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FOREWORD

The numerical methods of the nondifferentiable optimization are used for solv-
ing decision analysis problems in economic, engineering, environment and agricul-
ture. This paper is devoted to the adaptive nonmonotonic methods with averaging
of the subgradients. The unified approach is suggested for construction of new
deterministic subgradient methods, their stochastic finite-difference analogs and a
posteriori estimates of accuracy of solution.
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ADAPTIVE NONMONOTONIC METHODS
WITH AVERAGING OF SUBGRADIENTS

N.D. Chepurnoj

1. OVERVIEW OF RESULTS IN NONMONOTONIC SUBGRADIENT METHODS

Among the existing numerical methods of solution of nondifferentiable optimi-

zation problems, the nonmonotonic subgradient methods hold an important position.

The pioneering work by N.Z. Shor [26] gave impetus to their explosive pro-
gress. In 1962, he suggested an iterative process of minimization of convex
piecewise-linear function named afterwards the generalized gradient descent

(GGD):

s +1

z =z5 —r.g° , 1.1)

where g° € 8f(x%) is a set of subgradients of a function f(z)at a point z%5; r_ 20

s
is a step size.

For the differentiable functions this method agrees very closely with the
well-known subgradient method. The fundamental difference between them is that

the motion direction {(— g%) in (1.1) is, as a rule, not a descent direction.

At the first attempts to substantiate theoretically the convergence of pro-
cedures of the type (1.1) the researchers immediately faced two difficulties. For
one thing, the objective function lacked the property of differentiability. For
another, method (1.1) was not monotonic. These combined features rendered im-

practical the use of known gradient procedure convergence theorems.
New theoretical approaches therefore became a must.

One more "misfortune’” came on the neck of the others: numerical computa-

tions demonstrated that GGD has a low convergence rate.

Initially great hopes were pinned on the step-size selection strategy as a way

towards overcoming the crisis.



-2-

By the early 1970s difficulties caused by the formal substantiation of conver-
gence of nonmontonic subgradient procedures had been mastered and different ap-
proaches to the step-size regulation had been offered [6, 7, 8, 19, 20, 26]. However

the computations continued to prove the poor convergence of GGD in practice.
It can be said that the first stage in GGD evolution was over in 1976.

Thereupon the numerical methods of nondifferentiable optimization developed
in three directions, i.e., methods with space dilation, monotone, and adaptive non-

monotonic methods were explored.
Let us dwell on each of these approaches.

In an effort to enhance the GGD efficiency, N.Z. Shor elaborated methods
where the operation of space dilation in the direction of a subgradient and a
difference between two successive subgradients was employed. Literally the next
few years were prolific for papers [27, 2B, 29] investigating into the space dilation
operation in nondifferentiable function minimization problems. A high rate of con-

vergence of the suggested methods was corroborated theoretically.

Computational practice attested convincingly to the advantageousness of ap-
plication of the algorithms with space dilation, especially the r-algorithm [29], as
alternative to GGD, providing dimensions of the space do not exceed 200 to 300.
However, if dimensions are ample, first, a considerable amount of computations is
spent on the space dilation matrix transformation, second, some extra capacity of

computer memory is required.
The monotonic methods became another essential direction.

Even though the first papers on the monotonic methods appeared back in 1968
(V.F. Dem’'janov [30]), their progress reached its peak in the early 70's. Two
classes of these algorithms should be distinguished here: the e-steepest descent
[5, 30] and the e-subgradient algorithms [31-34]. We shall not examine them in de-
tail but note, that the monotonic methods offered higher rate of convergence as
against GGD. Just as with the methods using the space dilation, vast dimensions of

problems to be solved still remained Achilles’ heel for the monotonic algorithms.

Thus, the nonmonotonic subgradient methods have come into particular impor-

tance in the solution of large-scale nondifferentiable optimization problems.

The nonmonotonic procedures have another important object of application,
apart from the large-scale problems, i.e., the problems in which the subgradient
cannot be precisely defined at a point. The latter encompass problems of identifi-

cation, learning, and pattern recognition [1, 21]. The minimized function is there a
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mathematical expectation whose distribution law is unknown. Errors in subgradient

calculation may stem from computation errors and many other real processes.

Ju.M. Ermol’'ev and Z.V. Nekrylova [9] were the first to investigate the like
procedures. Stochastic programming problems have increasingly drawn the atten-

tion to the nonmonotonic subgradient methods.

However, as pointed out earlier, GGD, widely used, resistant to errors in
subgradient computations, saving memory capacity, still had a poor rate of conver-
gence. Of great importance therefore was the construction of nonmonotonic
methods such that, on the one hand, retain all advantages of GGD and, on the other,

possess a high rate of convergence.

It has been this requirement that has let to elaboration of the adaptive non-

monotonic procedures.

An analysis revealed that the Markov nature of GGD is the chief cause of its
slow convergence. It is quite obvious that the use of the most intimate knowledge of
progress of the computations is indispensable to selection of the direction and re-

gulation of the stepsize.

Several ideas provided the basis for the development of adaptive nonmonoton-

ic methods.

The major concept of all techniques for selecting the direction and regulating
the step-size was the use of information about the fulfillment of necessary condi-

tions to have the extremal-value function.
Its implementation are the methods with averaging of the subgradients.

In the most general case by the operation of averaging is meant a procedure

of "taking' the convex hull of an arbitrary finite number of vectors.

The operation of averaging in the numerical methods was first applied by Ja.Z.

Cypkin [22] and Ju.M. Ermol’ev [11].

The paper by A.M. Gupal and L.G. Bazhenov [3] also dealing with the use of
operation of averaging of stochastic estimates of the generalized gradients ap-
peared in 1972.

However all the above papers considered the program regulation of the step-

size, i.e., a sequence irs ] independent of computations was selected such that

re 20, ry =0, Y ri=w Y réicewo.
s =0 s =0
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The next natural stage in the evolution of this concept was the construction of
adaptive step-size regulation using the operation of averaging of preceding

subgradients.

In 1974, E.A. Nurminskij and L.A. Zhelikovskij [1B] suggested a successive
program-adaptive regulation of the step-size for the quasigradient method of

minimization of weakly convex function.
The crux of this relation consists in the following.

Let an iterative sequence be constructed according to the rule

zStl=gs -rog®. s =0,1,2,... ,

where g € 8 (z°) is a quasi-gradient of the function f(z) at the point z¥, rj is a

constant step-size.

Assume that there exist £ € E™ and numerical parameters £ >0, § > 0 such

that forany s =0, 1, 2,... lzs — E” < 4. Let us suppose also that a convex combi-

nation of subgradients g}, 2, exists such thatlle*°ll < &,
e*? € conv {g?};2
g ;1 =0 -

Then the point z is sufficiently close to the set x*= argmin f(x) according to the
necessary extremum conditions. In the given case the step-size has to be reduced
and the procedure repeated with the new step-size value r, starting at the ob-

o

tained point z°9 The numerical realization of the described algorithm requires a

specific rule for constructing vectors e In [18] the vector e* is constructed by
the rule ¢ = Proj O/conv Eg"j:‘._.s‘_l, that is, all quasi-gradients are included
into the convex hull starting from the most recent instant of the step-size change.
Numerical computations bore out the expediency of making allowances for such re-
gulation. However a grave disadvantage was inherent in it: the great laboriousness
of iteration. Considering that the approach as a whole holds promise, averaging
schemes had to be developed for the efficient use when selecting the direction and

regulating the step-size.

This paper treats such averaging schemes. They serve as a foundation for new
nonmonotonic subgradient methods, for the description of stochastic finite-
difference analogs, a posteriori estimates of solution accuracy. Prior to discuss-
ing results, let us make some general assumptions. Presume that the minimization

problem is being solved on the entire space of the function f(z):



min f(z) (*)
z €E™

where E™ is an n-dimensional Euclidean space. The function f(z) will be every-
where thought of as being the convex eigenfunction f(z), dom f =E™, the sets
{z:f(z) < ¢ ] being bounded for any bounded constant C. The set of solutions of

the problem (*) will be believed to be the set

X*={z*cE™:0€driz" .

2. SUBGRADIENT METHODS WITH PROGRAM-ADAPTIVE STEP-SIZE
REGULATION
The concept of adaptive successive step-size regulation has already been set
forth. In [23] a way of determining the instant of the step-size variation was sug-
gested. Central to it was the simplest scheme of averaging of the preceding subgra-
dients. This method is easy to implement and effects a saving in computer memory
capacity. Compared to the program regulation, the adaptive regulation improves

convergence of the subgradient methods.

Description of Algorithm 1

Let z° be an arbitrary initial point, 6 > 0 be a constant, {g; ), ir, ] be number
sequences such that & >0, g — 0, r, >0, r, — 0. Put s =0, 7 =0, & =0,
1°=g%coar(?.

Step 1. Construct

xS +1 =25 _rkgs

Step 2. If £(z5*1) > (2% + ¢, then select z5*1 ¢ [z :f(z) < £(z°) and go
to Step 5.

Step 3. Define

es+1=Les +___3:__gs+1 )
s —JF +2 s =7 +2

Step 4. If lles *4 > £, thens = s + 1 and go to Step 1.

StepS5.Setk =k +1,7 =5 +1,5s =5 +1andgoto Step 1.
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THEOREM 1.1 Assume that the problem (*) is solved by algoriithm 1. Then all

limit points of the sequence {z5 | belong to X *.

PROOF Denote the instants of step-size variations by s, . Let us prove that the
step-size r, varies an infinite number of times. Suppose it is not so, i.e., the step-
size does not vary starting from an instant s, and is equal r,,. Then the points zs

for s = s, belong to the set

fz:7(z) s f(z% + &}
and are related by

zS +1 _ xS _rmgs
Considering that the step-size does not vary, llesll > &m >0 for s 2 s,. In passing

to the limit by s — e in the inequality

S
Nzs+l —zmll=p il Y gtli=rp (s ~sp +Dllesl > 7 (s =5, + 1)ep
1 =5y,

we obtain a contradiction in the boundedness of the set
fz:f(z)sr (% +6] .

The further proof of Theorem 1.1 amounts to checking the general conditions

of algorithm convergence derived by E.A. Nurminskij [17].

NURMINSKIJ THEOREM  Let the sequence {z5] and the set of solutions X*

be such that the following conditions are satisfied:

D1. For any sequence {z “*{ such that
z%% —z'ex*

lim |56+ — 25kl =0 .

k — o

D2 There exists the closed bounded set S such that
z5{ ¢S .

D3 For any subsequence {z *} such that
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there exists £;5 > O such that for all 0 < £ < ¢, and any &

inf m:flz™ —z™l>¢)=m, <o
m >ng

D4 The continuous function W(x) exists such that for an arbitrary subsequence

fz ™} such that

, n S
limz *=z2’€X

k —v

and for the subsequence {zm"l corresponding to it by condition D3 for an arbi-

trary 0 < e g,

lim W(zm") <k1im W(:cn“) .

k —sw

D5. The function W(x) of condition D4 assumes no more than countable number of

values on the set X°.

Then all limiting points of the sequence {z* | belong to X ‘

Select the function f(z) as the function W (z). Conditions D1, D5 are satisfied
in view of the algorithm structure and the earlier assumptions.
The rest of the conditions will be verified by the following scheme. We will

prove that conditions D3, D4 hold the points being the inner points of the set
s =lz:f(x)<f(=x 0y]. It is therewith obvious that

max W(z) < inf W(z)
r €S

z €lz:f(z)=2r(=z"% +6] .

Then the sequence [z ¥ falls outside the set S only finite number of times. Conse-
quently, condition D2 is satisfied and this automatically entails the validity of D3
and D4.

So, let the subsequence |z n"! exists such that z "¢ — z’ € X*. Assume at this
stage of the proof that z* € int S. We will prove that there exists ¢, > 0 such that
for all 0 < £ s ¢, at an arbitrary p:

inf fm:llz™ —z™All> &) = m,< e (2.1)
m>n,

Now suppose condition (2.1) is not satisfied, that is, for any £ > 0 there exists n p

such that llz§ —z™Al< s forall s > 7,



We have
lzs —zl<llzs —z™l +lle™ -zl < 2¢

for sufficiently large n, and s > n, By the supposition 0 € 8 f(z ). By virtue of

P
the closedness, convexity and upper semi-continuity of the many-valued mapping
87(xz) there exists £ > 0 such that 0 € conv G4,(x°), where conv {‘] is a convex

hull and G4 (z°) is a set
Carex) =U OGS (T), T €EUg(z’) .

It is easily seen that £ >0 can be always selected in such a way that
Uslz?) Cint S, where Ugl(z) = |z Nz ~zl=ae]. Let B =minllgl,
g €conv G4.(z’). Obviously ¥ >0. As g, — 0, there exists an integer &::(19) such
that for &£ = E('ﬂ) we have £, < ¥/2. Put n,= E('ﬂ). Then it is readily seen that

fors=n p the step-size r, can vary no more than once within the set U4 (z°). Ex-

amine the sequence [z5 ] separately on the intervals ny,ss < sp', where
L J - v . N
Sp SMN Sy Sy znp .

When n p €ss <s P. the points z°¥ are related as follows

+1
xS 1_zs_rlgs ,

p - Let us consider the scalar

where the index [ is reconstructed with respect to s

products

s -1
dg = (™ ~2%,95)=r (L g¢* 9%)=

1=‘np
1 sol —
=r,(s = nP) Y otgf)=ris =n,) (7L 9%),
§ =Npyi=n
P
where z P = gn",
zS =1 - 1 zS 14 1 g°
s —np+1 s=n,+1 )

sznp.
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Since z% € conv Gaelz?), s =n, it is possible to prove that
N N+
(z'h gt

Thus,

1)27, 7 =1/29%

N1+1

N
dy1+1 =7 Ny —n,+1)(z" g YEr Ny —n,+1)7 .

We next consider the scalar products

d. = (le +1

: -z5,¢5)=r,(s =Ny, —1)(z5 "1, ¢%) ,

wheres =N, + 1.

Ng+1

The index N, exists such that (zNz, g )z yanddy, .4 =7, (N, —Ny)y.

Then in a similar way we can prove the existence of indices N; (£ 2 3) such that

ay, 127 (N =N _y)7 -

It is easy to prove that Ne 1 = N sN<ew, ¢ =1, 2,.... Let Nt' be the maximal of

indices N, that does not exceed s;. Then

» t
r@&@™) s 7" - Z, 1 <f @) -y W -n,) .

Since s; —Nt. = N, then with p — o the last term on the right-hand side of

the inequality

F@Sf) =@ sr@™) - 2™ +lr@E™) - £ @5P)!

approaches zero. We finally obtain

@) —p " s —r(s, —ny+ &, 2.2)

where c;, — 0 with p* — oo,

It is not difficult to notice that the reasoning which underlies the derivation

of inequality (2.2) may be also repeated without changes for the interval s 2 s ; to

get

fE™) - <1, (m - s;)7 +ey . (2.3)

Adding (2.2) to (2.3) we obtain
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f@™) —r@E ) s-r(s, —n,)y _

. v X
-7 4+q(m —sp)7+€p + &y

In passing to the limit by m — o in inequality (2.4) we are led to a contradiction
with respect to the boundedness of continuous function on the closed bounded set

Ug.(z°). Consequently, condition (2.1) is proved.

Let

m, = inf m:llzm —z™All > ¢ .

By structure TP T Ut(z""). but for sufficiently large p
z™"P € Ugelz?) .

All the reasoning involved in derivation of inequality (2.4) remains valid for the in-

stant m that is,

S —F (&Y S=r(s, —n) Y —T (M, —5,)y +E, +& . (25)
As
m n n S‘
e<llz™ -zl < llz™r — 257 ||
+lz% —z™ell < *—n))C+ -shHe
z -z r,(sp np) f'1+1(mp Sp) )
we have

m oy _ £
Wx P)sWwW(z P) 20

In passing to the limit by p — o we get
lim w(&™f) < lim W(z"?) .
p—+w™ p—rw™
The further proof of this theorem follows from the Nurminskij theorem.

To fix more precisely the instant when the iteration process gets into the
neighborhood of the solution we can employ the following modification of algorithm

1 provided the computer capacity allows.
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Let z° be an arbitrary initial point, é > 0 be a constant, {£,{, {7, ] be number
sequences such that ¢, >0, g — 0, 7, >0, rp, —0; k4, k3, ..., ky, be integer

positive bounded constants.
Pats =0,7 =0,%4 =0,e° =g°% € 87(z").
Step1 Construct

s +1

- s s
z =z% —-r,g° ,

gs +1 - af(xs +1) .

Step 2 If f(zS*Y) > f(x°) + 6, then z5* 1 ez :f(z) < f(z°)] and go to
Step 5.

Step 3 Define

s+1___s+1 . _ 1 @ s+1
€o s—j+2e° s—j+2g '

s —k;+1
eftt =Py TV gt
S —kp+1
esStl=p (g ™, ....g5*Y .
Each of the notations P;(:, -, -) designates an arbitrary convex combination of a

finite number of the indicated preceding subgradients.

Find

= min les*1l|l .
Bs +1 0sp=m

Step4 If ug,q > £, thens =s + 1 and go to Step 1.

StepS Setk =k +1,7=s5+1,5 =5 +1, e =g° and go to Step 1.

THEOREM 2.1 Suppose that the problem (*) is solved by the modified algo-

rithm 1. Then all limit points of the sequence [z} belong to X ".
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3. METHODS WITH AVERAGING OF SUBGRADIENTS AND PROGRAM-ADAPTIVE
SUCCESSIVE STEP-SIZE REGULATION

Successive Step-Size Regulation

As noted in a number of works [2, 3, 12, 16] it is expedient to average subgra-
dients calculated at the previous iterations so that the subgradient methods will be
more regular. For instance, when the '"ravine’-type functions are minimized, the

averaged direction points the way along the bottom of the "ravine'.

It will be demonstrated in Section 5 that the operation of averaging enables
the improvement of a posteriori estimates of the solution accuracy along with the

upgrading of regularity of the described methods.

Methods with averaging of subgradients and consecutive program-adaptive re-

gulation of the step-size are set forth in this section.
Results obtained here stem from [24].
Description of Algorithm 2.

Let z° be an arbitrary initial approximation; 8 > 0 be a constant; fee ), tre)

be number sequences such that

£, 20,8 =0, 7, >0, 7, —0 .

Puts =0,7 =0,k =0,
v =g%e’=g%g°casr(z?) .

Stepl Construct

s +1

z =z% —rp vS

Step2 If £(zS*1)> f£(z°) + &, then go to Step 7.

Step3 Define v* 1 according to the schemes a) or b).

Step4 ConstructeS*l=eS + (s —j +2) Yw® 1 —¢9).

steps Iflles+ll> £, thens = s +1 and go to Step 1.

Step6 Setk =k +1,7 =s+1,5s =s +1,¢e’ =v° and go to Step 1.

Step7 SetzS*leflz:f(z)sf(z°)].s=s+1,j=s,k=k+1andgoto
Step 1.
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In construction of the direction v¥ the following schemes of subgradient

averaging are dealt with.

a) The "moving'' average. Let X 2 1 be an integer. Then

£ S
Y A sgtifs=k Y A =1,
s - K

1 K i=g5 -

0 i

S
Ay ot ifs <K, } A\ s =1
0

i1i=0 i=

where gt € Bf(:ci), Ai,s =0,

b) The "weighted”  average. Let M21 be an integer. Then
v =g% + A (vF 1 _.4%), where 0<sA; <1 for s #0 (mod M),
0=\, sd<1fors =0 (modM).

THEOREM 3.1 Assume that the problem (*) is solved by algorithm 2. Then all

limit points of the sequence [z° | belong to the set X .

4. STOCHASTIC FINITE-DIFFEENCE ANALOGS TO ADAPTIVE NONMONOTONIC
METHODS WITH AVERAGING OF SUBGRADIENTS

It should be emphasized that the practical value of the subgradient-type
methods essentially depends upon the existence of their finite-difference analogs.
Of great importance the finite-difference methods are primarily in situations when
subgradient computation programs are unavailable. This generally occurs in the
solution of large-scale problems. Construction of the finite-difference methods in
the nonsmooth optimization originated two approaches: the nondeterministic and
the stochastic ones. Each of them has its own advantages and disadvantages. The

stochastic approach is favored here.

One of the advantages of the introduced averaging operation is the fact that
the construction of stochastic analogs to subgradient methods presents no special

problems.

The offered methods are close to those with smoothing [4] which, in their turn,
are closest to the schemes of stochastic quasi-gradient methods [12]. Research
into the stochastic quasi-gradient methods with successive step-size regulation is
quite a new and underdeveloped field. Ju. M. Ermol’jev spurred first the investiga-

tions in this direction. His and Ju. M. Kaniovskij results [13] are undoubtedly of



-14 -

theoretical interest. However implementation of methods described in [14] creates

complications as there is no rule to regulate variations in the step-size.

Let us first dwell on functions f{(x, i) of the form

n @ ay
f.i)=j=—| [ - [ r@+y)dy; - dy, .
2ay Zag Zaq

where a; > 0.

Properties of the functions f(z, i) have been studied by A.M. Gupal [4]

proceeding from the assumption that f(z ) satisfies the Lipschitz local condition.

THEOREM 4.1 If £ (z) is a convex eigenfunction, dom f =E™, then f(z,1) is

also a convezx eigenf‘unciion, dom f(z,i) =E™, for any a; >0.

THEOREM 4.2 A sequence of functions f(x, i) uniformly converges to f(x)

with a; — 0 in any bounded domain X.

Now we shall go to the description of stochastic finite-difference analogs to
algorithms with successive program-adaptive regulation of the step-size and with

averaging of the direction.

Description of Algorithm 5 Let z° be an arbitrary initial approximation, é >0

be a constant, {r,{, {£;4, {a;{, [p;] be number sequences.
Puts =0,7 =0, 7 =0.

Step1l Compute

1 n ~g ~g
Esz—zai kzl(.f(zl,...,zg'.’atln--:zn
~rE .z —ay, ..., ES)eX

where E‘f, k =1, n are independent random values distributed uniformly on inter-

vals [zf —a,;, z§ + a;], a3 > 0.

Step2 Construct e’ in compliance with the schemes a) and b), where the

subgradients are replace by their stochastic estimates.
Step3 Findz**!1 =z5 —reS.

Stepd If £(z5*1) > £(z° + &, then go to Step 9.
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Step5 DefinezS*t1=2% +(s =7 +1) (e -2%)

Step6 Ifs —j <p;, thens =5 +1 and go to Step 1.

Step7 Ifllzs*1l>¢,, thens =s + 1 and go to Step 1.

Step8 Puti =i +1,7 =s +1,s =5 + 1 andgo to Step 1.

Step9 SetzStlefz:f(z)=ssf(z%},7=s+1,i=1+1, s =s +1andgo

to Step 1.

THEOREM 4.3 Let the problem (*) be solved by algorithm 8 and the number se-

quences

fred tegd Ingd £641, bpe), tay) 2 =0,1,2,...

satisfy the following conditions

ry >0, ry, —0,¢ >0, ¢, —0, A >0, A, —0,

51>0,25i<ﬂ°,a1>0,a1—>0,

1=0

la, = a, ,, lx, — a |

1 i+1__’0’ 1 1+1 -0,

T1+1 Ti+1
psry — 0 £ sSp; <o

171 | i ’

A8y

0<c <o .

Then almost for all & the sequence f(z° (w)) converges and all limit points of the

sequence [z¥ (w)] belong to the set of solutions X*. Theorem 4.3 is proved in detail

in [25].

5. A POSTERIORI ESTIMATES OF ACCURACY OF SOLUTION TO ADAPTIVE
SUBGRADIENT METHODS AND THEIR STOCHASTIC
FINITE-DIFFERENCE ANALOGS

In numeric solution of extremum problems of nondifferentiable optimization
strong emphasis is placed on the check of obtained solution accuracy. Given the
solution accuracy estimates, first, a very efficient rule of algorithm stopping can
be formulated, second, the obtained estimates can form the basis for justified con-

clusions with respect to the strategy of selection of algorithm parameters.
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Using rather simple procedure a posteriori estimates of solution accuracy for
the introduced adaptive algorithms are constructed here. The estimates provide a

means for strictly evaluating efficiency of the averaging operation use.

Thus, assume that the convex function minimization problem
min f(z) (*)
z ekEn

is being solved.

Suppose the set X * contains only one point z *

To solve the problem (*) consider algorithm 1. The spin-off from the proof of
theorem 2.1 is the proof that the sequence [z5] falls outside the set
fz:f(z) = f(z° + 6] a finite number of times only. Therefore, § =0 exists such

that for s = §
z% € !z:f(z)gf(zo) + 4] .

Then the step size will vary only if the condition lle® i < £, is satisfied,

where
es +1 = ef +(s -3 +2)—1(gs +1 _es) ,
gs‘ +1 € af(zs +1) .

Without loss of generality we will assume that the first instant of the change from

the step r( to r4y occurred just because the condition

lle®dll = &,

is satisfied.

From the convexity of the function f(z) it is inferred that

ro=rt+(%=z°-2z% , 6.1)
flsrt+@lzt-z% , (5.2)
s+ (@020 -2"% . (5.3)

Summation of inequalities (5.1), (6.2),... (56.3) yields

So

zrt s

120 ety 1 ﬁ (gt zt —=z% =
so+1 so+1,%,
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So
=f.+(es°,z°—z')+; 3 g% zt -z9 .
So +1 {=1

Denote the expression (s, + 1)1 2::1 @t zt -z% by by
We have obvious inequalities
So So
=zt ¥t
i=0 i=0
So +1 So +1

rE0=r Sst+E™ 20 -z + 4, , (5.4)

fEl s+ €%z -z + 4, ,

Zmin €tz S (@) Smin (£ (=0, 2D, ..., L&)

where with s, < s < s; the points z° are related by z° *l=gzs - r,9%. For these
values of s it is possible to derive that
S
r =
-~ 1i=sp+1l
rE N s |=srT e 250" —z% 44, (5.5)
—sS0
fEmn) st E 20—z 4y, (5.6)
u +1
where Ay = (s —so';1 Y (gt =t —z%0th,
1=SD+2
s . +1
Tmin € [z :7(z) = min 7ot @Y .
Thus, for s, + 1< s < s, ,{ We have
Sk +1
zi
~ 1=s5p+1
FEEY =y k B T CRALI S AL Iy Y 6.7)
Sk +1 7~ Sk
Sk +1 .
Y, S
i=5 +1
Flziksy g ——F <7+ (eTEt ZRT 2% v, (5.8)
Sk +1 7~ Sk

where

h L rEEy

::,sn'i,';‘ € jz: f(z) < min {_)’(zs"+
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Sk+1
1 +1
b, =—— Y (9%, =t —z5EThy
—s
Sk +1 E 1=g 42

It is easily proved that 4, — 0.

THEOREM 5.1 Assume that the problem (*) is solved by algorithm 1. Then the

inequalities
f(z:l'fn) <sr*+ zb||zs*"l+1 -zl + 8, .,
FE 2t + ez M a,

hold for such instants s, at which the step-size varies because the condition

lle**l < £, is satisfied.

REMARK It follows from theorem 5.1 that the same estimate occurs both for the
subsequence of records” |z :,‘jn { and for Cesaro subsequence {Z kg

Let the problem (*) be solved by algorithm 2 where the operation of averaging
of proceeding subgradients is used. Denote instants of changes in the step-size by

54, 1 =0,1,2,.... Suppose the first instant of the change from r, to r, takes

place because the inequality lle®oll < £, holds. Examine the scheme of averaging by

"moving” average. We have
* [ ]
rP=rt+@tz'-z%,

rsrte@s,zf-z% ,

S s
IR VIS A AN OLAF AP R D NP VIR CANE AEE I
1=0 1=0

Designate the expression ii: Aq, St by 7.
=0
Then
=+ @%z0-2%,
e+ @S, z2-z% + zs: A s(gt 2t - 2% .
1=0

Whence for s = K we have

Y
N F st (5, 20 -2t + LS
1 =0

s +1
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For s > K we shall have

~, LY
F=rt+@s,z22-z%+ Y Ai,s(gi,xi—xo) .
1=s -K

Thus,

i+ i flsr®+(e5,z0-z%
=K

1 _ .0 S
+s+1L é)\ij(gz z%) + §

=11 =0 J=

“ [

~
Q

-
|

4]

o
~

+11 =

From the formula

S+ (w5, 2% -z2% + 2 M st 2t =20
1 =0

the following recommendations can be offered with respect to the selection of

parameters A; :

s s
(1) min { by )\t'sgi“-f- Y Ails(gi,xi -z%, ¥ A s =1
N0 4 =0 1=1 i=0

) min At, s(g z —a:o) . Ai,s =
7\(,5‘&0120 igo

The subgradient averaging thereby allows improving a posteriori estimates of
the solution accuracy. This may substantiate formally that it is of advantage to in-

troduce and study the operation of subgradient averaging.

For an arbitrary instant of step-size variation s; > K we can easily obtain the

estimate

s, + (", 51 -z%

Sy —si—1+1

+(sy —=sg g+ 171 E Z Ayt 2t =2 L (5.9)
l=sq4j=L-K

THEOREM 5.1 Let the problem (*) be solved by algorithm 2 with the use of
averaging scheme a). Then for the instants s;, for which lle sl < &4, inequality

(B®.9) holds. The scheme of averaging by "weighted” average b) is treated in a
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similar way.

The a posteriori estimates of the solution accuracy attained for the adaptive
subgradient methods can be extended to their stochastic finite-difference analogs
with the minimum of alterations. The way of getting them is illustrated with algo-
rithm 3. We will use notations introduced in Section 4. When proving theorem 4.3 it
is possible to demonstrate that the step-size r; varies an infinite number of times.
As algorithm 3 converges with a probability of unity, then for almost all w it is pos-

sible to indicate §(w) such that with s 2 §

z5 €fz:f(z)=sr® +6) .
Therefore, with s = §(w) the step-size 7, varies because the condition

8¢
Iz 5 ¢,

Stz (sq =) Y —2™ ~1y sequences 178

and {p; | comply with properties formulated in theorem 4.3, j is reconstructed by

holds, where s, 2p, +Jj, z

St.

Consider the event

k
At = {max 1 1 —vpES s -l > Al
kxp k (=1

where s; _, is the instant of step-size change that precedes s;. There exists the
constant 0 < ¢ < o such that with the probability greater than 1 — C 4, it is possi-
ble to state that

Sq
?1-|I P @t g @St i =,
1 [ =1

Then for the instant s; the inequality

1 I & sq+l <l S Sy +L
Iy vr(= yi-DI= Y vr(= ,i—1)
St (=1 [=1

- zs‘” + ”Zs‘” < A‘l + ti

holds with the same probability.
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Theorem 5.3 is readily formulated and proved. Assume that the problem (#*) is
solved by algorithm 3. Then for almost all w it is possible to isolate a subsequence
of points |z s‘(w)] for which with the probability greater than 1 — C 4, the inequal-
ities hold

S
Y r@ti-1)

l=s¢_4 -

sfi.—l + (Ai + ti)”zs‘_l — Ty 4 ”

+c ”z,sn‘ax —z5

where ft.—i = min f(z,1 —1),
r €E"

z,' 4, € Argmin f(z, 1 —1) .
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