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ADAPTIVE NO~ONOTONIC MlCI'HODS 
WITH AVERAGING OF SUBGRADEXTI'S 

N.D. Chepurnoj 

1. OVEBYIEW OF RESULTS IN NONMONOTONIC SUBGEWDIENT METHODS 

Among the  existing numerical methods of solution of nondffferentiable optimi- 

zation problems, the  nonmonotonic subgradient methods hold an important position. 

The pioneering work by N.Z. Shor  [26] gave impetus t o  the i r  explosive pro- 

gress.  In 1962, he suggested an iterative process of minimization of convex 

piecewise-linear function named afterwards the generalized gradient descent 

(GGD): 

where gS E af'(xS ) i s  a set of subgradients of a function f ' ( x )  at a point x S  ; rs r 0 

i s  a s t ep  size. 

For the differentiable functions this method agrees  very closely with the 

well-known subgradient method. The fundamental difference between them is  that  

the motion direction (- g ) in (1.1) is, a s  a rule,  not a descent direction. 

A t  the  f i r s t  attempts to substantiate theoretically the  convergence of pro- 

cedures  of the type (1.1) the r e sea rche r s  immediately faced two difficulties. For 

one thing, the  objective function lacked the  property of differentiability. For 

another,  method (1.1) w a s  not monotonic. These combined features  rendered im- 

practical t he  use of known gradient procedure convergence theorems. 

New theoretical approaches therefore  became a must. 

One more "misfortune" came on the  neck of the  others: numerical computa- 

tions demonstrated tha t  GGD has a low convergence rate .  

Initially grea t  hopes were pinned on the  step-size selection s t rategy as a way 

towards overcoming the  crisis. 



By the  ear ly  1970s difficulties caused by the formal substantiation of conver- 

gence of nonmontonic subgradient procedures  had been mastered and different ap- 

proaches to the step-size regulation had been offered [6, 7,  8 ,  19,  20, 261. However 

the computations continued t o  prove the poor convergence of GGD in pract ice .  

I t  can  be  said tha t  t he  f i r s t  s tage in GGD evolution w a s  over  in 1976. 

Thereupon the  numerical methods of nondifferentiable optimization developed 

in t h r ee  directions, i.e., methods with space dilation, monotone, and adaptive non- 

monotonic methods w e r e  explored. 

Let us dwell on each of these approaches. 

In an  effor t  t o  enhance the  GGD efficiency, N.Z. Shor elaborated methods 

where the  operation of space  dilation in the  direction of a subgradient and a 

difference between t w o  successive subgradients w a s  employed. Literally t he  next 

f e w  yea r s  w e r e  prolific f o r  papers  [27, 28, 291 investigating into the  space dilation 

operation in nondifferentiable function minimization problems. A high rate of con- 

vergence of the suggested methods w a s  corroborated theoretically. 

Computational pract ice  a t tes ted convincingly to the  advantageousness of ap- 

plication of the  algorithms with space dilation, especially the  r-algorithm [29], as 

alternative t o  GGD, providing dimensions of the  space do not exceed 200 t o  300. 

However, if dimensions are ample, f i rs t ,  a considerable amount of computations is 

spent  on the space dilation matrix transformation, second, some e x t r a  capacity of 

computer memory is  required. 

The monotonic methods became another  essential direction. 

Even though the  f i r s t  papers  on the monotonic methods appeared back in 1968 

(V.F. Dem'janov [30]), t he i r  progress  reached its peak in the  ear ly  70's. Two 

classes of these algorithms should be  distinguished here:  the  &-steepest descent 

15, 301 and the  &-subgradient algorithms [31-341. W e  shall  not examine them in de- 

tail but note, t ha t  the  monotonic methods offered higher r a t e  of convergence a s  

against GGD. Just as with t he  methods using the  space dilation, vast  dimensions of 

problems to be solved still remained Achilles' heel f o r  the  monotonic algorithms. 

Thus, t he  nonmonotonic subgradient methods have come into par t icular  impor- 

tance in the  solution of large-scale nondifferentiable optimization problems. 

The nonmonotonic procedures  have another  important object of application, 

a p a r t  from the large-scale problems, i.e., the  problems in which the  subgradient 

cannot be  precisely defined at a point. The latter encompass problems of identifi- 

cation, learning, and pat tern recognition [I, 211. The minimized function i s  t h e r e  a 



mathematical expectation whose distribution law is unknown. E r r o r s  in subgradient 

calculation may s t e m  from computation errors and many o the r  rea l  processes.  

Ju.M. Ermol'ev and Z.V. Nekrylova [9] w e r e  the  f i r s t  to investigate the  like 

procedures.  Stochastic programming problems have increasingly drawn the  atten- 

tion to the  nonmonotonic subgradient methods. 

However, as pointed out ear l ier .  GGD, widely used, res is tant  to e r r o r s  in 

subgradient computations, saving memory capacity, st i l l  had a poor rate of conver- 

gence. Of g rea t  importance therefore  w a s  the  construction of nonmonotonic 

methods such that ,  on the one hand, re ta in  all advantages of GGD and, on the  other ,  

possess a high rate of convergence. 

I t  has been this requirement tha t  has  le t  to elaboration of the  adaptive non- 

monotonic procedures.  

An analysis revealed tha t  the Markov nature  of GGD is the chief cause of i t s  

slow convergence. I t  is quite obvious that  the use of t he  m o s t  intimate knowledge of 

progress  of the computations is indispensable t o  selection of the  direction and re- 

gulation of the stepsize. 

Several ideas provided the  basis f o r  the development of adaptive nonmonoton- 

ic  methods. 

The major concept of all techniques fo r  selecting the direction and regulating 

the step-size w a s  the use of information about the  fulfillment of necessary condi- 

tions to have the extremal-value function. 

I ts  implementation are the methods with averaging of the subgradients. 

In the  most general case by the operation of averaging is  meant a procedure 

of "taking" the convex hull of an  a rb i t r a ry  finite number of vectors.  

The operation of averaging in the numerical methods w a s  f i r s t  applied by Ja.2. 

Cypkin [ Z Z ]  and Ju.M. Ermol'ev [ll]. 

The paper  by A.M. Gupal and L.G. Bazhenov [3] also dealing with the use of 

operation of averaging of stochastic estimates of the  generalized gradients ap- 

peared in 1972. 

However all the  above papers  considered the  program regulation of the step- 

size, i.e., a sequence [ r ,  ] independent of computations w a s  selected such tha t  



The next natural  s tage in the evolution of this concept w a s  the  construction of 

adaptive step-size regulation using the operation of averaging of preceding 

subgradients. 

In 1974, E.A. Nurminskij and L.A. Zhelikovskij [I81 suggested a successive 

programadapt ive regulation of the step-size f o r  the  quasigradient method of 

minimization of weakly convex function. 

The c rux  of this relation consists in the  following. 

Let an i terat ive sequence be constructed according to the  rule  

where gS  E a j ( z s )  is  a quasi-gradient of the  function j ( z )  at the  point zS,  r o  is  a 

constant step-size. 

Assume tha t  t he re  exis t  z E En and numerical parameters t > 0, 6 > 0 such 

that  f o r  any s = 0 ,  1, 2, ... llzS - G 1 1  5 6. Let us suppose also that  a convex combi- 

S 
nation of subgradients t g i  i f  LO exists such tha t  IlesolI S t, 

S 
eSD E conv t g i  j i  :0 . 

Then the  point z i s  sufficiently close to the set X' = argmin j ( z )  according to the 

necessary extremum conditions. In the given case the  step-size has  to be reduced 

and the procedure repeated with the new step-size value r l  starting at the ob- 

tained point zSD. The numerical realization of the described algorithm requires  a 

specific rule  for  constructing vectors eS'. In [10] the vector  eS' is constructed by 

S 
the rule  os' = P r o j  O/conv g k  k ' s ,  tha t  is, all quasi-gradients are included 

into the  convex hull s tar t ing from the  m o s t  recent  instant of the step-size change. 

Numerical computations bore out the expediency of making allowances for  such re- 

gulation. However a grave  disadvantage w a s  inherent in it: the  g rea t  laboriousness 

of i teration. Considering tha t  the  approach as a whole holds promise, averaging 

schemes had to be developed f o r  the efficient use when selecting the direction and 

regulating the step-size. 

This paper  treats such averaging schemes. They se rve  as a foundation f o r  new 

nonmonotonic subgradient methods, f o r  the description of stochastic finite- 

difference analogs, a posteriori  estimates of solution accuracy. P r io r  to discuss- 

ing results,  let us make s o m e  general  assumptions. Presume that  the minimization 

problem is  being solved on the  en t i re  space of the function j ( z ) :  



where En is  an n-dimensional Euclidean space. The function j'(z) will be every- 

where thought of as being the  convex eigenfunction j'(z), dom j' =En,  the sets 

[z : /(z) 5 c j being bounded fo r  any bounded constant C. The set of solutions of 

the problem (*) will be believed to be the  s e t  

2. SUBGRADIENT KETHODS WITFi PROGRAM-ADAPTIVE STEP-SIZE 

ImGULATION 

The concept of adaptive successive step-size regulation has already been set 

forth.  In 1231 a way of determining the  instant of t he  step-size variation w a s  sug- 

gested. Central to i t  was the simplest scheme of averaging of the preceding subgra- 

dients. This method is  easy to implement and effects a saving in computer memory 

capacity. Compared t o  the program regulation, the adaptive regulation improves 

convergence of the  subgradient methods. 

Description of Algorithm 1 

Let z0  be an  a rb i t r a ry  initial point, b > 0 be a constant, itk j ,  [rk j be number 

sequences such tha t  ck > 0, tk -4 0, rk > 0, rk -+ 0. Put  s = 0, j = 0, k = 0, 

L O  = E aj'(zO). 

Step  1. Construct 

S tep  2. If j'(zS +') >j'(zO) + b, then select  zS E Iz :j'(z) zSj'(zO)j and go 

to Step 5. 

S tep  3. Define 

S t ep4 .  1f lies +41 > ck, then s = s + 1 and go t o s t e p  1. 

Step  5. Se t  k = k + 1, j = s + 1, s = s + 1 and go  t o  Step 1. 



THEOREM 1.1 Assume t h a t  t h e  problem ( 8 )  is solved  b y  a lgor i thm 2. Then a l l  

Limit p o i n t s  of t h e  sequence [ zS  1 belong to x*. 

PROOF Denote the instants of step-size variations by sm. Let us prove tha t  the 

step-size rk varies  an infinite number of times. Suppose i t  i s  not so,  i.e., the step- 

size does not vary starting from an  instant s, and is  equal r , .  Then the points z S  

fo r  s 5 s, belong t o  the set 

and are related by 

Considering tha t  t he  step-size does not vary,  llesll > E ,  > 0 fo r  s r s , .  In passing 

to  the  limit by s -4 in the  inequality 

we obtain a contradiction in the boundedness of the  set 

The fur ther  proof of Theorem 1.1 amounts to checking the  general  conditions 

of algorithm convergence derived by E.A. Nurminskij [17]. 

NURMINSKIJ THEOREM Let t h e  sequence  lzS 1 a n d  t h e  set  of s o l u t i o n s  X* 

be s u c h  t h a t  the  fo l lowing c o n d i t i o n s  a r e  sa t i s f i ed :  

Dl. For any sequence [zsk 1 such tha t  

D2 There exists the  closed bounded set S such tha t  

D3 For any subsequence [z  nk 1 such tha t  



t h e r e  exis ts  co > 0 such t h a t  f o r  all 0 < E S ro and any k 

inf m :  [IIzm -znkII > rj = m k  < =  I. 
m"'k 

D4 The continuous function W(z) exis ts  such t h a t  f o r  a n  a r b i t r a r y  subsequence 

[z  nk j such t h a t  

and f o r  t h e  subsequence [zmkj corresponding to i t  by condition D3 f o r  an  a rb i -  

t r a r y  0 < E S r0 

D5. The function W(z) of condition D4 assumes no more than countable number of 

values on t h e  set x*. 

Then a l l  limiting points of t h e  sequence [ zS  1 belong to x*. 

Select t h e  function f ( z )  as the  function W(z). Conditions Dl, D5 are satisfied 

in view of t h e  algorithm s t r u c t u r e  and the  e a r l i e r  assumptions. 

The rest of t h e  conditions will be  verified by t h e  following scheme. W e  will 

p rove  t h a t  conditions D3, D4 hold t h e  points being t h e  inner  points of t h e  set 

s = [z  : f ( z  ) 3 f ( z  O )  1 .  I t  is therewith obvious t h a t  

max W ( z  ) < inf W ( z  ) 
t ES 

Then t h e  sequence [ z S  1 fal ls  outside t h e  set S only finite number of times. Conse- 

quently, condition D2 is satisfied and th is  automatically entails  t h e  validity of D3 

and D4. 

So, let t h e  subsequence [znpj exis ts  such t h a t  znp --, z  ' x*. Assume at th i s  

s t age  of the  proof t h a t  z  ' E int S. W e  will prove t h a t  t h e r e  exis ts  ro > 0 such t h a t  

f o r  all 0 < E 3 r0 at a n  a r b i t r a r y  p: 

Now suppose condition (2.1) i s  not satisfied,  t h a t  is ,  f o r  any r > 0 t h e r e  ex i s t s  n p  

such t h a t  l1zs - zn41 3 r f o r  all s > np. 



W e  have 

for  sufficiently large np and s  > n,,. By the supposition 0 Z B f ( x ' ) .  By virtue of 

the closedness, convexity and upper semi-continuity of the  many-valued mapping 

a f ( x )  t he re  exists E > 0 such that  0 = conv Gqc( z  '), where conv 1.1 is  a convex 

hull and G4r(x')  is  a set 

It  is  easily seen tha t  E > 0 can be always selected in such a way tha t  

UIe (x  ') C int S, where ( z  ) = x  : z - x  1 5 4 . Let 6 = min 11; 11, 
f E conv G 4,(x '). Obviously 6 > 0. As ek - 0, t he re  exists an integer L(6)  such 

that  f o r  k 2 K ( 6 )  we have S r ) / Z .  Put  np 2 K ( 6 ) .  Then i t  i s  readily seen tha t  

fo r  s  2 np the  step-size r k  can vary no m o r e  than once within the set UIc ( z ' ) .  Ex- 

* 
amine the  sequence IsS 1 separately on the  intervals np 5 s  < s p  , where 

s; = min sm : sm a n p ' .  

When np S s  < sp  the  points zS are related as follows 

where the  index L i s  reconstructed with respec t  to s p  . Let us consider t he  sca la r  

products 

where z np = grip, 



Since z s  E conv Gq,(z ' ) ,  s 2 np, i t  i s  possible t o  prove t h a t  

N1 N 1 + l  
( z  , g  ) 2 y ,  y = 1 / 2 l 9 ~ .  

Thus, 

We next  consider  t h e  scalar products  

ds = (zN1+l - z s ,  g s )  = r 1 ( s  -Nl  - l ) ( z s - l ,  g s )  , 

where s 2 N1 + 1. 

N e  N e + l  
The index N2 exis ts  such t h a t  ( z  , g ) 2 y and dNe + l h  r l ( N 2  - 
Then in a similar way we can prove the  exis tence of indices Nt ( t  2 3 )  such t h a t  

I t  i s  easy t o  p rove  t h a t  Nt + - Nt S N  < =, t = 1, 2,. . . . Let Nt b e  t h e  maximal of 

indices Nt tha t  does not exceed  s; . Then 

Since s p  - Nt0 5 N ,  then with p --r = t h e  las t  term on t h e  right-hand side of 

t h e  inequality 

approaches  zero .  W e  finally obtain 

where E; -+ 0 with p' --r w. 

I t  i s  not difficult t o  notice t h a t  t h e  reasoning which underlies t h e  derivation 

I 
of inequality (2.2) may be  also repea ted  without changes f o r  t h e  in terval  s L sp  t o  

g e t  

f ( z r n )  - f ( z n p )  s - 71 - s;) y + c; 

Adding (2.2) t o  (2.3) we obtain 



In passing t o  t h e  limit by m  --, = in inequality (2 .4)  we are led t o  a contradiction 

with r e s p e c t  t o  t h e  boundedness of continuous function on t h e  closed bounded set 

U q t ( x d ) .  Consequently, condition (2.1)  i s  proved. 

Let 

n 
m p  = inf m  : l / xm - x P I \  > r . 

m >np 

By s t r u c t u r e  xmp F u,(xnp) ,  but  f o r  sufficiently l a rge  p 

All t h e  reasoning involved in derivation of inequality (2.4)  remains valid f o r  t h e  in- 

s t a n t  mp, t h a t  is, 

we have 

In passing to the  limit by p --, -we g e t  

- 
lim w(xmp) < lim w(anp)  . 

P - -  P - -  

The f u r t h e r  proof of th is  theorem follows from t h e  Nurminskij theorem. 

To fix more precise ly  t h e  instant  when the  i tera t ion p rocess  g e t s  into t h e  

neighborhood of t h e  solution we can employ the  following modification of algorithm 

1 provided t h e  computer capaci ty  allows. 



Let z 0  be an a rb i t r a ry  initial point, d > 0 be a constant, [ E ~  1 ,  Irk 1 be number 

sequences such tha t  ck > 0, ck 4 0, rk > 0 ,  rk 4 0; k l ,  k2, . . . , k, be integer 

positive bounded constants. 

Put  s = 0, j = 0, k = 0, e0 = g o  E B f ( z O ) .  

Step 1 Construct 

Step 2 If f ( z S f l ) > f ( z O ) + d ,  then ~ ~ + ~ ~ [ z : f ( z ) ~ f ( z ~ ) ]  and go t o  

Step 5. 

S tep  3 Define 

"0s  +1 = s + l  
e,S + 1 g s  +l 

s - j  + 2  s - j + 2  

Each of the  notations Pi(- ,  ., -) designates an  a rb i t r a ry  convex combination of a 

finite number of the  indicated preceding subgradients. 

Find 

- min IIe; +l I I  . 
LLs + l -  o s p s m  

S t e p 4  If ps+l  > E ~ ,  t h e n s  = s  + l a n d g o t o S t e p l .  

S t e p 5  Se t  k = k  + 1 ,  j = s  +1, s = s  + 1 ,  eS = g S  andgoLoStep1 .  

THEOREM 2.1 mppose  that  the problem (*) is solved by the modiJ%ed algo- 

ri thm I. Then all limit points of the sequence iz 1 belong to x*. 



3. METHODS WITH AVERAGING OF SUBGRADIENTS AND PROGRAM-ADAPTIVE 

SUCCESSIVE STEP-SIZE REGULATION 

Success ive  Step- Size Regula t ion  

A s  noted in a number of works [Z, 3, 12,  161 i t  i s  expedient t o  average subgra- 

dients calculated at the previous iterations s o  tha t  the subgradient methods will be  

more regular.  For  instance, when the  "ravineu-type functions are minimized, the  

averaged direction points the  way along the bottom of the "ravine". 

I t  will be demonstrated in Section 5 tha t  the  operation of averaging enables 

the improvement of a posteriori  estimates of the solution accuracy along with the 

upgrading of regularity of the described methods. 

Methods with averaging of subgradients and consecutive programadapt ive re- 

gulation of the step-size are set for th  in this section. 

Results obtained h e r e  stem from [24]. 

Description of Algorithm 2. 

Let z0  be an  a rb i t r a ry  initial approximation; 3 > o be a constant; Irk 1, irk j 

be number sequences such tha t  

P u t s  = 0, j =0, k =0, 

Step 1 Construct 

Step 2 If f ( z S  +I)  > f ( z O )  + 8, then go to  Step 7. 

Step 3 Define vS  according to  the  schemes a )  o r  b). 

S t e p 4  ~ o n s t r u c t e ~ + ~ = e ~  + ( s  - j  + ~ ) - l ( v ~ + ~ - e ~ ) .  

S t e p 5  1f \ leS+41 > el:, t h e n s  = s  + l a n d g o t o S t e p l .  

S t e p 6  Se t  k = k  + 1 ,  j = s  + 1 ,  s = s  + 1 ,  eS = v S  a n d g o t o S t e p 1 .  

S t e p 7  ~ e t z ~ + ~ E i z : f ( z ) ~ f ( z ~ ) ] , s = s + l ,  j = s , k = k + l a n d g o t o  

Step 1. 



In construction of the direction v S  the following schemes of subgradient 

averaging a r e  dealt with. 

a )  The "moving" average. Let K + 1 be an  integer. Then 

where gi E a f ( z i  ), hi, + 0. 

b) The "weighted" average. Let M + 1 be an integer. Then 

v S = g S + h S ( v S - l - g S ) ,  where O S h s S 1  f o r  s f 0  (mod M), 

0 S As S 6 <1 f o r  s = O  (modM). 

THEOREM 3.1 Assume that the  probLem (*) is solved by aLgorithm 2. Then a L L  

l imi t  p o i n t s  of t he  sequence [zS j belong to the  se t  x*. 

4. STOCHASTIC FINITE-DIPFEENCE ANALOGS TO ADAPTIVE NONBEONOTONIC 

METHODS WITH AVERAGING OF SUBGBADIENTS 

I t  should be emphasized tha t  the  practical value of t he  subgradient-type 

methods essentially depends upon the  existence of t he i r  finite-difference analogs. 

Of g rea t  importance the finite-difference methods a r e  primarily in situations when 

subgradient computation programs a r e  unavailable. This generally occurs  in the 

solution of large-scale problems. Construction of the  finite-difference methods in 

the nonsmooth optimization originated two approaches: the nondeterministic and 

the stochastic ones. Each of them has  i t s  own advantages and disadvantages. The 

stochastic approach is  favored here.  

One of the advantages of the  introduced averaging operation i s  t he  fact  that  

the construction of stochastic analogs t o  subgradient methods presents  no special 

problems. 

The offered methods a r e  close t o  those with smoothing [4] which, in their  turn,  

a r e  closest to the  schemes of stochastic quasi-gradient methods [IZ]. Research 

into the  stochastic quasi-gradient methods with successive step-size regulation i s  

quite a new and underdeveloped field. Ju. M. Ermol'jev spur red  f i r s t  the  investiga- 

tions in this direction. His and Ju. M. Kaniovskij results [13] a r e  undoubtedly of 



theoretical interest.  However implementation of methods described in [14] c rea tes  

complications as the re  is no rule  to regulate variations in the step-size. 

Let us f i r s t  dwell on functions f ( x ,  i )  of the form 

where ai > 0. 

Propert ies  of the functions f ( x ,  i )  have been studied by A.M. Gupal [4] 

proceeding from the assumption that  f ( z )  satisfies the Lipschitz local condition. 

THEOREM 4.1 ,!f f (z  ) is a convez eigqfbnct ion,  dom f = E" , t hen  f (z  , i ) is 

also a convez eige@unction, dom f (z  , i ) = E n ,  for a n y  ai > 0. 

THEOREM 4.2 A sequence of j b n c t i o n s  f ( z ,  i )  u n ~ r m l y  converges to f ( s )  

w i t h  ai -+ 0 in  a n y  bounded domain X. 

Now we shall go t o  the description of stochastic finite-difference analogs t o  

algorithms with successive program-adaptive regulation of the step-size and with 

averaging of the direction. 

Description of Algorithm 3 Let so be a n  a rb i t r a ry  initial approximation, b > 0 
be a constant, [ti j, [ t i  j ,  [ai 1, Ipi j be number sequences. 

Put  s = 0, i = 0, j = 0. 

Step 1 Compute 

1 " <s =- 'IS (f(si8 . - . , ~ t + Q i ,  . .  . , X n )  
2 a i  I: = 1 

- 
where S;, k = 1 ,  n are independent random values distributed uniformly on inter- 

vals [zi - a i ,  z; + a i l ,  ai > 0. 

S t e p 2  Construct e S  in compliance with the  schemes a )  and b), where the 

subgradients a r e  replace by the i r  stochastic estimates. 

S t e p 3  F i n d s S + '  =zS  - t i e S .  

S t e p 4  I f f ( z S + ' ) > f ( z 0 ) + b , t h e n g o t o S t e p 9 .  



S t e p 5  ~ e f i n e z ~ "  = z S  + ( s  - j  +l)- '(es - z S )  

Step 6 If s - j < p i ,  then s = s + 1 and go to  Step 1 .  

S t e p 7  ~ f I l z ~ + ~ I I > t ~ ,  t h e n s  = s  + l a n d g o t o S t e p l .  

S t e p 8  P u t i  = i + l , j  = s + l , s = s + l a n d g o t o S t e p l .  

S t e p 9  ~ e t z ~ + ~ €  I z : f ( z ) S f ( z 0 ) ] ,  j = s  + 1 ,  i = i  + 1 , s  = s  + l a n d g o  

t o  Step 1. 

THEOREM 4.3 Let t he  problem (*) be solved by a lgor i thm 3 a n d  the number se- 

quences 

satisfy the  following conditions 

Then almost fo r  all o the sequence f ( z S  (o)) converges and all  Limit points of the 

sequence [ zS  ( a )  j belong t o  the  set of solutions x*. Theorem 4.3 is proved in detail 

in [25]. 

5. A POSTERIORI ESTIMATES OF ACCURACY OF SOLUTION TO ADAPTIYE 

SUBGRADIENT METHODS AND THEIR STOCHASTIC 

FINITE-DIFFERENCE ANALOGS 

In numeric solution of extremum problems of nondifferentiable optimization 

strong emphasis is  placed on the  check of obtained solution accuracy. Given the  

solution accuracy estimates, f i r s t ,  a very efficient rule  of algorithm stopping can 

be formulated, second, the obtained estimates can  form the basis f o r  justified con- 

clusions with respec t  t o  the  s t ra tegy of selection of algorithm parameters. 



Using r a t h e r  simple procedure a posteriori  estimates of solution accuracy for 

the introduced adaptive algorithms are constructed here .  The estimates provide a 

means f o r  s t r ic t ly  evaluating efficiency of the averaging operation use. 

Thus, assume tha t  the convex function minimization problem 

is  being solved. 

Suppose the set X* contains only one point x *. 

To solve the problem (0) consider algorithm 1. The spin-off from the proof of 

theorem 2.1 is  the proof tha t  the sequence l x S j  falls outside the set 

lx : p ( x  ) 5 f ( x O )  + 61 a finite number of times only. Therefore,  c 2 0 exists such 

tha t  f o r  s 2 ? 

Then the s t ep  size will vary only if the condition l ies +'I1 5 rk is satisfied, 

where 

Without loss of generality w e  will assume tha t  the  f i r s t  instant of the change from 

the s t ep  ro  to  r l  occurred just because the condition 

is satisfied. 

From the convexity of t he  function f ( x )  i t  i s  inferred tha t  

Summation of inequalities (5.1), (5.2), . . . (5.3) yields 



Denote the expression (so  + I)-' C ; O ~  x i  - x O )  by A,,. 

W e  have obvious inequalities 

where with so  d s  d sl the points x S  are related by x S  + ' = x  - r ' g S .  For these 

values of s  it i s  possible to  derive that 

s o  + 1  
€ lx  : j ' ( x )  d min l f ( z  ), . . . , f ' ( x s ' ) ] ]  . 

Thus, f o r s k  + I d s  d ~ ~ + ~ w e  have 

where 

22;' E ix  : J ( x >  5 min [ p ( x  Sk+l)  , . . . , j ( x S k + l ) ] ]  , 



I t  is  easily proved tha t  Ak 4 0. 

THEOREM 5.1 Assume that t h e  problem (*) is solved  b y  a l g o r i t h m  2. Then t h e  

i n e q u a l i t i e s  

hold f o r  such instants sk at which the  step-size var ies  because the  condition 

lleskIl S ,rk is  satisfied. 

REMARK I t  follows from theorem 5.1 tha t  the s a m e  estimate occurs  both f o r  the  

subsequence of "records" 11 2, { and fo r  Cesam subsequence (8" {. 

Let the problem (*) be solved by algorithm 2 where t he  operation of averaging 

of proceeding subgradients i s  used. Denote instants of changes in the  step-size by 

s i ,  i = 0 ,  1, 2, .... Suppose the  f i r s t  instant of the change from r o  to r l  takes  

place because the  inequality lleSolI S E O  holds. Examine the  scheme of averaging by 

"moving" average. W e  have 

gS s p *  + ( g " ,  2 s  - Z e )  , 

s 
Designate the expression C X i ,  by j'. 

i = O  

Then 

Whence f o r  s s K w e  have 



For s > K w e  shal l  have 

Thus, 

From t h e  formula 

t h e  following recommendations can be offered with r e s p e c t  t o  t h e  selection of 

pa ramete rs  Xi,, : 

(2) min 5 X i ,  s ( g i , x i  - x O )  , f: X i ,  s = I  
h , S * O i  = o  i = o  

The subgradient  averaging the reby  allows improving a poster ior i  estimates of 

t h e  solution accuracy .  This may substantiate formally t h a t  i t  is of advantage to in- 

t roduce and study t h e  operat ion of subgradient averaging.  

For  an  a r b i t r a r y  instant  of step-size variat ion s f  > K we can  easily obtain t h e  

estimate 

THEOREM 5.1 Let the  problem ( a )  be solved by  algorithm 2 w i t h  the u s e  of 

averaging scheme a). Then for the  i n s t a n t s  s f ,  for which  11 es'l 1 5 ci ,  inequal i ty  

(5.9) holds. The scheme of averaging b y  "weighted" average b) i s  treated in a 



similar way. 

The a posteriori  estimates of the  solution accuracy attained fo r  the adaptive 

subgradient methods can be extended to  the i r  stochastic finite-difference analogs 

with the  minimum of alterations.  The way of getting them is illustrated with algo- 

rithm 3 .  We will use notations introduced in Section 4.  When proving theorem 4.3 i t  

is possible t o  demonstrate tha t  the step-size rf  varies  an infinite number of times. 

A s  algorithm 3 converges with a probability of unity, then fo r  almost all o i t  i s  pos- 

sible t o  indicate E(o) such tha t  with s 2 

Therefore,  with s 2 E(o) the  step-size r f  varies  because the  condition 

holds, where sf 2 pi + j, zs' = zs' -' + (sf - j ) l (#s '  - z  ' )  sequences Itf ) 

and Ipf 1 comply with propert ies  formulated in theorem 4.3, j is reconstructed by 

S f .  

Consider the  event 

where st is the instant of step-size change tha t  precedes sf .  There exists the  

constant 0 < c < such tha t  with the probability g r e a t e r  than 1 - Cdi i t  i s  possi- 

ble t o  state tha t  

Then fo r  the  instant si the  inequality 

holds with the  s a m e  probability. 



Theorem 5.3 is  readily formulated and proved. Assume tha t  the problem (*) i s  

solved by algorithm 3. Then f o r  almost all w i t  is  possible t o  isolate a subsequence 

of points jxs'(w)j f o r  which with the probability g r e a t e r  than 1 - C bi the inequal- 

ities hold 

where f iYl  = min f (x , i - I ) ,  
2 €En 

x i Y l  E Argmin f (x , i - 1) . 
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