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FOREWORD 

Heterogeneity in population data, a phenomenon which has been the subject of in- 
vestigation in IIASA's Population Program for several years, is manifested in numerous 
ways. In the area of econometrics, heterogeneity is alternatively labelled unobserved or 
unmeasured variables. Unmeasured variables cause statistical problems when empirical 
data include repeat observations on the behavior of individual units of analysip, such as 
people, households, or firms. A classic situation is "time-series cross-section' data,  in 
which a sample of units is observed a t  regular intervals over time. Among the approaches 
to  such da ta  is what is called a "random effectsn model, in which a parametric distribu- 
tion is postulated for the unmeasured variable. This paper develops a random-effects 
model for a particular kind of empirical situation, one in which the endogenous variable of 
interest is binary. The logit functional form is adopted, and a binomial distribution is 
proposed for the unobserved heterogeneity. Maximum-likelihood estimators for the 
parameters of the model are derived, and the performance of the estimators is investigat- 
ed in a series of Monte-Carlo experiments. 



ABSTRACT 

A random-effects panel logit model is proposed, in which the unmeasured attributes 
of an individual are represented by a descrete-valued random variable, the distribution of 
which is binomial with a known number of support points. The maximum-likelihood esti- 
mator of the unknown parameters of the model are derived, and the performance of the 
ML estimators is investigated in a series of Monte-Carlo experiments. Several further ex- 
tensions of the framework are also suggested, including application to discrete event- 
history data. 



A RANDOM-EFFECTS LOGIT MODEL FOR PANEL DATA 

Douglas Wolf 

In his recent survey article "Limited Dependent Variable Models Using Panel Datan 

Maddala (1987) discusses alternative statistical approaches to  da ta  consisting of a se- 

quence of individual observations on discrete outcomes. An important problem with 

which the analyst of such da ta  must deal is the possibility of persistent but unmeasured 

relevant attributes of the decisionmaker. The effect of such unmeasured attributes is to  

introduce correlations among the disturbances of the equations governing each choice in 

an individual's sequence. Several statistical models for cross-sectional da ta  - i.e. da ta  for 

a single outcome for each individual - have been generalized to  deal with repeated obser- 

vations. These generalizations can be grouped into two broad categories, "fixed-effects" 

and "random-effects" models. Maddala discusses several advantages of the random-effects 

approach (see Maddala, 1987: 309), yet he dismisses the possiblity of a random-effects lo- 

git model, on the grounds that  i t  must be based upon the multivariate logistic distribu- 

tion: the multivariate logistic distribution has the undesirable property that  all correla- 

tions between pairs of disturbances are constrained to equal one-half. 

It is the objective of this note to propose an  alternative generalization of the logit 

model: a random-effects model in which the disturbances are not constrained to  have any 

particular value (they are, however, constrained to  be nonnegative). Specifically, it is as- 

sumed that  the unmeasured individual attributes, or heterogeneity, can be represented by 

a discrete distribution, the binomial with a known number of support points. In the spe- 

cial case of two support points, heterogeneity consists of an  unmeasured dummy variable. 

The model proposed generalizes the work of Rosenbaum and Rubin (1983), who consider 

the effect of an unmeasured dummy variable in a single-period binary-logit equation. The 



parameters of Rosenbaum and Rubin's model are not all identified; rather, their model 

serves as a framework for determining the sensitivity of the coefficient on measured co- 

variates to  a range of plausible values of the unidentified parameters.f In the model dis- 

cussed below, identification is achieved through the use of repeated observations on an 

individual's discrete outcome. 

In the following section, the model is specified, and maximum-likelihood estimators 

of its parameters are derived. Only binary outcomes are considered, but the model could 

easily be extended t o  deal with multivariate outcomes. This is followed by results from 

several sampling experiments designed to explore the performance of the ML estimators 

when the da ta  are generated by the assumed model. A concluding section discusses 

several possible extensions of the basic approach. 

THE MODEL 

We begin with Maddala's equation, 

yit = ai + /3 zit + uit, i=l, ..., N; t = l ,  ..., T, (1) 

in which yit is a latent variable, ai  is an individual-specific and time-invariant effect, zit is 

a (column) vector of exogenous variables a t  time t (including a constant), /3' is a (row) 

vector of unknown regression coefficients, and uit is a disturbance term assumed uncorre- 

lated across individuals and over time for an individual. The observable outcome dit is an 

indicator of the sign of yit. We assume that the distribution function for the uit is logis- 

tic, eg. F(u)  = [l + e-u]-l, so that  conditional on ai the observed dependent variable dit 

equals one with probability exp(ai  + /3'zit) [l + exp(ai + /3'zit)]-I and equals zero with 

probability [ I  + exp(a; + /3'zit)]-'. 

It  should be noted that Roaenbaum and Rubin permit the unmeasured variable to  be correlated witht the 
measeured covariate; this correlation, in fact, motivates their analysis. The model considered here, however, 
assumes independence of the measured and unmeasured covariates. An interesting application of Rosen- 
baum and Rubin's approach can be found in Montgomery et  al. (1986). Montgomery e t  al. also generalize 
the approach, and in one instance achieve identification of the model through what is, in effect, a discrete 
Umultiple indicatorn specification. Another, quite different approach to the problem of serial dependencies 
in a panel logit model can be found in Zeger et al. (1985). 



Now, suppose that  a, = 6 mi, where m is a binomially-distributed random variable 

with parameters M, s;  O < s < l ,  M a positive integer. In other words, 

p r m j  = n = ] s 1 - s ) ,  0 M .  We assume cov[zit,mi] = 0. The expected 

value of m is Me. In the simplest case, M=l ,  and m is a dummy variable equalling zero 

with probability R, = 1-s, and equalling one with probability nl = 8. 6 is a scale param- 

eter, while the intercept of the regression (Po) serves as a location parameter for the 

heterogeneity distribution. 

In this model correlations between pairs of composite disturbances, eit = ail + uit 

and e .  , =a. + u. . are constrained to be nonnegative. The variance of m is Ms(1 -s), c t  c t i  ' 

and the variance of u is ir2/3; it can be shown that the correlation r between eit and eit. 

equals 

given the independence of m and uit. r approaches zero as s + 0 (or 1) and approaches 

one as 6(or M) + oo. The restriction to  nonnegative correlations is not, however, trou- 

blesome in the context of repeated outcomes influenced by a time-invariant unmeasured 

attribute. 

In panel data  the observables consist of the binary outcomes dil ..., diT and the exo- 

genous variables zil, ..., z,T. Let pit,- represent the conditional probability that  dit = 1 

given m = m ; that  is 

- exp(6m' + /3'zit)[l + exp(6rna + @'zit)]-' . Pitm' - 

Then the conditional probability of the sequence di, ..., diT is 

T 61 1 - 4  
Cim. = r I t = l  Pitme qitmr 1 

and, employing the parameters of the mixing distribution the unconditional probability of 

the sequence dil,. . . ,diT is 



M or more compactly Ui = xmCim. 

In view of (2) the log-likelihood of the da ta  is 

where 8 is the parameter set { ~ , 6 , p ~ , p ~ } ;  for reasons which will immediately become clear 

we separate p into components Po (the intercept) and pl (the vector of coefficients on exo- 

genous variables). Note that  if for fixed X = z l l , . . . , z i t1 . . . , z~~  the function Lo is maxim- 

ized by the set {$,d,bo,@l} then it is also maximized by the set {I-;,-&& + M@~}, 

which produces an identical heterogeneity distribution. Thus without further loss of gen- 

erality we impose the constraint 5 20. 

The first-order conditions satisfied by the ML estimates of 8 are as follows: 

N M ' aL- = u;' [x,=~ nmc,,l = 0; as ( 4 4  
ae M T 
as - = C K l  u i l  [Cm=o xm c , m ( ~ Z l  dit Qitm - Ct=l(l-d, t)~itm] = 0; (4b) 

and 

, a m - ~ s  with zilt 1. In (4a), r, = - as 

In the binary case ( N = l )  equation (4a) becomes particularly simple: 

SAMPLING EXPERIMENTS 

In this section are reported the results of several sampling experiments designed to 

explore the performance of the ML estimates of the binomial-mixture random-effects logit 

model. The experiments are not exhaustive, but illustrative. In each experiment 50 Sam- 

ples were drawn for fixed X and true parameter set e*,  and with M = l  - heterogeneity in 



the form of an unmeasured dummy variable. A single normally-distributed covariate was 

used in all experiments2, and in all cases Po = 0 while PI = 1. Finally, in each experiment 

N T  = 1200, so that  the total number of observed outcomes is constant. 

In implementing the model, transformations of the parameters a and 6 were em- 

ployed in order that  restrictions on the arguments of the likelihood function could be re- 

laxed. In particular, the likelihood function was maximized with respect t o  the 

transformed parameter set 0 = {In - ,ln6,/30,P1). 1 liS] 
Results of the experiments are presented in Table 1. From the most basic stand- 

point - the ability to  obtain a solution - in almost all cases the model performed well, 

with the exceptions of experiments 7 and 10, representing extreme cases - of panel length 

( T=2) and the magnitude of omitted-variable effects (6 = 0.25)) respectively. For each of 

these experiments there were several samples for which the model failed to  converge, and 

which therefore were d i ~ c a r d e d . ~  

Experiments 1-3 and 4-6 explore variations in s ,  which is the mean of the unmeas- 

ured dummy variable, for situations in which a moderate number (6) and a large number 

(12) of panel observations are available. Experiments 7 and 8 employ shorter panels (2 

and 3 periods, respectively) while experiments 9 and 10 vary the magnitude of ornitted- 

variable effects. 

Table 1 reports two statistics for each parameter estimated: bias, which equals 

X(8; - 0;*)/50, and root mean squared error (RMSE), which equals 

[X(B'; - 9;*)/50]~1~.For the parameters s and 6, the average value, after inverting the 

transformation used in the actual estimation, is also shown. The bias of the estimators of 

all four parameters appears to  be nonsystematic: in no case is the bias uniformly positive 

In particular, for each individual zit = wiO + wit, where wo,,wl, ..., w~ are iid standard normal variates. 
The resulting correlation between zt and zt, is not an unrealist~c situation in actual data. 

It  should be noted however, that  only a single set of starting values (chosen at  random from the uniform 
distribution on the [-l,l] interval) was attempted for each sample; for the discarded samples it may have 
been possible to  achieve convergence with a different set of starting values. 



or negative. In applications the parameters of greatest concern are the regression 

coefficients Do and PI. For Dl (represented by the parameter 8;) the results are quite com- 

forting, as the bias is small, nearly always less than one percent of the true value. In eight 

of the 10 experiments the bias of Do (represented by the parameter 8;) exceeds that of Dl 

I-s by several times. The bias of 8;(=ln-) and 8i(=ln6) is generally large, but, again, non- 
8 

systematic. 

In terms of RMSE, the results are similar to those just described: Dl is estimated 

rather well, somewhat less well, and both s and 6 are estimated considerably less well. 

Note also that in experiment 10, where 6 equals only 0.25, the bias in the estimator of In6 

is only about 10 percent of the true value, while the average of 6* is almost three times too 

high, a consequence of the nonlinearity of the transformation used, in combination with 

the sampling distribution of the estimator in this particular experiment. 

A few tentative conclusions can be advanced on the basis of the results given in 

Table 1. First, the estimator of Dl, which is perhaps of greatest importance in any appli- 

cation, is relatively unaffected by the variations explored here. Second, considering the 

whole parameter set, better estimates are obtained from long rather than short panels (cf. 

experiments 2, 5, 7 and 8), and when s is close to 0.5 (cf. experiments 1-3 or 4-6). And, 

finally, estimates of the parameters representing heterogeneity - s and 6 - are relatively 

imprecise, particularly when 6 takes on progressively more extreme values (cf. experi- 

ments 5, 9, and 10). None of these conclusions are very surprising, which is reassuring. 

Imprecision of ML estimators of the parameters of mixing distributions is frequently en- 

countered, as for example in recent studies of heterogeneity in continuous-time 

econometric duration models (see, for example, Heckman and Singer, 1985). 



CONCLUDING REMARKS 

This note has proposed a random-effects approach to  dealing with unmeasured vari- 

ables in a panel logit model, using a binomial distribution as an assumption regarding the 

distribution of the unobservable. Monte-Carlo experiments suggest that  maximum- 

likelihood estimation of the parameters of the model produces satisfactory results, a t  least 

for the structural parameters of greatest interest, and in the case where the da ta  are gen- 

erated by the assumed model. It remains to  be seen how the ML approach would perform 

when the model is incorrectly specified, or, more importantly, when confronted by nonex- 

perimental data. 

We close with a few additional remarks on possible extensions or further variations 

on the basic model described: 

(1) It is not necessary that  Ti = T for all i ;  each individual can be present for a 

different number of periods in the panel data, provided that the sampling plan is 

noninformative (see Hoem, 1985). That is, variation in T must not reveal informa- 

tion on the underlying process. 

(2) The model can be used to  analyze discrete-time duration da ta  (see Allison, 1982); 

unmeasured heterogeneity in a failure-time model can be a source of serious errors of 

inference, and a discrete-heterogeneity approach such as that outlined above can be 

used as one possible way t o  generalize a discrete-time duration model. 

(3) Distributions other than the binomial could, of course, be proposed as the mixing 

distribution. Distributions with infinitely many support points (such as the Poisson 

or negative binomial) would require additional study. Discrete mixing distributions 

have the attractive property of leading to  mathematically convenient likelihood 

functions and gradients, as shown here; continuous mixing distributions might also 

be investigated. 

(4) Throughout, we have considered only binary outcomes, but the approach can easily 

be generalized to  multiomial outcomes. In principle, if there are K outcome 



categories, then we can identify the effects of K-1 unmeasured traits or "factorsn, 

each of which has a distinct "loadingn - S j k ;  j , k  = 1, ..., K-1 - in each of K-1 latent 

index functions. 

Another attractive feature of the use of a discrete distribution to  represent unmeas- 

ured heterogeneity is that  i t  makes tractable the estimation of interaction effects 

between the unmeasured variable and measured coveriates; in other words, we could 

estimate models of the form 

yit = Smi + p'zit + r 'miz i t  + uit; 

this suggestion, like those preceding it, is a subject for further study. 
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Table 1 

Results from Sampling Experiments 

Experiment 

True valuesa 

Bias 

RMSE 

a In all experiments the true values for O3 and O4 are 0 and 1, respectively. 


