F s a t i s f i e s  the  choice axiom i f ,  f o r  a l l  x, F(Aj , X I  = F({ l , .  . ,n) , x ) M j .  

The de f in i t i on  of a correspondence of a s ingle  variable,  a d i c t a t o r ,  and an 

a n t i d i c t a t o r  are the  obvious ones. 

The difference between a soc ia l  welfare function and a s o c i a l  choice 

funct ion is t h a t  a s o c i a l  welfare function determines the  g m u p  ranking of the  

a l t e rna t ives ,  while the  social choice function s e l e c t s  only the  set of " k t "  

candidates. So, i f  a s o c i a l  welfare function e x i s t s ,  t he  r e l a t e d  s o c i a l  choice 

funct ion s e l e c t s  the top ranked a l te rna t ive .  This mans t h a t  t he  s o c i a l  choice 

funct ion is zaliaed by the  s o c i a l  welfare function. An important theorem by 

Hansson [6] spec i f i e s  w h a t  kind of feas ib le  s e t s  pennits a s o c i a l  welfare function 

can be constructed to r e a l i z e  a given soc ia l  choice function. Thus, whenever his 

conditions are s a t i s f i e d ,  there is a re la t ionship  between r e s u l t s  f o r  s o c i a l  choice 

and s o c i a l  welfare. While the conditions given below can be used to invoke 

Hansson's theorem, t h e  conclusions a r e  proved d i r e c t l y  to i l l u s t r a t e  how Theorem 2 

includes soc ia l  choice mdels. 

Comllary 2.9. For A = {cl,. . ,q,) w k  -3, let th set of feasible sets hl& 

A and all tm element subsets of A kt F be a social cbioe o o ~ p o d e m e  that 

satisfies t& codition of indepexdeme of infeasible alternatives, th cbice 

axium, a d  is strictly mmr~tant over th p a i ~  of altiernatives. F can be 

mpzesented a function of a single variable. 

Of course, Corol lary 2.9 could be d i f i e d  to obta in  a r e s u l t  with the 

f l avor  of Corollary 2.4 and some of the  other  s t a t e m n t s .  

Proof. As with Corol lary 2.1,  the proof is by induction. Choose th ree  

candidates,  say {cl, q ,  c3). A s s m  t h a t  A j  = {c j ,  C ~ + ~ I .  Let  I j ( k )  = P ( j , j + l ) ,  
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and define R j  to be { { c j , A j S ) ,  { C ~ + ~ , A ~ ' ) )  where A j '  is the complemnt of Ak i n  A. 

(So, i f  n=3, R1 = {{c1,c3), {%,%)).) I t  follows from the condition of 

independence of infeasible al ternatives and the choice axiom t h a t  F: Ij-->RJ. I t  is 

easy to show t h a t  the sets Rk s a t i s fy  the range overlap conditions. For instance, 

asah in n=3, RlfW = {{cl ,031, {c2 ,0311 fl {{c2 , c l l ,  {CJ , c l ) )  = {{%I,  {cl)  

{cl , c3 ) , {c2 ,% 1). The f i r s t  tw sets are i n  d i f ferent  R3 s u k e t s  . From t h i s ,  the 

conclusion follows from Theorem 2. 

Gibtrud - Sattert)aefte 

A s  a last i l l u s t r a t i on  of Theorem 2, 1-11 give a proof of the Gibbard - 
Satterthwaite theorem t h a t  d i f fe r s  from the standard mtkd depending on the 

dis t r ibut ion of power. For simplicity of exposition, restrict at tention to three 

alternatives.  (In mch  the same manner as described f o r  the ea r l i e r  corol lar ies ,  

the resul ts  exknd to all values of n13. ) Recall t h a t  i f  A = {c , c2 , % ) is the set 

of candidates, then a voting scheme is a function F: {P( 1 ,2 ,3)  )N --- > A. For xj  E 

P(1 ,2 ,3) ,  ci >jck i f f  t h i s  is the  ~ l a t i v e  ranking of the two candidates i n  xj .  A 

voting schem is m i p l a b l e  i f f  there ex i s t s  x,  y E {P(1,2,3)1N t h a t  d i f f e r  only 

i n  the j t h  component and F (y) > F (x) . The j t h  c o m n e n t  f o r  y, y j  , represents 

the  j t h  voter 's m i s~p re sen t a t i on  of his t rue  ranking. We say t h a t  j mnip l la tes  F 

a t  x with yj.  

Comllary 2.10 (The G i ~ S a t ~ t e  ~ I T M ) .  kt F be a mting s c k  f m  

(P(1,2,3)}Nto {cl, %, 5 3  ub=mthemngeof F h  onto. F i s e i ~ d i c t a t o r i a l  

or mnipllable. 

M f .  Assum F is not rmnipulable; we show it is d i c t a b r i a l .  For the 

pair 4 , j  = {ci ,  cj},  let  R i  , j  = {{c,, A ' i ,  j ) ,  {cj , A ' i ,  j ) ) .  For instance, R 1 , 2  = 
{{c, , CJ 1 ,  {% , % I ) .  The range overlap condit.ion5 are sa t i s f i ed .  Corollary 2.10 

follows from Theorem 2 once we show tha t  the Ii . j (k) sets are P (i , j ) . This proof 

i l l u s t r a t e s  how these impl ic i t ly  defined independence conditions are extracted from 

"level  set" and mno.tonicity properties of F. To emphasize the ideas, the proof is 

divided i n b  three lemnas. F i r s t ,  note t ha t  F- 1 (c ) # 8 f o r  a l l  j. 

L e m  1. If F (x) = cj , and i f  x = (xl , . . , ) varies only i n  the kth 

component where t h i s  variable, yk , is i n  the same P ( i  , j) c lass ,  then F remins  i n  

the  sane R i  $ J  class. If when yk changes P ( i ,  j) c lasses ,  the imge of F changes 

R i  ,J classes,  then the change is mnobnic;  e .g.  , i f  y, mves from P(cj  >ci) b 



P(c i>c j ) ,  then the imge of F mves from {cj,ck) to {ci ,ck) .  

Proof. Without loss of generality, l e t  k = 1. Suppse the f i r s t  part of 

the l e m  is fa l se  because the M e  of F changes R i  j classes when this voter 

changes to yl ' where both xl and yl ' are in  the s m  P ( 1,2)  class. If this voter's 

re la t ive  ranking is c i > c j ,  he can rmniprlate the outcorn of F a t  x with y, ' ;  

otherwise he can mnipulate the outcorn of F a t  (y, - , x;! , . . , +) with x1 . BOth 

contradict the assumption tha t  F Is not m i p r l a b l e .  Similarly, i f  changing tk 

P ( i , j )  classes has the reversed effect  on the i w e ,  then ei ther  one way, of tk 

other, the f i r s t  agent can manipllate tk outcorn. If t h i s  agent's relative 

ranking is ci >cj , then F is rrranipulated a t  x with y,; otherwise F is manipdated a t  

(yl,xz , .  . via xl. 

&finition. The change of a ranking xi to yi is called a level set cIw@ 

with rtzspect to cj i f f  fo r  each choice of k,  ck >C in q i f f  the same relative 

ranking holds in  yi . 
In other words, in  a level s e t  change, a l l  of the candidates ranked above 

c j  in  q are also ranked above cj  in  yi and vice versa. So, c j  remins a t  the sam 

level and a l l  candidates originally above (below) remain above (below). For 

instance, c l  >c2 >q and c2 >cl >c3 are level s e t  changes with respect to q , but not 

with respect to c j ,  j=1,2.. 

L e m  2. If F (x) = c , and y differs  from x only i n  the kt h voters ranking 

which is a level s e t  change with respect to c j  , then F (y) = c j .  

Proof. Assum the l e m  is fa l se ,  and tha t  F(y) = c i .  Because the kth 

agent rnade a level set change, t h i s  agent's relative ranking of ci and c j  remins 

the sm. Thus, this voter can e i ther  manipulate F a t  x with y-x o r  a t  y with x-y. 

L e m  3. For each i and j ,  F : I i I j - ->Ris j .  

Proof. If t h i s  l e m  were fa l se ,  there would be a profile x where F(x) = 
c,,  and a profile,  y, in the same P(1,Z)N class as x, w h e r e  F(y) = Q .  Becawe we 

can go from x to y with a series of individual ranking changes i n  the sam P(1,2) 

c lass ,  it follows from km 1 tha t  there is an i n t e d i a t e  profile,  z ,  in the 

sm P(1,Z)N class ,  such tha t  F(z) = q .  Firs t ,  assum tha t  a l l  rankings in  x with 

c l  >c3 have the ranking cl >c, >% or  Q >cl > q .  If this i s n ' t  so, it can be achieved 

with cl level s e t  changes. According to Lem 1, i f  P(1,Z) invariant changes a l t e r  

the outcorn to c3, it is due to P(1,3) changes f o r  a sukset of these voters; l e t  

V 1 , 3 '  be the indices of these voters, and let z '  be the new profile. (Notice, 

these are level s e t  changes where c l > q  b m s  >cl. ) Now, to change the 



hmge f r o m  c3 to c2 , cer ta in  voters keep t h e i r  rankings in the same P (1,2) class, 

but they mt change P(2,3) f r o m  % >c2 to Q >c;, . Let V2 , 3  be the indices of these 

voters and le t  y be the  profi le .  We can assume tha t  V1 .2  and V2 , 3  are dis joint .  

T h i s  is because the voters with the x ranking of c2 >cl >c3 have the  wrong P(2,3) 

ranking to mke t h i s  change. For the  other voters i n  V l  , 2 , the P ( 1,3 ) change 

resu l t s  i n  cl>c+. If this doesn't change the F image to cl  (the only poss ib i l i ty ) ,  

then this voter wasn't needed i n  V l 1 2 .  If it does, then, according to L e m  1, the  

next P (2,3 ) change cannot change the outcorn to %. 

Change y to w by using a Q level  set change with a l l  indices i n  V112. 

According to L e m  2, F(y) = F(w) = Q .  Profi le x di f fe r s  from w only f o r  the  

rankings of the  V2 , 3  voters. So, the changes from x to a only involve P (2,3) 

changes i n  the sane P (1,2 1 and the sam P (2,3) classes. Thus, according to L e m  

1,  F (w) is in {cl, % I .  T h i s  contradiction completes the  proof. 

Corollary 2.10 follows from Lemna 3 and Theorem 2. (Of  course, w e  could 

have streamlined the proof by s b w i n g  , f o r  example, t ha t  the V i  D j sets are 

singletons.)  Notice tha t  the drive f o r  each agent to mxirnize the  outcome of F 

i s n ' t  needed; we only used the associated mnotonicity f o r  F. Consequently, the 

essence of the Gibbard-Satterthwaite theorem extends to si tuations outside of 

s t ra teg ic  mnipulations as well as the other extensions admitted by the f l ex ib i l i t y  

i n  the choice of the range t h a t  is admitted by Theorem 2. Finally, it is worth 

noting t h a t  in [9,17], the  level  sets defining the  mpssage correspondences are 

based on in tegrabi l i ty  conditions. This involves " L i e  bracket conditions"; they 

masure the change, o r  d i f fe ren t ia l ,  of one vector f i e l d  with respec t  to another. 

& examining the usual mt iva t ing  examples fo r  the L i e  bracket, you w i l l  f ind  a 

strong relat ionship with the proof of Lemna 3. T h i s  is not coincidental; such a 

construction occurs whenever the independence conditions f o r  d iscre te  rmdels are 

impl ic i t ly  defined; e. g. , a related arguroent is i n  the last paragraph of the proof 

of the f i r s t  part of Theorem 2. This kind of argument can be ats t rac ted to form 

the  discre te  version of the  L i e  bracket condition. 

Theorem 2 can be extended by a l t e r ing  the domin and the  range overlap 

conditions. There are many ways this can be done; several create  interest ing 

theories of independent in teres t .  Rather than attempting to be complete, I ' l l  
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i l l u s t r a t e  the  basic ideas with s o m  p x s i b i l i t y  theorems. In mch the sm 

fashion other  extensions , say ,  to quasi- transi t ive o r  acyclic  rankings can be mde. 

The f i r s t  extension is to d e l  "indifference". The def in i t ion  is based on 

the  georoetric proycrt.ies i l l u s t r a t e d  i n  Figure  1. The key fea ture  is t h a t  i f  an 

agent is indifferent  between cl and c, , then his (c;! ,q) ranking uniquely 

determines his (cl ,  c3) ranking. This deprives h i m  of the  freedom la vary between 

P(1,3)  classes t h a t  is essen t i a l  to prove Theorem 2. Consequently, w e  should 

expect other  voters to have a say  i n  the outcoroe. This happens. 

Definition. The h m i n  overlap d t i a m  w i t h  hdiff- for the k.h voter 

admits added s e t s ,  I J (k ,3) ,  j=1,2,3. For each j ,  tbe added set is disjoint f m  

each of the tm original Ij sets. The ckurain overlap cordi t ion  for this new set is 

t b t ,  for each permrtation (a ,b , c )  of (2,3) and s = 1,2,3, Ia(k ,3) f lP(k ,s )  mets 

precisely one Ic (k) set, Ic (k,u) ,  w k . m  s=3 i f f  u = 3. FwAkmmm, if 

Ia(k,3)nD(k,u)  meets Ic(k ,v) ,  w3, then P(k,u)nIc(k ,v)  meets a l l  three of the Ia 

sets. Call I j (k ,3)  the imWferwm? set. 

Theorem 3 extends the  version of Arrow's Theorem t h a t  admits preferences 

with indifference. To generalize the  idea of s-uential d i c t a b n - ,  w e  need a 

stronger condition on the  range s e t s .  

Definition. Assume t h a t  each R j  , j=1,2,3, I n s  tm elemmts. Assume for each 

permrtation (a,b,c) of (1,2,3) t h a t  a m  four sets in RefW; t m  of them 

s a t i s f y  th mnge overlap corditioxs and each of th= 0 t h ~  tm ~t both RC sets. 

Both of th lat- tm - of th= fom RalfWu a d  Ra2fWv for SOOE  permta tat ion 

(u,v) of (1,2). The range set. R j ,  j=1,2,3, are said to s a t i s f y  th= flexible r m  

overhp c o d t i o n s .  

Most of the  choices of R j  used i n  this paper s a t i s f y  the  f l ex ib le  range 

overlap condition. This is t rue  f o r  P ( i  , j) as well as the  sets {cj ,Aj ' I .  TIE t e r m  

"f lexible" refers  the  f l e x i b i l i t y  i n  the  range classes similar to t h a t  admitted by 

the  dorwin overlap conditions. The r e s t r i c t i o n  allowing R j  to have only two sets 

is not necessary. 

h m m  3. kt N L 2. kt M =  @':I)-> R : the Ij classes s a t i s f y  the dolllain 
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overlap conditions w i t h  M f - ,  the R j  classes s a t i s f y  the flexible range 

averlap oordi t ia rs ,  anl F: IJ-->RJ is m n  amstant for a t  l e a s t  two val- of j.) 

a. Them is a n F E  W t h a t c a n m t  bemqmsentedtyafrnrJtion'of orre 

var iable  over IlnI2N3. 

b. Suppose F E H is n o t  a function of a siogle variable. T b m  exists a 

pzwmtation of indices, (B(l) ,  B(2) ,. . ,B(s)) ,  s<N,  a d  rmppims go ( i  ):% ( i  )->R 
w i t h &  f o l l a w b g ~ y .  If xp(l) 6! IJ(B(1),3),  then& R j  imge of F is 

detiermirdbthe -of go(,)). M i m l y ,  i f x o ( , ,  E I j(B(a) ,3) ,  a r - l , . . , ics ,  

*(,+I) 6! Ij(B(*1),3), RJ image of is b &(,+l)- T h e  

are two possible cbices for each go (,). 

An unusual example i l l u s t r a t i n g  Theorem 3b is w h e r e  the  P ( i , j )  outcom of 

F:(P(1,2,3)-IN-->P(1,2,3) is d i c t a t o r i a l l y  determined by the f i r s t  voter i f f  her 

ranking is not indifference. If she is indi f ferent  a b u t  s o m  pa i r  P ( i , j ) ,  then 

this ranking is determined by the  second vo-r 's P( i+  1, j+ 1) ranking. Other examples 

could involve u t i l i t y  functions, etc. 

Theorem 3 demnst ra tes  t h a t  several  voters can help determine the outcom 

of F when the  f l e x i b i l i t y  i n  the  domin is curtai led.  This is accomplished here by 

adding s e t s  to the admissible domin t h a t  don' t  s a t i s f y  the domin overlap 

conditions. In other  words, there are s i tua t ions  where Arrow's t h r e m  doesn 't 

apply because it is I ~ X  m s t s i c t i v e .  A standard way to obtain poss ib i l i ty  t h r e r m  

is to create the  r i g i d i t y  i n  the  domin by subtsacti tg from the domain by 

imposing res t r i c t ions  on what are admissible preferences. T h e o r e m  4 characterizes 

these domin res t r ic t ions .  Essent ia l ly ,  Theorem 4 states t h a t  the overlap principle 

captures the  bundary between poss ib i l i ty  and impossibility conclusions. 

To rmtivate Theorem 4 ,  r e c a l l  t h a t  ptzzling phenomna I b r i e f l y  mntioned 

a f t e r  Corollary 2.5. C e r t a i n  domain res t r i c t ions  permit p s s i b i l i t y  t h r e n s .  I t  

seem reasonable to expect t h a t  with stricter res t r i c t ions ,  d e l s  permitting even 

mre voter part icipat ion w i l l  r e su l t .  This need not happen; the stronger 

restrictions can force a r e tu rn  to an impossibility conclusion! For instance, 

with axioms nxlch l i k e  those studied by Kalai, Mueller, and Satterthwaite,  Donaldson 

and Weymrk [2] obtained a p o s s i b i l i t y  theorem with an independence condition t h a t  

d e l s  a form of "free disposal  of g h "  . Yet, when they changed the  independence 

condition i n  a natural  but s l i g h t  manner, an impossibility theorem now emrged. To 

see why behavior l i k e  this occurs, consider Arrow's theorem where voter 13 can 



assum any ranking e m p t  cl >c2 >q . According to Theorem 4,  we  obtain a 

p x s i b i l i t y  theorem. Now consider what happens i f  w e  fur ther  restrict 13's rankings 

to (cl >q >% , q >cl >c2 ) . NOW, a d i c t a t o r ,  other  than 13, is obtained. This is 

because with the  original  r e s t r i c t i o n ,  the  Id (O) classes are the  usual P ( i , k )  

classes minus the  one specif ied ranking. Because only this one ranking is missing, 

the  domin overlap conditions cannot be s a t i s f i e d ,  s o  as Theorem 4 a s s e r t s ,  a 

poss ib i l i ty  conclusion holds. But, by imposing the  stronger r e s t r i c t ions  on 13's 

rankings, a new set of I j  (O) classes emerges. One class still is P(1,3)  , but the  

two n e w  I j  equivalence classes are singletons - the  e n t i r e  set. Theorem 2 applies  

because the  stronger r e s t r i c t ions  (which correspond to mre relaxed independence 

conditions) create a n e w  division of independence classes i n  the  domin t h a t  

s a t i s f y  the  domin overlap condition. The next def in i t ion ,  which is needed f o r  

Theorem 4 ,  captures this impl ic i t  behavior. 

Definition. S- I IJ (k) , j=1,2,3, satisfy th nstricted domFin overlap 

oorditions for I&. A lestrictian for t h  lrth voter is a plroper subset,  C, , of I (k) 

= Il(k)nIz(k)nP (k). A nstriction C, ~ 1 i c i t W  defiDes a new set of 

inf~113tim.d equivalence classes I Jj (k) } , j= 1,2,3, if x E IJ (k, s ) % iff 

x E Jj (k,s)%, j = 1,2,3, s = 1,2. 

As an example, suppose I i ~ d ( k )  = P ( i , j )  = ( P ( c i > c j ) ,  P (c j>c i )}  and % = 

(cl >c2 >c3 , c1 >c3 >c2 , q >cl >q 1 .  (These are regions {A, B, C) i n  Figure 1. ) % 
implici t ly defines the  overlap classes Ji , j (k) = I i  , j (k) f o r  ( i ,  j) = ( ( 1 , 3  ) , 
(2 ,3 ) ) ,  and J1,2 is the  singleton equivalence class of the  total set. In other  

words, because the  restric lion % forces one of the  I1,2 (k) sets to be empty, this 

class could be replaced with a singleton. Notice t h a t  with the  r e s t r i c t i o n s ,  

nei ther  the  or ig inal  nor the  impl ic i t ly  defined classes s a t i s f y  the  domin overlap 

conditions. This is because J1 ,2 (k ) fWS3(k)  = J 2 , 3 ( k ) G  = { ( c l > ~ > q ) ,  { c l > q > ~ ,  

q > c 1 > c 2 ) ) ,  SO there a ren ' t  two sets i n  this intersect ion where each meets both 

J 1 ~ 3  (k) sets. 

Theomin 4. S-e the infonmtional equivalence classes ard the division of the 

range for given D and R satisfy tk overlap prbiple. Assure mtrictions are 

imposed an at least one of th voters that satisfies th mstricted domin overlap 

corditiom, say voter 1. Assume that all of tk hplicitly defined infonmtiod 



equivaleme classes gemrated by C1 either fail to s a t i s f y  th overlap amtitiom 

or they have only tuo classes w i t h  tuo disjoint nomupty sets, say J j ( l ) ,  j=1,2, 

& a t  l e a s t  tuo of lh four  sets in J l ( l ) (Uz( l )  enpty. T k m  exists a 

fumbion F f m m  t b  xtdiricted k i n  of D to R that satisfies th indepembme 

conditions F: I j ->Rj  , j=1,2,3, uh.m F js no-mtant f o r  a t  k t  tuo values 

of j and F cannot be mwerrted as a f-on of a single variable. 

In other words, as long as the res t r i c t ions  don' t  implici t ly define a n e w  

c l a ss  of i n f o m t i o n a l  equivalence classes t h a t  require,  via Theorem 2,  a 

d ic ta to r i a l  s i tua t ion ,  then a non-dictatorial F ex i s t s .  

Comllary 4.1. L e t  n=3 and Ii, J (k) = Ri , j  = P ( i ,  j ) .  If C1, th mstrictions on 

voter 1, are s ~ h  tht C1(Ui, j( l ,s)  # B for all (i, j ) ,  s = 1,2, tkn them exists a 

mawk from this ~ t r i c t e d  domain t h a t  oanrrot be mpmsented by a furrction of a 

single variable. 

Exaarple The res t r i c t ion  C1 = {cl >% >Q,  % >c2 >c l )  admits a socia l  welfare 

function t h a t  is not governed by an (ant i )  d ic ta tor .  This is because each P ( i , j )  

set meets C1. On the  other hand, the res t r i c t ions  C1 '  = ( c l > % > % ,  c 2 > c 1 > 5 }  

cannot avoid a d i c t a t o r i a l  s i tuat ion.  This is because C1 '  meets only one set i n  

each of P(2,3) and P( 1 ,3) .  As a resu l t ,  both of these classes can be replaced with 

a singleton equivalence class of everything. The overlap conditions are s a t i s f i e d  

and Theorem 2 holds. 

Even though Theorem 4 admits a poss ib i l i ty  conclusion, the  resul t ing  F 

need not be a &el of part icipatory d e m r a c y ;  the  remining conditions still 

impose sharp res t r i c t ions  on which F's are admitted. To see t h i s ,  suppose 

res t r i c t ions  are imposed only on the f i r s t  voter where C1 = P(1,2,3) - {c1>%>c2) 

(region B i n  Figure 1). If F is not determined d ic ta to r i a l ly ,  then the  f i r s t  voter 

mt influence the  outxome of a t  least trm pairs .  This is because i f  the  voter has 

no influence over a pa i r ,  then the  associated F inplicitly d e f i n e s  the associated 

informtional egui~lence class as a singleton. If t h i s  is t rue  f o r  two pai rs ,  

then the  newly defined classes t r i v i a l l y  s a t i s f y  the  domin overlap condition, and. 

Theorem 2 applies. Now, the  constraint  C1 permits f 1exibilit .y of mvemnt  in the 

P(1,3) and P(2,3) c lasses ,  s o  a variat ion of the argument f o r  Theorem 1 shows t h a t  

voter  1 determines the outcorn of these pairs .  Thus, the defini t ion of F is thrust 
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upon us; the f i r s t  voter (an t i )  dictatorial ly determines the  P( 1,3) and the P(2,3) 

outcome. With one exceptional case, the outcorn is e i ther  P ( 5  >cl ) W(c3 >c2 ) = 
{C,D), o r P ( c 1 > c 3 ) W ( ~ > c 3 )  = {A,F). I ne i t he r  s i tuat ion,  the P(1,2) outcorn can 

be determined in any desired m e r  by the voters, say, with a majority vote. The 

one exceptional s i tuat ion is when the f i r s t  voter has the ranking c2 >5 >cl .  Here 

the P(1,3)W(2,3) w e  is either the anti-dictatorial  outcorn {B) , or  the 

dic ta tor ia l  {E) - which one occurs uniquely defines b w  this voter determines the 

imge of F. Thus, i f  the f i r s t  voter has tk ranking ~2 >cl , he determines the 

P(1,2) o u k o ~ ~ .  Otherwise the P(1,2) irnage can be determined by a mjo r i t y  vote 

(or by any other mxms ) of the  remining voters. 

With this construction, it is easy to W e  other si tuations tha t  could 

occur with the appropriate domain restrictions. For instance, si tuations can 

occur where tk f i r s t  voter uniquely determi= the P(1,2) and P(2,3) ou t co rn ,  

the second determines the P(1 ,4) ,  P(1,5) outcorn,  . . . .  If this process does not 

uniquely determine the F outcorn i n  P ( 1, . . , n) , then other voters can make the 

f i n a l  determination. Such a construction results from an i t e ra t ive  application 

of Corollary 4.2. 

Comllary 4.2. a. kt N 1 2. Suppose th inforplational equivaleme classes and th 

division of the range for given D and R satisfy the overlap principle. Assuue 

mstrictiom, C1, am imposed on voter 1 and that voter 1 satisfies the mtr ic ted  

doroain overlap mnditiors. Suppose C1 admits a permrtation (a,b,c) of (1,2,3) so 

that Ia(l)rrIt,(l) oontairs the tsn> sets uh.m each mets both Ic(1) sets. If F 

cannot be llepzesented by a fumtion of om variable, t k m  the f i r s t  voter 

deter ' t b R a a n d R b o u t c o m .  

b. kt k-2, ad s- that mt r i c t iom C1 ad C, am given. S-e for 

two different permrtations (a(k),b(k),c(k)), that I a ( k ) ) n P ( k ) )  oontains th 

mquired t w o  sets that ~t b t h  IC (k) sets hrt th 0 t h  sets in this intersection 

do not. If F is m t  a function of a single variable, t h  for one cbioe of k, t h  

kCh vpter detezmimzs th Ra(k)  and th Rb(k) -. 

hbn bnditiom - &m ~XBOIY 

I've already pointed out tha t  the informtion used by each voter could 

chmge; fo r  instance, one voter's domain could be ordinal rankings, a second 

voter's domain could be based on a prot-wbility distr ibution,  while a third is given 



by u t i l i t y  functions. The next feature I w i l l  i l l u s t r a t e  is tha t  each i nde~ndence  

c lass  of each voter could represent a d i f ferent  type of i d o m t i o n ;  the goal is to 

determine whether the interaction m n g  the  f e a t m  are compatible. In this 

mnner, f o r  instance, one could examine resul ts  of the  type shown by SameLson 

where a t ransfer  of i n i t i a l  e n d o m n t s  can adversely a f fec t  the f i n a l  al location.  

I decided to i l l u s t r a t e  this feature  by recapturing sonre of Hurwicz and 

Schmidler 's (HS) nice resu l t s  a b u t  inferior  Nash equil ibria.  (In t h i s  way we 

r e l a t e  HS 's resul ts  to Arrow's t h e o r e m .  ) 

HS studied g a r r s ,  o r  al location processes with a f i n i t e  number of 

al ternatives,  where, f o r  each p rof i l e  , there is a Nash equilibrium which a lso  is 

Pareto op t im l .  Such an a l locat ion procedure is acceptable [10,p. 14471. HS sbwed 

t h a t ,  f o r  t w o  agents, an acceptable al location function mt be d i c h t o r i a l ,  but 

tht this same conclusion does not hold f o r  three o r  mre agents. Yet, they 

proved t ha t  a non-dictatorial solution f o r  mre than t w o  agents requires a 

"kingmker". With three players, the  role of the  kingmaker is to determine which 

of the remining trx, agents is to be the dictator .  Because r r ~ ~  objectives are to 

i l l u s t r a t e  Corollary 4 .2 ,  1-11 show kre  only why the, dictatorship occurs f o r  N-2. 

(The proof and the c o m n t s  m t iva t i ng  Corollary 4 .1  and 4.2 suggest the, reasons a 

kingmaker occurs. ) 

Consider al location procedures with two possible outcorn, {a,b}, and t3wo 

agents. The range space is not jus t  the two outcorns; it is each outcome 

associabd with b w  each agent honestly ranks the al ternatives.  For instance, 

typical  outcomes are {a,a>lb,b>2a},  {a,b>la,b>2a}, and {b,a>lb,a>2b}. The f i r s t  

outcome implies t ha t  a is the select& al ternat ive ,  a is the  f i r s t  agent-s  top 

ranked al ternative,  and it is the  second agent's bottom ranked al ternative.  The, 

second and th i rd  outcomes do not occur berause of the  preto condition. For 

instance, i n  the second outcorn, both agents prefer an available a l ternat ive ,  b. 

This leaves 6 outcomes t h a t  do s a t i s fy  the  pareto condition, and they are 

represented i n  Figure  3. In this t r iangle ,  the  edge to the l e f t  represents the  

f i r s t  voter 's t rue  ranking and defines t h  two R1 classes,  th edge to the r igh t  

represents the  second voter ' s  t r ue  rankings and defines the two EP classes, while 

the  bottom edge denotes the  selected al ternative and determines the two R3 classes. 

Because tk mapping, f , has only four variables, there are four irnage points, so  it 

is not obvious w h e t b r  t h e  range overlap conditions are sa t is f ied .  By tb pareto 

assumption, f rmst have an i w e  in regions 3 and E. Because there is an o u t c o r ~  





f o r  each prof i le ,  there is an inrage point i n  (C, D) and i n  (A,  F). If the hmges 

are (A, Dl, then, t r i v i a l l y ,  t he  f i r s t  agent is a dic ta tor .  Equivalently, i f  

they are (F, C), then the  second agent is a dictator .  For e i t he r  of the  remining 

t w o  cases, the  range overlap conditions are sat is f ied .  

The domain fo r  each agent, I&, is represented by a similar t r iangle ,  but 

there is a s l i g h t  difference i n  the interpretation. The bottom edge, dividing 

the  equilateral  t r iangle  in to  t w o  r igh t  tr iangles,  corresponds to this agent's two 

s t ra tegies  - w i l l  she state a o r  b is her top ranked al ternative? Of course, this 

depends on the choice of the  allocation function and on her opponent's strategy. 

Therefore, this axis corresponds to what appears to be her top choice based on her 

strategy choice. This defines the 13 (k) classes. Obviously, the  Ij ( j )  classes 

agree with the R j  c lasses,  j=1,2. The remaining equivalence class f o r  each agent 

consists on what appears to be the t rue  belief of the opponent. For instance, the 

point ( a l ,b> la ,b>2a)  represents the f i r s t  voter using a s t ra tegy to achieve a, when 

his t rue  f i r s t  choice is b, and it appears tha t  the second agent's t rue  f i r s t  

choice a lso  is b. Such points are not admitted both under the  Nash and Pareto 

assumptions. Thus , the  representation of the  t r iangle  holds. A w n t  the 

al location function, f :  (a ,  b)2 --- > (a, b) , to define the  trapping F: Dl@ -- > R ,  i n  the 

natural m e r .  N m l y ,  F map I j  ( j )  to R j  , j= 1,2 ,  and f maps the  s t ra tegies  to the 

R3 class. By construction, F: I J - - > R J ,  j=1,2,3. If f is not d i c t a to r i a l ,  w e  've 

already shown t h a t  the  range overlap conditions are sa t is f ied .  The domin overlap 

conditions remain. 

If f is not d i c t a to r i a l ,  there are only two choices f o r  the  irmge set of 

F. Without loss of generali ty,  assuroe it is (A,B,C,E). We need to use the Nash 

and Pareto conditions to determine what sets are, and are not in G. By the  Pareto 

condition, (B,E) = ( ( ak , a> lb , a>2b ) ,  (&,b>la,b>2a))  E G. Because of the Nash 

condition, regions (C, Dl  E C1. I t  is obvious why D E C1. To see why C = 
{a, , b> l a ,  a>2 b) E Cl , note t h a t  the  first voter using the  s t ra tegy to ge t  b resul ts  

i n  a .  If by changing s t ra tegy,  the  agent muld ge t  b, the  or ig inal  outcom 

wouldn't be a Nash equilibrium. Thus, C also is an admissible strategy.  Similar 

arguments show t h a t  C1 contains a l l  of the regions excxpt. (b, , a> lb J  b>2a) because 

this would change the outcorn to b, and this is a personally worse outcom. 

Likewise, = {B,C,D,E,F). 

Based on the res t r i c t ions  G,  Corollary 4.2 holds. Consequently, e i ther  f 

is dic ta to r ia l ,  o r  (according to Corollary 4.1) two of the R j  classes of F are 
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determined by one agent. Obviously , these tuo classes cannot be R 1  and R2 , s o  one 

of them rmst be R3.  This returns us to the  d ic ta to r i a l  s i tua t ion  because this 

agent determines the  {a,b} outcom. 

For t w o  agents and severa l  al ternatives,  the ideas remin the  same. If 

there  are mre than two agents, there are differences i n  the  construction. 

S t i l l ,  based on what has been shown, intui t ion suggests (and supporting d e t a i l s  

prove) t h a t  when a voter determines the  outcome f o r  t w o  classes, one could 

determine which of the other voters prevails,  and then t h i s  designated voter 

selects m n g  tw classes. This last voter is a dic ta tor ;  the f i r s t  is a HS 

kingmaker. 

R%@ -lap 

If the range overlap conditions are not sa t i s f i ed ,  f l e x i b i l i t y  is 

introduced in to  the  range. A poss ib i l i ty  theorem emrges. 

h m l l a r y  4.3. In tbe sta- of Theorem 4, assm tht tbe dormin o w z l a p  

oordi t iom am s a t i s f i e d  and a t  least txm voters s a t i s f y  tbe -trick3 domain 

oordit iom. Suppose tbe ~.ange overlap c d t i o m  am mt sa t i s f i ed  becam, for 

soue parmrtation (a,b,c)  of (1,2,3), t h m  am not txm sets in R a m  in d i f f e m n t  

sets of Rc.  BE exists a mapping F:D-->R satisfying tbe hdepedeme oorditio~s 

F: U->Rj, j=1,2,3, tht canmt be =-tied as a function of a single variable 

over 11mf-iP- 

Outline of the proof. Assum t h a t  h t h  R11T'IR2 and Rl2fRz2 meet both R3 

classes. Because the range overlap conditions are not s a t i s f i e d ,  either both 

R l  and R 1 2 W  are i n  the  s m  R3 class, o r  a t  l e a s t  one of t h e m  meets both 

R3 classes. The f i r s t  cannot occur. For instance, suppose both intersect ions 

miss the R31 class. That is {R31m11}m2 and {R31fR12}Mi21 are empty. This 

contradicts the  assumption t h a t  a t  l e a s t  one of the  R31m1j classes nust meet 

both R2 classes. In the  l a t t e r  se t t ing ,  i f  a l l  four sets meet tk two s e t s  i n  

R 3 ,  then let the  first agent's ranking determine tk R 1  and R2 outcom by mpping 

I j ( 1 , k )  to RJk, j=1,2, k-1,2, and let the R3 outcome. be determined by any desired 

metbd;  say a m j o r i t y  vote, o r  the  second voter 's ranking of this s e t .  The 

remining s i tua t ion is where one of the  sets, say R12 fX2, meets R3 but not m 2 .  

F i r s t ,  suppose there is a set i n  I1 (1) nI2 (1) t h a t  meets only one of the  I3 se t s .  

With a relabell ing of the  indices, w e  can assm tha t  I1 (1,2)  nI2 ( 1 , l )  mts only 
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13(1,1) .  'I'kn, let the  F be defined by having I j ( l , k )  mpped to R J k  f o r  j=1,2,  

k 1 , 2 .  If t he  f i r s t  v o k r ' s  ranking is in I3 (1 ,1 ) ,  then the  irmge is R31. 

Otherwise, let the  second voter ' s  choice of I3 (2, k)  be mpped to R3 k .  Final ly,  

suppose a l l  sets i n  I1 ( 1) nI2 ( 1) meet both I3 ( 1) sets. The sam def in i t ion  of F 

applies.  

The purpose of this sec t ion  is to pmve the  m i n  theorem. 

k n m  4. kt IJ (k) , j=1,2,3, s a t i s f y  the dcxmin overlap mndit ion.  For each 

permrtation (a ,b,c)  of (1,2,3) ,  each the selx in I a ( k ) m ( k )  met a t  least one 

I= (k) selx. 

Proof. Supmse fa l se .  Without lo s s  of genera l i ty ,  assm t h a t  

11 (1,1)nI2 ( 1 , l )  does not meet I s ( 1 ) .  Namely, (11 (1 , l )nIz  (1,1)}nI3 (1, j) = @ f o r  j = 
1,2. In turn ,  this mans t h a t  11(1,1)f113(1,j) can ' t  mset I 2  ( 1 , l )  f o r  j=1,2. This 

contradicts  t h e  domin overlap asswaption. 

b f  of Theorem 2. Let Lj {k: f o r  s 1 k,  there  is an % '  i n  a Ij(s) 

class s o  t h a t  F (x1 ' , . . ,+ , . . XN ' )  changes R j  classes as xk changes Ij (k) classes}. 

N m l y ,  this is a s i tua t ion  w h e r e  when only the  kth voter  changes c lasses ,  t h e  R j  

outcom changes. F is non-constant over a t  least two sets Rj, s o ,  fmm the  range 

overlap condition, f o r  a t  least two choices of j , Lj is nonempty. 

Suppose there are a t  least two indices i n  tk union Uj Lj. Without. loss  of 

general i ty,  assume t h a t  1 E L1 and 2 E Lz . For this to occur, voters  3 to N, m y  

need to be i n  spec i f i c  Ij (k) classes , j= 1,2. According to t h e  l e m  , these voters  

can s a t i s f y  both conditions sirmltaneously. Hold these domin points  fixed. For 

voter  1 to be i n  L1, x2 ' nust be in a spec i f i c  11 (2) c l a s s ,  say  11 (2 ,u) .  Likewise, 

f o r  2 to be i n  Lz, x l '  rmst be i n  I z (1 ,v )  f o r  a spec i f i c  choice of v. For k 1 , 2 ,  

choose the  13 (k,B(k))  class s o  t h a t  I 2  ( l , v )n I s ( l , I3 (1 ) )  mts both Il(1) classes and 

11 (2, u) n13 (2,B (2) ) mts both 1 2  (2) classes.  According to t he  domin overlap 

conditions, this is possible. 

According to the construction, as + changes I k  c l a s ses ,  t h e  irmge of F 

changes Rk c lasses ,  k 1 , 2 .  Assum t h a t  Rk ' is t he  p a i r  of irmges of F caused by 
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t h i s  change of + , k= 1,2 .  According to the  construct ion,  a1  1 o u t c o r n  i n  R l  ' fB2 ' 

occur with appropriate choices of x, and x, . But, accoxding to the  range overlap 

condition, two sets i n  t h i s  intersect ion mt d i f f e r e n t  R3 classes. This forces 

t h e  R3 imge to vary even though each + remains i n  a f ixed  I3 (k) c l a s s ,  k-1, . . , N. 

This contradict ion proves t h a t  each Lj has only one index, say  1. 

To complete t h e  proof , we need to show that  f o r  any choice of x, , k 2 ,  . . , N, 
t he  R j  W e  of F(x, , . . , x,,) depends only on which Ij (1) c l a s s  contains x,. I f  

f a l s e ,  then tkre are {xk ' I ,  C+ " 3 ,  k12, s o  t h a t  F ( x l ,  x, -, . . ,XN ' )  and 

F (x, , x2 " , . . , x,,") are i n  d i f f e r e n t  L j  classes. By holding x ,  f ixed and going 

through the  various pe rmta t ion  of interchanging xk ' with + " , the  irmge of F rms t 

change R j  classes. This forces an index other  than 1 to be i n  L j  . This 

contradict ion completes t h e  proof. 

Next, ue show tha t  t he re  are only two w a y s  g, can be defined. bsm the 

imges are R j  , i=1 ,2 ,  and c h s e  the indices on the  range sets s o  t h a t  F ( I l ( 1 ,  u) ) 

= Rl,, u=1,2, and t h a t  Rl , ruR2,  is i n R 3 ,  but  not inR3, .  Thus, R11m1m32 is 

empty. To define t h e  1 2  ( 1 ,  v) imge, note there is a choice of v s o  t h a t  

1 1 ( 1 , l ) n I z ( l , v )  meets b t h  I3(1) classes.  L e t  v' be the  o ther  index. Then, F = gl 
rmst m p  IZ(1,v ' )  to R2,. If  not ,  t h e n F m s t  m p  IZ(1,v)  to R2, .  Because 

I1 (1 , l )nIz  ( 1 , ~ )  meets b t h  13 (1) c lasses ,  it follows from the  invariance property 

of F t h a t  R l  , n R 2  , meets b t h  R3 c lasses.  This contradict ion proves t h e  asser t ion .  

The determination of t he  I3 ( 1) i m g e  is done in the  sm fashion. Note t h a t  t h i s  

proof shows t ha t  the  imge of gk cannot be constant valued over any Rj. Thus, each 

Ij (k) rmst have two d i s j o i n t  elements. 

I t  remins to prove t h e  l a s t  sentence of Thwrem 2. S u p m e  voter 1 always 

satisfies the  domin overlap condition f o r  a l l  pe rmta t ions  of (1,2,3)  and both 

perrmtations of (u ,v) .  This mans t h a t  in the  a r m n t  of t he  preceding paragraph, 

t he re  are two choices of I z ( l , v ) ,  and each choice gives rise to t h e  contradiction. 

Thus, F cannot be defined. Next, assume t h a t  voter 1 determines the  outcome of F,  

b u t  one of the  Ij (1) c l a s ses ,  say  I3 ( I ) ,  cons is t s  of only one equivalence c l a s s .  

The same ar-nt as given above shows t h a t  the  W outcorn w i l l  vary. This crea tes  

a contradict ion because gl (I3 (1)) is only one R3 class. (On the  other  hand, if a 

r e s t r i c t i o n ,  C, , is imposed on I(1) = I1 (1)nIZ (1)W (1) tha t  remves one of the 

fou r  s e t s ,  then gl is well defined. I f  C1 has only two sets from I1 but  each 

Ij (1 , s )  , j , s = 1,2 ,  then a non-dictatorial F can be defined. ) 
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Proof of Theorem 3. F i r s t  we establish t h a t  there  are choices of F tht. 

can not be expressed as a function of a single variable over the  total domin. So, 

assume the domin and range sets are specified whem the  m s t r i c t e d  domin 

conditions are s a t i s f i e d  f o r  agents 1 and 2. F u r t h e m r e ,  assum t h a t  the  indicing 

is such t h a t  R11T\R21T\R31 I @ .  We w i l l  define an F t h a t  is a function of the two 

variables,  xl and x2 from Ij to Rj, j=1,2,3. 

As shown i n  T h e o r e m  2 ,  them are only t w o  ways to define a roapping gk from 

{Ij (k, 1) , Ij (k,2)  ] to R j  . For k = 1 ,2 ,  l e t  gk be one of these choices. Define F in 

the following IMnner. If xl B Ij (1,3)  , then the R j  outcome of F is given by the R j  

imwe of g l .  If xl E I j ( 1 , 3 )  and x2 B I j ( 2 , 3 ) ,  then the R j  imge  of F is the R j  

imge  of g2. If xl E I j ( 1 , 3 )  and x2 E I j ( 2 , 3 ) ,  then the R j  image of F is R j l .  

I t  r emins  to show t h a t  F is well defined. If either agent 1 never is 

indif ferent ,  o r  i f  when agent 1 is indif femnt  over a l l  sets, agent 2 is not 

indi f ferent  over any s e t ,  then there is no d i f f i cu l ty  with the  def in i t ion  of F. 

The potential  problems are on the  complement of this subset  of the domin. To 

start, supmse i f  agent 1 is indif ferent  over one set, say,  she is i n  I1 (1,3)  , and 

she isn  't indif ferent  over one other set, say I 2  (1, u) , u 1 3. According to th 

domin overlap conditions, agent 1 is i n  I 3  (1, v) , v # 3 ,  and I 2  (1, u)  nI3 (1, v) mets 

a l l  three I1 (1) classes. In tu rn ,  t h i s  forces the  R2 and R3 imges (determined by 

agent 1) to be such t h a t  R2MI3 mets both R1 classes. ( I f  not ,  then, gl is not 

well defined f o r  agent 1. This is because i f  agent 1 is i n  12'(l,u)nI3 (1,v) she 

still can vary between the  two I1 (1, w) classes, w # 3. Now, i f  the irmge contains 

only one R1 c l a ss ,  this forces gl to be constant over {11(1,1) ,11(1,2))  - which 

leads to a contradiction.) The choice of R1 c lass  is determined by agent 2. 

The remining s i tua t ion  is i f  both agents are indi f ferent  over s o m  Ij 

c lass ,  say 11. The sare argwoent given i n  the  preceding paragraph shows t h a t  if 

one of the  agents is not indi f ferent  over some other Ij c lass ,  then there is 

f l e x i b i l i t y  in the  choice of R1 class. One has k e n  selected.  If both agents are 

indi f ferent  over two Ij c lasses ,  and, hence, indifferent  over a l l  three classes,  

then the  image is well defined. This completes the proof. 

The remining part of the part a is to show t h a t  the above construction 

captures the  s p i r i t  of a l l  possible choices of F. Namely, any F can be represented 

by a function of a s ingle  variable over the non- indifference sets. The proof of 
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this assertion is simple i f  I had required F to be nonconstant over 

&{Ij  (k, 1) , I j  (k,2)} for  a t  l e a s t  tuo choices of j. Because I did not, I need to 

show that  F can't be constant valued over 13 except when everyone but the jth agent 

is indifferent, and then the jt h agent is a dictator for  R j  . 

h m a  5. Let  Lj = .Clr: for 5 I k, t b m  is an x,' in Ij(s)  so t ha t  

P(xl ' , . .  ,&,.. ,%-) cbenges R j  classes as & varies be- Ij (k, l)  and U(k,2)}. 

Suppxse that  ( U j L j ) > l  and that u,v a m  in UjLj. ThE?1.e exists a cbice of j ,  say 

j=3, so that th ranking for one of *e -ts, say v, need not be in P (v,3) 

wben u infl- th R3 C&COIE. 

Proof. Suppose j E L j  , j= 1,2 ,  and that  the l e m  does not hold for  these 

values of j. Thus, whenever j influences the R j  outcome, the other agent, k, nust 

be in Ij (k,3).  Of c o m e ,  the Ij rankings of agents k 2 3 my be specified. 

According to the domain overlap conditions, the restrict ions fo r  agents 3 to N can 

be satisfied for  both j classes. Also, by the. indifference overlap conditions, 

agent 1 can vary between s e t s  I 2  (1,3) nil (1, u)  , u = 1,2,  w h i l e  agent 2 varies 

betweensets 11(2,3)nI2(2,v), v=1,2. T h i s  forces bothagents to be i n  

I3 (k, 1)UI3 (k,2). The sm armrent  used in  the proof of Theorem 2 proves tha t  the 

the R3 outcome changes even though a l l  voters remin in fixed I3 classes. This 

proves the l em.  

To prove the theorem, assm tha t  j E L j  , j = 1, 2. Fur themre ,  assm 

tha t  there is a profile where agent 2 need not be in I1(2,3) when agent 1 can 

influence the R1 outcome. (According to Lem 5, such profiles can be found with a 

relabelling of indices.) Now, suppose there is a profile where agent 1 need not be 

i n  12 (1,3) when agent 2 influences the R2 outcorn. I t  follows from the domain 

overlap conditions with indifference tha t  whatever are the requirements on agents 3 

to n, they can be similtaneously satisfied.  Thus, the essence of the problem is 

the same as in  the proof of Theorem 2, and t.he same contradiction is arrived a t .  

This mans that. agent 1 mt be indifferent (and there may be added constraints on 

the other agents) when agent 2 has an influence on the R2 outcome. T h i s  mans tha t  

1 E Lz. The rest of the proof, to find the ordering on the indices that  defines 

the  sequential dictators,  is the obvious induction and ordering argument using 
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Proof of Theorem 4. Suppose the res t r i c t ion  on the domin is imposed on 

agent 1. The defini t ion of F depends on which s e t s  are omitted from 1 ( 1 ) .  The 

following lenm identif ies each set i n  this intersection i n  a useful rmnner. 

b m m  6. h u m  tht lib thme IJ sets s a t i s f y  the res t r ic ted  damin oorrditicm ard 

t h  dcumin overlap c a n d i t h ,  ard for each cbice of j, IJ consists of t m  

disjoint c-. For e a c h s e t ,  2, in I ( l ) ,  t h m  is a permrtation (a,b,c) of 

(1,2,3) so t h a t  Z is a singleton in I a ( l ) n Ib ( l ) ,  lm t  A is mt a singleton in 

Ia(l)fUc(l) or in Ib(l)fUc(l).  Irdex c is called lh "pivotdl index" for Z. 

Example: For Z = B = Ccl>c3 >cz3, the pivotal index corresponds to the class 

P(1,Z). As a quick way to determine the pivotal index, notice from Figure 1 tha t  

the two regions adjacent to this ranking ~ g i o n ,  B, a l l  lie i n  one of the  P(1,2)  

classes,  but t h i s  group IA,B, C3 does not lie i n  only one P ( i ,  j) c lass  f o r  any other 

choice of (i , j ) . 

The proof of the l e m  is rmch the sam as tha t  of Lem 4. Notice t ha t  

fo r  each choice of Z, there are two perrmtations, but b t h  give rise to the sam 

pivotal index. 

Assume tha t  the res t r i c t ions  are imposed on voter 1, and let  2 be one of 

the s e t s  t ha t  is not i n  C1. The f irst  assert ion is tha t ,  with a pxsible 

relabdling of t h  indices and with a passible CI- of clwice of Z B Cl, w e  can 

assume tkt j = 1 is t k  pi mtal index for Z and that Cl nIj (1, s) # @ for j = 2, 3, 

s= 1, 2. To see t h i s ,  assum t h a t  1 is the  privotal index f o r  Z. Now, by 

defini t ion,  Z is not a singleton in I l ( l ) n I 2 ( 1 )  nor i n  I l ( l ) n I 3 ( l ) .  If the  other 

t e r m  i n  each intersection is i n  C1, then, by use of the domin overlap conditions, 

it follows t h a t  the assert ion is sa t i s f i ed .  So, suppose e i t he r  one, o r  b t h  

intersect,ions have no term in C1. If b t h  intersections f a i l  to meet C, , then C, 

mts only one of the I1 ( 1) classes ,  s o  I1 (1 ) can be replaced with J1( 1) - the  

singleton equivalence class of everything. If one other class f a i l s  to have C1 

met b t h  s e t s ,  then it too can be replaced with the singleton equivalence class.  



Here the overlap conditions are t r i v i a l l y  s a t i s f i e d ,  s o  this cannot occur. Thus, 

C1 mts both I j ( l , s ) ,  j = 2 , 3 ,  s=1 ,2  classes, and t w o  of the  s e t s  i n  I j ( l ) n I 3 ( l )  

are not i n  C, . This mans t h a t  the  assert ion holds. 

The remining s i tua t ion  is t h a t  f o r  one choice, say 11 (l)nI2 ( I ) ,  the  set 

accompanying Z is in C , ,  ht in I l ( l ) n I 3 ( 1 ) ,  the s e t  accompmying Z, Y, is not i n  

C1. The pivotal index f o r  Y is 2. We already know, from this construction, t h a t  

the  s e t  accompanying Y i n  12  ( l )n I1 (1 )  is not in C1. If the set accompanying Y i n  

I2 ( 1) 1313 ( 1) is not i n  C1 , then w e  are i n  the  same s i tua t ion  analyzed above f o r  Z , 
s o  the assert ion holds with Y and 2 i n  place of Z and 1. If this set is i n  C , ,  

then we have e lemnts  of C1 i n  both 11 (1) and both I 2  (1) classes. This completes 

the proof of the  assertion. 

Choose the  indices on the  I j ( 1 )  classes so  t h a t  before the res t r i c t ions  are 

imposed, I 2  (1, s) nI3 (1, s )  mets both 11  (1) classes.  Likewise, choose the  indices i n  

the  range so t h a t  R Z s  fR3, , S= 1 , 2 ,  mets both R 1  classes.  Choose the indices on 

I j  (1) so t h a t ,  before the res t r i c t ions ,  a = 11 (1,l)I'IIt (1 , l )nIa  (1 ,2)  j @ and El = 
I 1 2 1  ( 1 2 1  1 j . Define F so  t h a t  the  Rj irmge of F is Rj ,  i f f  x, is 

i n  I j ( l , s ) ,  j=2,3 ,  s = 1,2.  Note t h a t  A is e i t h e r  a o r  D. If b o t h a  and 13 are i n  

the  restricted s e t s ,  then define the R l  imge i n  any desired m e r  based on the 

ent r ies  i n  11. For instance, it can be determined by which 11 (2 ) class contains 

x2,  o r  by a m j o r i t y  vote of a l l  voters, etc. I f  one of these s e t s ,  say D,  is not 

i n  the res t r i c t ions ,  then let the  R1 hmge of F be the  unique R1 class t h a t  

contains R22fE31 when x, is in I1(1 ,2) .  When x, is i n  I1(1 ,1) ,  let the  R1 i w e  be 

determined i n  any desired mnner. 

To see t h a t  F is well defined over IlnI2nI3, note t h a t  i f  x, is not 

e i t h e r  a o r  8 ,  then it rmst be i n  1 2 ( l , s ) n I ~ ( l , s )  f o r  one choice of s. Thus, 

the  irnage of F is R2, fX3, , which mets both R1 classes.  If x, is a o r  8, 

then the  intersect ion of t h e  R2 and R3 iwes uniquely defines t h e  R1 irmge. 

This is the  def in i t ion  of F. Both values are not i n  the  domin of x, ,  s o  this 

completes the  proof. 

Next, s u p p s e  t h a t  11 (1) consists  of a s ingle equivalence set, and I2 (1) and 

I3(1) each have two sets. C1 has only two sets i n  12( l )nI3(1) ,  SO c b s e  the 

indicing s o  t h a t  1 2 ( l , s ) n I 3 ( l , s )  I $  f o r  s = 1,2. The R j  imge of F is R j ,  i f f  x, 

E I j ( l , s ) ,  j = 2,3,  s = 1,2,  and the R1 i w e  is determined i n  any desired n m e r .  

If the  res t r i c t jons  leave three sets i n  I2 (1)nI3 ( I ) ,  then F always can be 
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 presented as a funct ion of one variable.  This is because, as I have already 

shown, i f  F is not  represented by a function of one var iab le ,  then  voter  1 mrst 

have an influence on tk outxom of tw classes.  Clearly,  this mwt  be sets R2 and 

R3.  But, no mtter how the R j  inrages of F are defined i n  tern of which 

I j  ( 1)class , j = 2 , 3 ,  contains xl , there  needs is one case w h e r e  t h e  image is not 

R2sfR3,, s 1 ,2 .  This forces a s i t u a t i o n  w k r e  t he  R1 w e  is uniquely 

determined, and it is determined by xl . Because F: 11-- >R1 and because I1 (1) is a 

singleton,  it follows t h a t  tk R 1  image of F is fixed. T h i s  completes the  proof. 

Proof of Corollary 4.2. T h i s  is a straightforward argument using the  ideas 

m t i v a t i n g  t h e  statement. As i n  the  proof of Theorem 4 ,  we  need to have tw R j  

s e t s  where t h e  t h i r d  Ra outxome is not determined. This forces  th def in i t i on  of 

F. Incidently, when becomes s m l l e r ,  but it still admits a non-dictatorial 

s i t u a t i o n ,  t he  combinatorics usual ly restrict the  de f in i t i on  of F. 

/k&nml-t This research w a s  support in part by NSF grant  IST 8415384. 

1. Arrow, K. J. , (1963), Social  G5uic-e and Imiivihaal Vali~cq, 2nd. Edition. Cowles 

foundation Monograph 12, Yale University h s s ,  New Haven. 

2. Donaldson, D. , and J. A. Weyrrark, (1985), "Social choice i n  economic 

e n v i r o m n t s  " , Univ. of B r i t i s h  Columbia Discussion paper 85-20. 

3. Gibbard, A. , (1973) , "Manipulation of voting schemes: A general r e s u l t " ,  

k o n o m t r i c a ,  41, 587-601. 

4. Gibbard, A. , A. Hylland, and J. A. Weymark, (1985) Arrow's theorem with a fixed 

f eas ib l e  a l t e rna t ive" ,  Univ. of B r i t i s h  Columbia Discussion paper 85- 15. 

5. M, I. J. and Y. Mi t ta l ,  (1987), "The amalgamtion and geometry of tw-by- 

two contingency tab les" ,  The Annals of S t a t i s t i c s ,  15, 694-711. 



6. Hansson, B. (1968), "Choice structure and preference re la t ions" ,  Synthese 16 

443-458. 

7. Hurwicz , L. , (1960) , "Optirmlity and i n f o m t i o n a l  eff iciency in resource 

a l loca t ion  processes," in Arrow, Karl in,  Sup- (eds), k t h m t i c a l  kt- in t he  

Social Sciences 1959", 27-46. 

8.  Hurwicz , L. , and T. Marschak, (1987) , Journal of Complexity Theory. 

9. Hurwicz, L. , S. , Reiter ,  and D. G. S a a r i ,  (1978) , "On constructing m h a n i s r r s  

with message spaces of minim1 dimension f o r  s m t h  performme funct ions,  " Mineo, 

U. of Minn. 

10. Hurwicz , L. , and D. Schmeidler , (1978) , "Construction of outcome functions 

guaranteeing existence and pareto optimali ty of Nash equilibria" , Econometrics 46: 

1447- 1474. 

11. Kalai,  E. , E. Mueller, and M. Sat ter thwaite ,  (1979) , "Social welfare functions 

when preferences are convex, s t r i c t l y  mnotonic,  and continuous", Public Choice 34, 

87-97. 

12. K i m ,  K. H. , and F. W. Roush (1980), "Binary soc ia l  welfare funct ions",  

Journal of Economic T h r y ,  23267-277.. 

13. Reiter. S. (1977), " I n f o m t i o n  incentive and perforrmnce in the  (new)2 welfare 

economics " , The h r i c a n  Economic Review, 67, 

14. Saa r i ,  D. G. , (1978) , "The geomtry  of departrental  p o l i t i c s ,  of t h e  scoring of 

t r ack  r ~ ~ t s ,  and of Armw's Social  Choice Theorem" NU m i m  

15. Saar i  , D. G. , (1988) , "Symnetry, voting, and soc ia l  choice" , The Mathemtical 

Intelligermer , To appear, Ju ly ,  1988. 

16. Saa r i  , D. G. , (1987) , "The source of some paradoxes from soc ia l  choice and 



pmbabil i ty",  Jour of Econ. Theory 41, 1 - 22. 

17. Saar i ,  D. G. , (1984), "A nrethod fo r  constructing mssage system f o r  s m t h  

pcrfonnance functions", Jour. Econ. h r y  33, 249-274. 

18. Saari, D. G. , (1985) , The representation pmblem and tk efficiency of the  

price mhanism" , J. Math Econ 14, 135- 167. 

19. Satterthwaite, M. , (1975) , "Strategy-pmofness and h w  's conditions: 

Existence and correspondence theorem f o r  voting pmcedums and socia l  welfare 

functions. " Journal of Economic Theory 10: 187-217. 

20. Sen A. K. , (1986) , "Social choice theory", Chp 22, p 1073- 1182, i n  Hhndtook of 

&themtical hmmics, ed. K. A r r o w ,  M. In t r i l iga to r ,  North-Holland, ATE&&. 

21. Sen A. K. , (1970). " T k  impossibility of a Paretian l ibe ra l " ,  Joournal of 

Po l i t i ca l  Economy 72: 152- 157. 

22. Yaari, M. E. , (1985) , "On tk role of 'Dutch books ' i n  the  theory of choice 

under r i sk " ,  published version of tk 1985 Nancy L. Scwartz Memrial Lecture, 

Northwestern University. 


